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1.1 Introduction

Turbulence is a general term used for describing the erratic motions displayed by nonlinear
systems that are driven far from their equilibrium position and thus display complicated
motions involving different time and length scales. Without other precision, the term gen-
erally refers to hydrodynamic turbulence, as the main field of research has been directed
towards irregular motions of fluids and the solutions of Navier-Stokes equations. During

the XXth century, the theory has shown important breakthrough thanks to the qualitative
ideas of Richardson and the quantitative arguments of Kolmogorov that culminated in the
so-called K41 theory [Kol41a, Kol41b, Fri95]. This statistical approach, although giving
successful predictions, still faces an irreducible obstacle due to the lack of closure in the
infinite hierarchy of moment equations.

Wave turbulence (WT) share many common ideas with turbulence, in particular as
being a statistical theory for out-of-equilibrium systems. A main difference resides in the
fact that the persistence of waves is assumed. By considering a sea of weakly interacting
dispersive wave trains, it has been shown that a natural asymptotic closure may be derived
from the hierarchy of moment equations [BN67, ZLF92, NNB01]. Furthermore, this closure
equation, referred to as the kinetic equation, has been shown to admit two sets of stationary
solutions [ZF67a, ZF67b, ZLF92]. The first one is the classical equipartition of energy. Most
importantly, the second one describes an energy flux through the scales and thus recovers
the Richardson’s picture of turbulence with a cascade of energy from the injection to the
dissipative scales. Inbetween, an inertial range with a conservative Hamiltonian dynamics
is assumed.
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A salient feature of the wave turbulence (WT) theory is that solutions of the kinetic
equation are analytic, hence yielding accurate predictions for the stationary repartition of
energy through scales in a given out-of-equilibrium system. The solutions of the kinetic
equation have been derived starting from the mid-1960s and correspond to energy spectra
with power-law dependence on the wavenumber. The theory has been successfully applied
to capillary [ZF67b, PZ96] or gravity [ZF67a, OOS+02] waves on the surface of liquids,
to plasmas [MRZ95], to nonlinear optics [DNPZ92], to magnetohydrodynamics [NNG01]
or even to Bose-Einstein condensates [LNW03]. The theoretical bases are now firmly es-
tablished and the reader is referred to the existing books [ZLF92, Naz11] or review paper
[NR11] for a complete picture of the existing literature.

The application of WT to vibrating plates started with the theoretical derivation of
the kinetic equation from the dynamical von Kármán equations [vK10, CH56, LL59] that
describe large-amplitude motions of thin plates [DJR06]. Since this date, numerous papers
have been published covering experimental, theoretical and numerical materials. In fact,
it appears that the vibrating plate is a perfect candidate for a thorough comparison of
experiments with theoretical predictions. As compared to other physical systems such as
capillary or gravity waves for example, an experimental set-up with a fine control of energy
injection and a confortable range of wavelength is not too difficult to put in place. Secondly,
the available measurement techniques allow one to get a complete and precise picture of the
dynamics through the scales, both in the space and frequency domains. Finally, numerical
codes with good accuracy have been developed so that all the underlying assumptions of
the theory as well as its predictions have been tested, both on the experimental and the
numerical levels.

The first experimental papers reported a discrepancy between the theoretical predic-
tions and the measurements [BCOT08, Mor08]. An important research effort has then been
undertaken in order to understand the origin of these differences. The aim of the present
paper is to sum up the most important results obtained so as to give an overview of the
solved problems and open issues. The paper is organized as follows:

• The first section is devoted to theoretical results. It starts with a description of
the von Kármán equations for geometrically nonlinear vibrations of plates, and
recalls the main assumptions underlying the mechanical model. The application
of the wave turbulence theory to the von Kármán model is then overviewed.
Stationary solutions of the kinetic equation are given, as well as self-similar laws
for non-stationary turbulence.

• Section 1.3 sums up the numerical results obtained for stationary and non-
stationary turbulence, including the effect of a simple imperfection.

• Section 1.4 gathers the experimental confrontations to the theory, and reviews
all the underlying assumptions of wave turbulence and their experimental verifi-
cations, in order to explain the origin of the discrepancies first reported.

• A general discussion is given and the conclusions are drawn.
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1.2 Theoretical results

1.2.1 Nonlinear vibrations of plates: von Kármán model

Mechanical models for large-amplitude, geometrically nonlinear vibrations of thin plates
are numerous and rely on a set of assumptions and approximations that give the level of
needed accuracy, depending on the vibratory state, the thickness and the frequency range.
The von Kármán model is one of the simplest one and relies on strong assumptions that
may be violated, especially when the plate is not too thin, or when the frequency range
of the vibrations include high-frequency components. It is largely used as it writes as a
simple set of coupled nonlinear partial differential equations that are amenable to analytical
approaches [LL59, NM79, BC91, SMN75, TTC02]. Moreover, it is known to produce very
accurate results for very thin plates and for vibration amplitudes up to one to five times
the thickness [YK05, TBC12, TVC13, TVC14].

As a description of geometrically nonlinear vibrations, the material is assumed to be lin-
ear elastic. Isotropy is also assumed for simplicity here, so that the material is fully described
thanks to its Young modulus E, Poisson ratio ν and density ρ. The main assumptions for
deriving the von Kármán model are the following [vK10, CH56, LL59, NM79, TB08]:

• The Kirchhoff-Love kinematical assumptions are fulfilled. This implies in partic-
ular that the transverse shear stresses are neglected. Rotation angles are assumed
to be small so that the displacement of any point of the mid-surface of the plate
is parameterized with the three displacements (u, v, w) only.

• The normal stress along the transverse direction is neglected.

• A particular truncation in the longitudinal part of the Green-Lagrange strain
tensor, due to von Kármán [vK10, Cia80, MHC97], is used.

• Rotatory inertia is neglected.

With these assumptions a von Kármán model with the three displacements (u, v, w) is
obtained, see e.g. [KY04, YK05, BTTD14]. A last assumption consists in neglecting the
in-plane inertia. In this case an Airy stress function F can be introduced and the two
longitudinal displacements (u, v) can be condensated, as proposed by Föppl [Föp07, BC91].
This model, generally referred to as Föppl - von Kármán, depends only on the two unknowns
w(x, t) and F (x, t) (where x is the two-dimensional space position and t the time), and reads,
for an undamped perfect plate without external forcing:

ρhẅ +D∆∆w = L(w,F ), (1.1a)

∆∆F = −Eh
2
L(w,w). (1.1b)

In these equations: h is the thickness, D = Eh3/12(1 − ν2) the bending rigidity, ∆
the laplacian and L a bilinear differential operator which reads, in cartesian coordinates:
L(f, g) = f,xxg,yy + f,yyg,xx − 2f,xyg,xy.

1.2.2 Wave turbulence theory for vibrating plates

This section is devoted to the application of the Wave turbulence (WT) theory to the von
Kármán equations for large-amplitude vibrations of thin plates. The underlying assumptions
needed for deriving the theory are the following:

1. The linearized system is composed of dispersive waves.

2. Weak nonlinearity is assumed, so that the nonlinear terms can be ordered and
considered small as compared to the linear ones.
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3. A clear separation of time scales exists between the linear oscillations and the
nonlinear time upon which energy is nonlinearly exchanges between wavetrains.

4. An inertial range with a conservative dynamics exists.

5. The system is of infinite size.

Assumptions 2 and 3 are correlated and state that the dynamics is composed of a sea
of weakly interacting, persistent waves. Formally speaking, this framework should thus be
referred to as a ”weak, wave turbulence theory”. However for the sake of simplicity we will
name it under the general term ”wave turbulence” (WT) in the remainder of the paper.
Thanks to the second assumption, one can derive a hierarchy of equations for the different
moments of the field. An equation for the wave spectrum is eventually deduced using long
time asymptotics. This kinetic equation can be obtained equivalently using slightly different
arguments: the so-called random phase approximation [ZLF92, Naz11] or an asymptotic
expansion for the cumulants [NR11].

More precisely, the von Kármán (VK) equations are first written in Fourier space by
introducing the transforms: Wk(t) = 1

2π

∫
w(x, t) eikx d2x and Fk(t) = 1

2π

∫
F (x, t) eikx d2x

for the two unknown fields, yielding:

ρhẄk = −Dk4Wk + Lk(w,F ), (1.2a)

k4Fk = −Eh
2
Lk(w,w), (1.2b)

where Lk denotes the Fourier transform of the bilinear operator L. From the linear terms,
the dispersion relation between the wavenumber k and the radian frequency of the wave ωk
is retrieved as:

ωk =

√
Eh2

12ρ(1− ν2)
k2. (1.3)

In order to write the VK equations under its canonical Hamiltonian form, one intro-
duces the momentum Yk = ρ∂tWk, as well as the canonical variables Ak defined by:
Wk = Xk√

2

(
Ak +A?−k

)
and Yk = −i√

2Xk

(
Ak −A?−k

)
with Xk = 1/

√
ρωk. This results in

a formulation with a diagonalized linear part where the nonlinear term appears clearly as
a perturbation to the linear wave equation for small wave amplitudes. Finally, separating
the dynamics within the linear time scale of the waves and the long time nonlinear inter-
actions allows us to write: Ak = ak eiωkt, where the variation of the amplitude ak is slow
as compared to the oscillation time 1/ωk. Formally, the linear dynamics of the modes can
be suppressed in this slow time scale analysis so that we end up with a kinetic equation
for the second order moment defined by < ak1

a?k2
>= nk1

δ(2)(k1 + k2), which reads for
nk ≡ n(k, t):

∂nk
∂t

= I(k). (1.4)

The expression of the collision integral I(k) comes from the nonlinear interaction between
four waves (see [DJR06] for more details), and reads:

I(k) = 12π

∫
|Jk123|2fk123δ(k + s1k1 + s2k2 + s3k3)

× δ(ωk + s1ω1 + s2ω2 + s3ω3)dk1dk2dk3, (1.5)

where Jk123 stands for the interaction term itself and fk123 is such that

fk123 =
∑

s1,s2,s3

nknk1
nk2

nk3

(
1

nk
+

s1
nk1

+
s2
nk2

+
s3
nk3

)
. (1.6)



Wave turbulence in vibrating plates 1-5

Here, the notation si stands for si = ±1 so that the collision integral corresponds to four
waves interaction, with both 2↔ 2 and 3↔ 1 waves mechanisms [Naz11, DJR06]. As it has
been shown for water waves, two distinct types of stationary solutions exist in general for
such kinetic equation. First, the equipartition of energy between the modes, since nk ∝ 1/ωk
is a trivial root of the integral term (1.5). This is the so-called Rayleigh-Jeans (RJ) spectrum,
and it writes in Fourier space:

nk ∝
1

k2
giving for the Fourier spectrum of the displacement < |Wk|2 >∝

1

k4
. (1.7)

In addition, another solution can be exhibited that exactly vanishes the full integral as
first shown for water waves by Zakharov [ZF67a, ZF67b] and therefore called Kolmogorov-
Zakharov (KZ) spectrum. It involves a constant flux of energy ε that is transferred from the
large scales (formally k = 0 in the mathematical solution) to the small scales (mathemat-
ically k → ∞ and practically towards a scale where dissipation becomes dominant). This
solution including a cascade of energy to the small scales reads:

nKZk = C
hε1/3ρ2/3

(12(1− ν2))2/3
ln1/3(k?/k)

k2
or < |Wk|2 >∝

ln1/3(k?/k)

k4
. (1.8)

This solution has a particular structure compared to the usual power-laws: indeed, this so-
lution is the same than the RJ spectrum but a logarithm correction. This peculiar structure,
similar to the one observed for the nonlinear Schrödinger equation [DNPZ92], comes from
the degeneracy of the KZ solution so that the next order term in the collision integral has
to be considered (see [DJR06, Dür10, DJR] for more details). This logarithmic correction
involves a cut-off wave number k? above which the mathematical solution is no more valid.
The mathematical function vanishes at k = k? so that everything works as if the constant
flux ε would be absorbed at k = k?. In fact, since the logarithmic correction is obtained as a
second order expansion, it is valid only for k � k?, so that one expects practically that the
spectrum simply decreases rapidly around and above k?. Such KZ solution can be observed
when energy is injected in the system at large scale (small k) and dissipated at small scale
(large k) so that one observes a transition between the inertial regime (where the constant
flux holds) and the dissipative range.

This KZ spectrum can be written in term of the energy spectrum, as a function of k, or
as a function of ω (or f), following,

Pv(k) =
C̄h

(1− ν2)2/3
ε1/3 log1/3

(
k?
k

)
and Pv(f) =

C̃h

(1− ν2)2/3
ε1/3 log1/3

(
f?

f

)
, (1.9)

where

f? =
1

2π

√
Eh2

12ρ(1− ν2)
k2?.

We notice that the energy spectrum is almost flat since it varies only through the logarithmic
correction.

1.2.3 Nonstationary wave turbulence

Other properties of the solutions of the kinetic equation can de derived by considering
nonstationary evolutions. In this particular case, one is able to exhibit self-similarity laws
that must be fulfilled by the solutions [ZLF92, FS91, CNP03, DCTB14]. Let us consider a
self-similar solution for the wave spectrum which depends only on the wavevector modulus,



1-6

n(k, t) = t−qf(kt−p) = t−qf(η). Introducing this expression in the kinetic equation (1.4),
and taking into account the expression of |Jk123|2 [DJR06, Dür10, DJR, DCTB14], one
obtains the following relationship

−t−q−1 [qf(η) + pηf ′(η)] = I(η)t−3q+2p, (1.10)

so that a self-similar solution for the wave spectrum exists if the condition −q−1 = −3q+2p,
is satisfied.

Let us now consider two different cases of non-stationary evolution of the wave turbulence
spectrum for the system, in order to derive another condition that must be fulfilled by the
unknowns p and q :

Case 1, forced turbulence : We assume that the plate is forced by a sinusoidal
pointwise forcing of constant amplitude and excitation frequency. In this case
the total energy ξ =

∫
ω nk dk increases linearly with time so that ξ ∼ t.

Case 2, free turbulence : The plate is left free to vibrate, given an amount of energy
as initial condition. In this case the total energy is constant so that ξ ∼ t0.

Using the self-similar assumption for the wave vector in the energy equation obtained for
the two cases considered, yields the following relationships:

4p− q =

{
1 for the forced turbulence (case 1)
0 for the free turbulence (case 2)

(1.11)

Solving for (p, q) in both cases give

forced turbulence : p = 1/2, q = 1, (1.12)

free turbulence : p = 1/6, q = 2/3. (1.13)

The self-similar laws obtained for the wave spectrum can be translated for the power
spectrum of the transverse velocity Pv(ω), where v = ẇ. One obtains for forced vibra-
tions [DCTB14]:

Pv(ω, t) ∼ f1
(√

ω

t

)
= g1

(ω
t

)
, (1.14)

and for free vibrations (case 2):

Pv(ω, t) ∼ t−1/3f2
(√

ω

t1/3

)
= t−1/3g2

( ω

t1/3

)
, (1.15)

where g1,2 (or f1,2) have been indexed with respect to case 1 and 2, and are functions to
be defined. The first relationship underlines the fact that, when the plate is excited by an
external harmonic forcing of constant amplitude and frequency, the cascade should show
a front propagating linearly in frequency with respect to time. More specifically, denoting
ωc the frequency of the front, one should observe that ωc ∝ t, and that the amplitude
of the power spectrum at the front Pv(ωc) should stay constant. In the second case where
the plate is left free to vibrate, given an initial amount of energy, one should observe the
front of the cascade propagating as t1/3 while the amplitude of the spectrum at the front
should decrease as t−1/3. These two predictions will be confronted to numerical simulations
in section 1.3.2.
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1.3 Numerical results

1.3.1 Kolmogorv-Zakharov spectrum

Numerical simulations of the VK equation can be performed using a pseudo-spectral method
that takes advantage of the linear dynamics of the vibrating plate. In that purpose, we use
in Fourier space the reduced variable Zk = Wke

iωkt so that the dynamical equation for Zk

involves only the nonlinear terms. This terms are then computed in real space first and then
transform in the Fourier space in order to integrate the dynamics using an Adams-Bashford
scheme.

In order to test the KZ spectrum, we need to impose to the system conditions that are
consistent with the energy cascading from large to small scales. We thus add two terms in
the VK equation (1.2) in the Fourier space:

ρhẄk = −Dk4Wk + Lk(w,F ) + Ik + dkẆk, (1.16a)

k4Fk = −Eh
2
Lk(w,w). (1.16b)

In these equations, the injection term Ik is modeled by a random forcing valid at large
scale (for |k| < ki only where 2π/ki is the injection scale):

Ik ∝ Θ for |k| < ki and Ik = 0 elsewhere

where Θ is a classical random process. On the other hand, an idealized linear dissipation is
used, acting only for |k| > kd, where 2π/kd is the dissipative or Kolmogorov scale, yielding:

dk ∝ (k2 − k2d) for |k| > kd and dk = 0 elsewhere.

(a) (b)

FIGURE 1.1 a) Evolution of the energy density with time for different forcing amplitudes obtained by

solving numerically the dimensionless VK equations. The mesh size is dx = 0.5 on a 1024× 1024 grid so

that the size of the plate is 512×512 in dimensionless unit `. The random forcing holds for |k| < ki = 0.1
while the dissipation acts for |k| > kd = 5.5. b) The energy dissipation rate as a function of time for the

same forcing amplitudes.

We investigate numerically the dynamics of this system by changing only the forcing
amplitude, all the other terms remaining the same. Moreover, we use the dimensionless
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version of the VK equations where the lengthes are expressed in unit of ` = h/
√

3(1− ν2),

the times in unit of
√
ρ/E` and the Airy function F in units of Eh`2. Fig. 1.1(a) shows the

evolution of the energy in the system for different values of the injection amplitude. After a
transient, a stationary regime is reached as illustrated on Fig. 1.1(b) where the dissipated
energy rate ε is plotted as function of time. In this steady state, this constant dissipated
energy corresponds to the flux of energy that cascades from the large scale toward the small
scales.

Finally, Fig. 1.2 shows the energy spectra in the stationary regime for these different
forcing amplitudes as functions of the frequency. The energy spectra have been rescaled
by ε1/3, following the theoretical prediction (1.9). We observe that the different spectra

collapse in a single curve that is well fitted by the WT solution log1/3(f?c /f). Amazingly,
f?c corresponds exactly to the frequency of the wavenumber kd.

FIGURE 1.2 Rescaled spectra for different forcing amplitudes (same parameters as in Figs. (1.1)). The

spectra are rescaled by the dissipation rate ε1/3 and collapse well into a single curve for fi < f < f?c ,

where fi is the injection frequency corresponding to the wave number ki. The black dotted line shows the

fit of this curve by the theoretical law (1.9), exhibiting a good agreement.

1.3.2 Nonstationary wave turbulence

This section offers numerical illustrations of the theoretical results for nonstationary turbu-
lence introduced in section 1.2.3. The numerical method chosen here is a finite difference,
energy-conserving scheme. As opposed to the pseudo-spectral method used in section 1.3.1,
finite difference simulations take place entirely in physical space. A family of such algorithms
has been provided by [Bil08a], where discrete energy conservation properties give a strict
stability condition and a bound on the solution growth. Such schemes, originally thought
for use in sound synthesis [Bil08b], have found interesting applications in WT simulations
[TBC12, DCTB14].

The two cases where self-similar laws have been derived from the kinetic equation are
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numerically considered with the following assumptions: in both cases a rectangular plate
is selected, transversely simply-supported with in-plane movable edges. More precisely we
have for:

forced vibrations (case 1) : The plate is excited with a pointwise harmonic forcing
for all the duration of the simulation. Both the excitation frequency and the
forcing amplitude are kept constant. The excitation frequency is close to the 4th
eigenfrequency of the plate. Damping is not taken into account.

free vibrations (case 2) : The plate is forced pointwise impulsively at the start on
a very short time interval, and then left free to vibrate. By doing so, a free
turbulence regime settles down with a given, controlable amount of initial energy.
Damping is not considered so that the dynamics is conservative.

Forced vibrations. A first case is considered with a 0.4× 0.6 m2 rectangular plate of
thickness h = 1 mm. The forcing, located at an arbitrary point, has excitation frequency
at 75 Hz, at a steady amplitude of 10 N (after an initial transient where the amplitude is
increased from zero to the steady value). 102×153 grid points and a sampling rate of 400 kHz
are used. Fig. 1.3(a) shows the spectrogram of the displacement at an arbitrary output point:
the absence of damping in addition to the steady forcing create a nonstationary turbulent
cascade, with a front propagating to the high frequencies. A characteristic frequency defined

as fc =
∫∞
0
Pv(f)f df∫∞

0
Pv(f) df

is introduced so as to quantitatively investigate the front, where Pv(f)

represents the velocity power spectrum in the frequency domain.

(a)
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FIGURE 1.3 Nonstationary turbulence with steady forcing (case 1). (a): Spectrogram. (b): Normalised

velocity power spectra. (c): Evolution of fc vs t. (d): Evolution of Pv(fc) vs t . (e): Scaling of spectral

amplitude with injected power.

Fig. 1.3(c) and (d) show that fc ∝ t and that the power spectrum at this characteristic
frequency, Pv(fc), is constant. Plotting successive velocity spectra normalised by fc and
Pv(fc) gives rise to Fig. 1.3(b), from which a self-similar dynamics is deduced. Therefore

Pv(f) = Pv(fc)φP

(
f

fc

)
= g1

(
f

t

)
. (1.17)
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This last equality, along with the fact that the energy in the system grows linearly over time,
is in accordance with the theoretical prediction of nonstationary turbulence, Eq. (1.14).
Other than agreeing formally with the theory, these simulations offer a visualisation of the
shape of the self-similar function g1, which is not given by the theory. Note that g1 has the
shape of φP used in Eq. (1.17) and shown in Fig. 1.3(b), where here the subscript P refers
to the periodic, constant amplitude forcing (case 1, forced vibrations). The nonstationary
turbulence is in this case associated with a constant mean injected power ε̄ with increasing
dispersion εrms (see [DCTB14]). The cascade possesses various scaling laws. An important
one, depicted in Fig. 1.3(e), relates the value of the mean injection ε̄ with the spectral am-
plitude Pv(fc). The figure, obtained from 15 simulations of plates with varying geometrical
and forcing parameters, leads to the following expression: [DCTB14]:

Pv(fc) ∝ hε̄1/3. (1.18)

This relationship shows that the power spectrum is proportional to the injected power at
the power one third, in accordance with the fact that a four-waves interaction process is at
hand [Naz11, DJR06, DCTB14].

Free turbulence. For this case where the plate is left free to vibrate, given an amount
of energy as initial condition, a plate of sides 0.4 × 0.6 m2 and thickness h = 0.1 mm,
is considered. The spectrogram of the displacement of an arbitrary output point is shown
in Fig. 1.4(a). The behaviour of the front of the cascade fc(t) and the spectral amplitude
Pv(fc) are shown in Figs. 1.4(c) and (d) with logarithmic scales, clearly exhibiting that
fc ∝ t1/3, and Pv(fc) ∝ t−1/3. The normalised power spectra, in Fig. 1.4(b), show again

a self-similar dynamics, so that Pv(f) = Pv(fc)φF

(
f
fc

)
= t−1/3g2

(
f
t1/3

)
which again is in

accordance with the theoretical predictions, Eq. (1.15). Again, thanks to the simulations one
can appreciate the shape of the self-similar function g2, represented through the function
φF in Fig. 1.4(b), where the subscript F stands now for free turbulence (case 2). Note that
the shape of φP and φF are not exactly the same, when represented on the same figure one
observes clearly that whereas the slope is almost perfectly flat in the free vibration case
(function φF , Fig. 1.4(b)), a small slope behaving as f−0.2 is at hand for forced vibrations
(function φP , Fig. 1.3(b)). This highlights the fact that the pointwise forcing have a small
effect on the slope of the spectra in the low-frequency range, as observed numerically as
well as experimentally, see [DCTB14, MM11a].

1.3.3 Effect of an imperfection

Section 1.2.2 shows that the von Kármán equations for plates yield a 4-waves interaction
term in the collision integral. Such equations apply exclusively to perfectly flat plates.
In practice, real plates present local deformations that may alter its dynamical response
[CTT09, TBC12]. When deformations are static, the von Kármán equations can be modified
to account for them. Let w0 denote a static deformation, then

ρhẅ +D∆∆w = L(w + w0, F ), (1.19a)

∆∆F = −Eh
2
L(w,w + 2w0). (1.19b)

The quadratic nonlinearity of the equations for imperfect plates translates in a 3-waves
process as a correction to the 4-waves interactions of the perfectly flat plate. The question of
whether or not such correction modifies the statistics of the turbulence has been investigated
in [DCTB14], with a selected deformation of the form of a raised cosine at the centre of
the plate. The amplitude of the imperfection has been chosen in a range from 1 to 10
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FIGURE 1.4 Nonstationary free turbulence (case 2). (a): Spectrogram. (b): Normalised velocity power

spectra. (c): Evolution of fc vs t. (d): Evolution of Pv(fc) vs t.

times the thickness, and is shown in Fig. 1.5(a) (axis not in scale). Such choice is based
on the consideration that real deformations in plates have the same order of magnitude,
in general, at large wavelengths. Remarkably, the statistics of the turbulent regime is not
affected by the presence of the imperfection. For obtaining this result, numerous simulations
with different set-up have been computed in the framework of case 1, i.e. when the plate is
constantly forced with a harmonic external excitation, and the different scaling laws have
been found to be analog to those obtained for the perfect plate: the front propagates to high
frequencies proportionnally to time and the amplitude of the power spectrum at the front
is constant. Fig. 1.5(b) shows again a self-similar dynamics whose self-similar function does
not differ from that of Fig. 1.3(b). The scaling law for the injected power is also unaffected:
Fig. 1.5(c) shows that Pv(fc) = 2.30hε̄1/3, statistically the same as Eq. (1.18) [DCTB14].
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FIGURE 1.5 Nonstationary turbulence with steady forcing for imperfect plates. (a): Example of raised

cosine imperfection w0. (b): Normalised velocity power spectra. (c): Scaling of spectral amplitude with

injected power.

These numerical results show that in the wave turbulence regime, the cubic nonlinearities
dominate the quadratic ones, so that the effect of an imperfection should not affect the
statistical properties of the dynamical solutions.
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1.4 Real plates

The two previous sections present the theoretical results and their numerical verification
in two different cases, showing that when all the WT assumptions are fulfilled then the
analytical predictions are numerically retrieved. We now turn to the case of real plates in
order to see how the theoretical predictions confront with experiments.

1.4.1 First experimental results
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FIGURE 1.6 Rescaled power spectra of the transverse velocity obtained on two different experimental

set-ups and reported in [BCOT08] (left) and [Mor08] (right). The power spectrum is rescaled by the square

root of the injected power (denoted as I on the left and P on the right), while the frequency is rescaled by

the cut-off frequency (denoted as fc on the left and f? on the right). Both insert shows the dependence of

the cut-off frequency with respect to the injected power.

The first experimental investigations on the WT in plates have been reported in 2008 on
two different set-ups [BCOT08, Mor08]. In each case, a large (lateral dimensions 1 × 2 m)
and thin (thickness around 0.4−0.5 mm) plate, made of an homogeneous metallic material,
has been selected. For exciting the plate in the turbulent regime, a shaker is used and creates
a pointwise forcing. At this point, thanks to the measurement of the velocity, one is able to
retrieve the experimental injected power. For the first measurements reported, the velocity
of the transverse displacement was recorded with a laser vibrometer.

The two papers evidenced a discrepancy between the predicted power spectrum and the
measurements. The turbulent behaviour is nonetheless confirmed, with the appearance of a
large bandwidth and continuous spectrum having a cut-off frequency which is getting larger
when one increases the injected power. Fig. 1.6 summarizes the obtained results by showing
the rescaled power spectra of the transverse velocity. A clear self-similar behaviour is ob-
tained in experiments and is highlighted by dividing the power spectrum by the square root
of the injected power, while the frequency axis is made nondimensional by using the cut-off
frequency. Both experiments show a scaling for the power spectrum as Pv(ω) ∝ ε0.66ω−0.6,
while the theory predicts Pv(ω) ∝ ε0.33ω0. Considering the statistics of velocity increments,
no intermittency has been measured [BCOT08]. Furthermore, using the correlations in a
two-points measurement shows that the waves seem to be persistent [Mor08]. Hence the
general framework of the WT was not called into question, but further investigation was
needed to understand the origin of these discrepancies.
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1.4.2 Weak nonlinearity and separation of timescales
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FIGURE 1.7 The angle integrated space-time spectrum E(k, ω) [Mor10]. The continuous line is the

linear dispersion relation for the considered plate ω ∝ k2.

Considering the previous observations that the spectrum of the vibration of the plate
does not fulfill the predictions, the experimental investigations logically turns toward the
verification of all the assumptions underlying the WT theory. In order to get a definitive
answer to the very first assumption, stating that a wide spectrum of weakly nonlinear waves
is at hand, dedicated experimental technique was developed in order to check whether a
dispersion relation exists that is characteristic of propagating waves. The experimental
difficulty of such a task is that a 2D space and time resolved measurement is required. This
can be achieved by using a high-speed profilometry technique developed by Maurel and
coworkers [MCPP09, CMPP]. The basic principle is to record with a high-speed camera a
pattern projected on the plate. When the plate is deformed, the observed pattern is altered
as well. For some patterns and for an adequate optical configuration, the images of the
deformed pattern can be inverted to obtain the deformation of the plate. Thanks to this
technique, movies of the deformation of the plate over a large area (typically over 1 m2 for
a 1×2 m2 steel plate) are obtained [CPM+09, Mor10]. The Fourier spectrum E(k, ω) of the
deformation can then be easily computed; it is found to be isotropic in k. Hence we display
on fig 1.7 a spectrum which has been summed over the directions of the wave vector k. Two
important conclusions can be drawn from this measurement: (i) the energy of the spectrum
is concentrated on a dispersion relation, hence confirming that the motion is composed of
waves (ii) the energy concentration lies in the very vicinity of the linear dispersion relation,
evidencing that the waves are weakly nonlinear. The vibration of the plate is thus truly a
turbulent state of weakly nonlinear waves.

One of the main hypothesis of the WT theory is the scale separation between the linear
dynamics (oscillation of the waves) and the nonlinear dynamics (energy exchanges between
waves). In fact, in the course of the derivation of the kinetic equation, the decomposition
of the amplitudes as Ak = ak(t) eiωkt is valid only if the time scale TNL of the wave
modulation ak(t) is large compared to the wave period T = 2π/ωk. For real plates an
additional condition arises naturally: the dissipation time scale Td must be even longer so
that nonlinear dynamics can develop. The final condition thus reads

T � TNL � Td . (1.20)
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FIGURE 1.8 Squares: measured dissipative time Td versus k/2π = 1/λ. Dashed line: Lorentzian fit

Td = (0.73+0.025(k/2π)2)−1 used in the following. Insert: Tdω versus k/2π (semilog scale) [MM11a].

The dissipation time scale can be measured in various ways [MM11a, HCD+13]. One
possibility is to run decay experiments from a fully turbulent state [MM11a]. The final
decay state is exponential and corresponds to a linear dissipative decay of the wave ampli-
tude. The dissipation rate can be extracted from this curve. Fig. 1.8 shows the dissipative
time scales obtained with this method. The insert shows the product Tdω that compares
the dissipative time scale and the linear period of the wave. From this measurement two
important conclusions can be drawn. First, the inequality T � Td is fulfilled as two orders
of magnitude separates the two time scales for the wavelengths of interest. Second, the
product Tdω is almost constant with the wavenumber, showing that dissipation is weak but
present at all frequencies.

In order to compare the nonlinear time scale with the linear ones, on has to extract the
nonlinear dynamics from the experimental data, a challenging task since the measurement is
operated only on a part of the full plate. Furthermore the real plate is finite so that reflections
occur on the boundaries. The goal is to compute the time correlations of ak(t) in order to
extract the characteristic time scale of the nonlinear dynamics. The correlation coefficient
can be reconstructed by performing a wave packet analysis [MM11a]. The deformation
field is projected over Gaussian wavelets at various positions and for a given wavevector.
This projection allows one to follow the propagation of the wave packets by correlating the
wavelets coefficients at a given wavevector over various positions and times. Reflections on
the boundaries can be used to follow the wave packets over longer times. When tracking the
wave packets along their trajectory at the group velocity, the magnitude of the correlation of
the wave packet magnitude is seen to decay with the propagation time. Two reasons account
for this decay: (i) the dispersion of the wave packet, this effect can be easily corrected
for Gaussian wave packets, (ii) the decay of the correlation due to the nonlinear energy
exchanges among waves that destroy the coherence of the wave packet. Fig. 1.10 shows the
dispersion-corrected decay of the temporal correlation of the wavelet coefficients for various
positions. The decoherence of the wave packet is exponential so that the extraction of TNL is
straightforward. Using this procedure, a time-space diagram of the decoherence of the wave
packet is reconstructed on its trajectory (Fig. 1.10). When the forcing strength is increased,
the decoherence of the wave packet is seen to be faster consistently with the expectation
that the nonlinear dynamics is more developed when the forcing is stronger.
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FIGURE 1.9 Decay of the coherence of a wave packet computed by correlation of wavelet coefficient

at a given wavevector k for various positions. The abscissa axis is the propagation time from an initial

position at the center of the plate. The dark blue curves are the correlations of wave packets with the same

k (propagating in the same direction) for a set of positions on the trajectory of the wave packet. Hence,

these curves correspond to wavepackets that have undergone an even number of reflections (or no reflection

at all). The cyan curves are the correlation between counterpropagating wave packets that have an opposite

wavevector −k, as a result of an odd number of reflections. As time flows, the wavepacket propagates

nearly balistically and bounces on the edges so that a succession of dark blue and cyan curves groupings is

observed The envelop of the correlations curves is seen in the insert that shows that the overall decay of

the coherence of the wave packet is exponential so that the extraction of the nonlinear time scale TNL is

simply the characteristic time of the exponential decay [MM11a].

The extracted nonlinear timescale TNL is shown in Fig. 1.11 and compared to the dissi-
pation time scale and the period of the wave. Thanks to the large separation between the
two latter timescales, an intermediate range for the nonlinear timescale is possible. Indeed
TNL lies inbetween these two scales. TNL is seen to vary very little with the wavenumber.
It decays when the forcing strength is increased as mentioned above. Thus the double scale
separation T � TNL � Td is observed so that a true weak turbulence can develop in this
system. Note a major difference with the canonical situation of the Weak Turbulence The-
ory: dissipation is weak but present at all scales and this leads naturally to a steepening of
the wave spectrum as the energy flux is progressively decreased by dissipation. This point
will be further addressed in section 1.4.4.

1.4.3 Finite-size effects

Another major hypothesis of the Weak Turbulence Theory is that the system is asymptot-
ically large, so that the discreteness of the modes, which typical of finite size systems, is
avoided. For small systems, a chaotic dynamics may develop in which the nonlinear time
scales shows a distinct scaling [Kar94, LN10]. Indeed for small system the discreteness of the
mode may restrict significantly the number of solutions of the resonance equations. Thus
energy injected at the forcing scales must find a path to small scales through connected
resonant quadruplets (or triplets for a three-waves interaction process). When the size of
the system decreases, the topology of this clusters can become sparse, hence rendering the
energy cascade difficult.
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When the size of the system is increased, the transition from a chaotic regime to a weak
turbulence regime is actually an open question [NR11]. A qualitative description is the
following: nonlinear effects induce a spectral widening of the modes. If the system is large
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enough, the spectral separation of the modes can become of the same order as this nonlinear
widening. Consequently, the discreteness of the modes is destroyed by nonlinearity, and all
frequency and wavenumber values are then possible, so that eventually a weak turbulence
regime can develop.
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FIGURE 1.12 Cut of the space time spectrum E(k, ω) at kx = 0. Discrete frequencies are clearly

visible [Mor10].

500 600 700 800 900

10
−9

10
−8

10
−7

10
−6

f [Hz]

P
S

D

FIGURE 1.13 Evolution of the spectral energy on the dispersion relation in the plane kx = 0 for

P = 1, 4, 9, 16 and 36 (from bottom to top). The curves have been shifted vertically by a factor 1.5 for

clarity [Mor10].

Discrete modes can be observed for the experimental plate as can be seen in Fig. 1.12.
The dispersion relation is continuous at low frequency but shows discrete peaks at the high-
est frequencies. This observation is related to the fact that the magnitude of the nonlinearity
decreases when the frequency is increased. This can also be observed in Fig. 1.11: the ratio
TNL/T increases with the frequency.

For a given frequency interval, Fig. 1.13 shows the evolution of the crest line of energy
along the dispersion relation when the forcing intensity is increased. At very low forcing,
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the nonlinearity is very weak and the discrete peaks of the modes are clearly visible. When
the forcing is increased the peaks enlarge (and their position is slightly shifted as well) due
to the effect of nonlinearity. At the highest forcing intensity the spectrum is continuous.
Note that the discrete character of the mode is visible for all forcing intensities but it
appears at higher frequencies for larger forcing intensities. This feature can also be observed
in numerical simulations of the plate. Thus a regime of weak turbulence develops at the
lowest frequencies but evolves always into a regime of discrete turbulence at the highest
frequencies that are observed in the spectrum. As a conclusion, the finite-size effect in
the considered experimental set-up, though observable, should not be responsible for the
important discrepancies found between theory and measurements.

1.4.4 Effect of damping on the slope of the power spectra

The last assumption to be tested is the transparency window or inertial range, i.e. the
system shall display a large frequency range between the forcing and dissipative scales,
where a conservative Hamiltonian dynamics can be assumed, so that the energy flux shall
be conserved when cascading through scales. In solid plates, the dissipation has different
physical origins, and in the set-up considered the main causes of losses are thermoelasticity,
viscoelasticity, and dissipation at the boundaries. As already noted in the previous section,
the damping, though small, is present at all scales, see also e.g. [CL01].

In [HCD+13], the effect of damping on the wave turbulence regime has been exper-
imentally and numerically studied. The experimental plate is made of steel, the lateral
dimensions are 2× 1 m2, and the thickness is h = 0.5 mm. The plate is set into a turbulent
regime with a sinusoidal forcing at frequency f0 = 30 Hz. The natural damping of the plate
is increased using different techniques based on paint and edge dampers. Four different
configurations are studied and characterised by the measurements of the damping factors
in the linear regime, denoted γ and displayed as functions of the frequency in Fig. 1.14.
Interestingly, despite the different attenuation sources, the damping factors exhibit always
the same qualitative behaviour which can be characterised by a power law normalised so
that

γ(f) = γ∗f0.6 (1.21)

where γ∗ varies between 1 and 5.

Fig. 1.15(a) displays the experimental power spectral densities of the normal velocity
measured at similar injected powers for the four configurations. They all behave roughly
as power laws in the cascade regime with frequency exponents that become clearly smaller
as γ∗ increases. For the natural plate the exponent (−0.5) is consistent with the previous
results [BCOT08, Mor08], while for the most damped plate, the exponent is almost twice
this value. In [HCD+13], numerical simulations of the von Kármán plate equations are also
performed, using the same pseudo-spectral method than in [DJR06]. Within this frame-
work, it is straightforward to inject energy at controlled scales and to mimic the measured
experimental dissipation by using the fitted power laws displayed in Fig. 1.14. Fig. 1.15(b)
shows the power spectral densities of the normal velocity obtained by numerical simulations
for similar injected powers. The same behaviour as in the experiments is observed. The ideal
case γ∗ = 0 with the almost flat Kolmogorov-Zakharov spectrum is drawn for comparison,
arguing that the difference between the experimental and the theoretical values of the slope
is mainly due to the existence of damping at all scales. Finally, in [MAM14], numerical sim-
ulations of the von Kármán equations are performed using three damping laws (displayed
in Fig. 1.16(a)) going from the experimental dissipation to the one used in the theory of
wave turbulence. Fig. 1.16(b) draws the numerical spectra associated to these three damp-
ing laws, showing that a transition from the experimental spectrum to the predicted KZ
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Numerics. Green: γ∗ = 0, εI = 0.057 m3 · s−3. Other cases: εI = 0.024 m3 · s−3.

spectrum is observed when dissipation is decreased at large and medium scales.

These results clearly highlight that the slope of the turbulent power spectra in vibrating
plates depends strongly on the damping, indicating that it must be retained as a pertinent
feature to explain the difference between theory and experiments. Moreover, one can argue
that because the dissipation is relevant at each scale, no inertial range (or transparency
window) exists in these turbulent regimes so that the flux of energy is not constant over
the cascade.

1.4.5 Dependence on injected power
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A fundamental result of the WTT is the relationship between the number of resonant
waves and the power exponent λ of the energy flux in the power spectral density expres-
sion [ZLF92]. For three-waves interactions, the theory predicts λ = 1

2 while four-waves
interactions imply λ = 1

3 . For plates, the cubic nonlinearity of the restoring force implies
four waves interactions, such that one would expect a 1

3 power law on the energy flux. In the
first reported experiments, see section 1.4.1 and [BCOT08, Mor08], the dependence of the
power spectra on injected power was found to be near 0.6, i.e. very far from the expected
value of 1

3 .
In order to obtain more quantitative results from the experiments, the energy budget

of the cascade has been considered in [BCOT08, HCD+13]. The budget assumes that the
cascade stops when the magnitude of the injected power has been completely dissipated by
all the excited modes of the plate. Introducing εD the dissipated power, one can write:

εD = h

∫ ∞
0

γ(f)Pv(f)df ' h
∫ fc

0

γ(f)Pv(f)df ∝ εI . (1.22)

Considering a dissipation given by Eq. (1.21) and a spectrum of the form Pv(f) ∝
ελI (f/fc)

−β with the exponent λ and the slope β unknown, the following expression for
the cut-off frequency is obtained:

γ
1/1.6
∗ fc ∝ ε

1−λ
1.6

I . (1.23)

From the dependence of the cut-off frequency with respect to the injected power, one is able
to retrieve the coefficient λ. It is found to vary from 0.36 to 0.57 in experiments and from
0.33 to 0.39 in numerics, depending on the damping coefficient. This result again shows that
the presence of damping at all scales precludes for a direct comparison with the analytical
predictions of the theory. A systematic deviation is observed, and the amount of discrepancy
directly depends on the level of the damping in the system.

1.5 Discussion

Turbulence in a solid. Whereas the term turbulence generally refers to hydrodynamic tur-
bulence and is somehow strongly related to the irregular motions of a fluid, the nonlinear
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interactions of a sea of coupled waves may also produce a regime of wave turbulence. In this
context, the nonlinear vibrations of large and thin plates can be interpreted as an example
of turbulence in a solid. The case of geometrically nonlinear vibrations of thin plates and
shells, where the material’s behaviour is considered as linear elastic so that the nonlinearity
comes from the large-amplitude motions of the transverse deflection w(x, t), offers a correct
framework to derive theoretical results thanks to the von Kármán model, as well as experi-
mental results. Within this framework, the nonlinearity of the vibratory state is assessed by
the ratio w/h of the transverse displacement w with respect to the thickness h of the plate.
When w � h, linear vibrations occurs. The von Kármán model has first been derived for
vibration amplitudes that are of the order of the thickness. Though it may be valid for a
larger range of amplitudes, numerical studies clearly assessing its validity limits in terms of
amplitude, are still missing. On the experimental viewpoint, the range of amplitudes where
the turbulence has been observed is: h < w < 50h.

Cascade of energy and turbulence. For the range of large-amplitude motions where w > h,
the behaviour of the plate can be said as being truly turbulent. This fact is assessed by the
broadband Fourier spectrum of the vibrations, the upper frequency of which depends on
the energy level, evidencing a cascade of energy from the injection to a dissipative scale.
This particular regime has musical applications in the understanding of the sound of gongs
for example, where the higher frequency is reached a few milliseconds after the strike (the
time the cascade to progress to higher frequencies) and the larger frequency is defined by
the amplitude of the strike [DT15]. It has also been used in the past in theaters where large
metallic plates were vigorously shaken to simulate the sound of thunder.
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FIGURE 1.17 Injected power εI versus root mean square value of the velocity at the injection point

VRMS [HCD+13]. Large markers are used for experiments whereas small markers refers to numerical

simulations. Variations of the damping as in section 1.4.4: red: γ∗ = 1, black: γ∗ = 1.6, magenta:

γ∗ = 3.1, blue: γ∗ = 4.9, green: γ∗ = 0. Dashed green line : εI ∝ V 3
RMS .

The turbulent behaviour is also testified by the relation between the injected power and
the injected velocity. Fig. 1.17 shows the injected power εI as function of the root mean
square value of the velocity at the injection point VRMS , both in experiment and in numer-
ical simulation, for the set-up described in section 1.4.4. For both cases, and for a damping
coefficient γ∗ varying between 1 and 5 as in section 1.4.4, the dependence clearly exhibits
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the power-law: εI ∝ V 3
RMS . This shows that the mechanism of power injection is inertial

as observed in hydrodynamic turbulence when varying the viscosity [CCD+97].

Theory and experiments. The WT theory provides analytical results predicting the sta-
tistical repartition of energy through scales. Moreover, the self-similar solutions of the kinetic
equation can be derived for predicting behaviour laws in the non-stationary case, though
the theory does not yield the exact functional shape of the self-similar functions.

The discrepancy between the first experimental results reported in 2008 in [BCOT08,
Mor08] and the analytical prediction derived in 2006 [DJR06] shall thus be attributed to
the violation of an assumption used in the theoretical framework.

Checking the assumptions. Thanks to refined measurements, all hypothesis have been
checked in a series of papers [BCOT08, Mor08, CPM+09, CBT08, Mor10, MM11a, CTB10,
MM11b, HCD+13, DCTB14, MAJM13, MAM14]. The persistence of waves and the cor-
rect separation of timescales has been fully documented in [Mor08, CPM+09, MM11b]. As
shown in section 1.4.3, finite-size effects are noticeable on the measurements but only at
high frequencies where the vibration amplitude is getting exponentially small so that the
nonlinearity is not sufficiently excited. In the frequency range of interest where the cascade
develops, the energy spectrum is dense and sufficiently flat to assume that the finite-size
effects are negligeable in the current experimental set-up.

Experimental set-up. Finally, typical effects induced by the experimental set-up could be
invocated for explaining the observed discrepancies. Among these, the presence of imperfec-
tions in the static position are unavoidable with a real plate. However, numerical simulations
shown in [DCTB14] clearly highlight that simple imperfections with large wavelength have
no incidence on the dynamics of the power spectrum. As a matter of fact, at such vibration
amplitudes, cubic nonlinearities dominate the quadratic ones so that the effect of the im-
perfection does not profundly modify the results. Another experimental bias is brought by
the presence of a shaker, a device used for creating a pointwise excitation of the plate. The
presence of this pointwise forcing has been shown to modify a little the slope of the spec-
trum around the forcing frequency. In experiment, this has been emphasized in [MM11a] in
a non-stationary framework where the forcing was suddenly stopped once the plate in the
WT regime. In the decay of turbulence, the slope of the spectrum was observed to flatten a
little. Similar observations are shown in numerical nonstationary WT in [DCTB14], where
the effect of the forcing is noticeable. However, this effect, though observable, remains small
and is not the most salient feature for explaining the discrepancy between theory and mea-
surements.

Effect of damping. The last assumption to validate is the transparency window. Thanks
to experiments with varying damping ratios, and numerical simulations, recent studies un-
doubtedly shows that in real plates, all loss terms, though small, can not be neglected
[HCD+13, MAM14]. As a consequence, the energy flux through scales is not constant, but
slowly decreasing so that the amount of damping as function of the frequency defines both
the slope of the power spectrum and the cut-off frequency.

1.6 Conclusion

Wave turbulence in nonlinearly vibrating plates have been thoroughly studied in this re-
view chapter, which summarizes the most important results found since the publication of
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the theoretical results in 2006 [DJR06]. The picture of turbulence given in the theoretical
framework is an idealization which is difficult or even impossible, to reproduce in a real
experiment. A peculiar feature brought by the logarithmic correction in the KZ theoretical
spectrum is that energy is assumed to completely disappear at the small scale introduced,
k?, and which has no experimental counterpart. Thanks to measurements combined with
numerical simulations, it has been clearly demonstrated that the presence of damping at
all scales is the major effect for explaining the observed discrepancies. More precisely, the
energy flux in the cascade is not constant, and this phenomenon precludes for a direct com-
parison with the theoretical results, as its effects is of prime importance on both the slope
of the power spectrum and the dependence with injected power.

Further research in the direction of a better agreement between WT theory and exper-
iments must then mandatory consider the effect of the damping in the WT calculations,
as a first-order effect that needs to be taken into account in the kinetic equation. For that
purpose, a phenomenological model may be used, see e.g. [HJTC16].

Other aspects may need further developments, either in numerical simulation or ex-
perimental verification. Recently, it has been shown numerically that a strongly nonlinear
regime can be obtained for amplitudes of vibration w that are larger than 100h, with h the
thickness [YT13, MAJM13, YT14]. This nonlinear regime is dominated by ridges connect-
ing developable cones (D-cones), and scales linearly with the injected power. This observa-
tion supports the idea that the mechanisms responsible for spectral energy transfers differs
strongly from the collisions between resonant waves stated by weak wave turbulence. Emer-
gence of intermittency has also been reported in this context. Experimental measurements
show that evidences of this regime may be observed when the gradient of the displacement
is large enough [MAJM13]. However, for this range of amplitudes, the validity of the von
Kármán model is questionable, so that further work is needed, both experimentally and
numerically, in order to get insight into this strongly nonlinear regime.

Finally, the existence of an inverse cascade appears as a question witnessing new recent
developments [DJR]. On the theoretical viewpoint, no stationary inverse cascade should
exist in the framework of wave turbulence, in particular due to the non conservation of the
wave action. However, when artificially neglecting the 3 ↔ 1 interactions in the collision
integral and thus conserving the number of waves in the interactions; an inverse cascade of
wave action with constant flux can be derived [DJR]. Numerical simulations clearly exhibit
this inverse cascade, thus questioning the nature of the involved interactions, as well the
emergence of pattern and the possibility of self-organization.
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