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Introduction

This paper concerns the design of a global trajectory optimization procedure for a space shuttle of type Ariane 5, with the aim of steering a given payload from Earth to the GEO orbit.

Trajectory optimization for aerospace launchers has been extensively studied in the literature, see for instance [START_REF] Betts | Practical methods for optimal control using nonlinear programming[END_REF][START_REF] Bonnans | Singular arcs in the generalized Goddard's problem[END_REF][START_REF] Oberle | Numerical computation of singular control functions in trajectory optimization problems[END_REF][START_REF] Bérend | An interior point approach to trajectory optimization[END_REF] and the references therein.

Here it is assumed that the launcher performs two boosts. A first boost steers the launcher to a given GTO. Then, after a ballistic phase, a second boost is used to perform the transfer maneuver from the GTO to the GEO. The optimization problem aims at minimizing the final consumption of the launcher. More precisely, the complete flight sequence is composed of 4 important phases (atmospheric phase, propulsion with first stage until exhaustion of the ergol, propulsion with the first stage until injection on a GTO, ballistic flight until injection on GEO).

Our approach is based on the reformulation of the trajectory optimization problem as a reachability problem that we solve by using an efficient method based on HJB approach in optimal control theory [START_REF] Crandall | Viscosity solutions of Hamilton Jacobi equations[END_REF][START_REF] Bardi | Optimal Control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. A similar approach has been introduced by the authors in [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF] and [START_REF] Bokanowski | Optimization of the launcher ascent trajectory leading to the global optimum without any initialization: the breakthrough of the hjb approach[END_REF] where the orbital transfer maneuver from the GTO to the GEO is assumed to be of impulsive type. This hypothesis allows to estimate the amount of propellant needed to the orbital transfer using an explicit Tseolkovsky formula. In the present paper the problem is considered in more complete setting where a boost is needed to perform the orbital transfer. The duration of each boost is not fixed and is considered as an optimization parameter. The problem involves two more optimization parameters that are the shooting azimuth and the inclination speed. In addition to these parameters, the launcher is controlled by two functions; namely, the incidence and sideslip angles (time-dependent functions) that are also optimization variables.

This challenging problem presents several difficulties for the implementation of Hamilton-Jacobi-Bellman (HJB) approach. In the previous work [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF] the authors have developed an interesting approach to combine the HJB framework with parameter optimization methods without increasing the state space dimension. it is shown here that this method can be applied for the general two-boost problem. Moreover, let us stress on that the proposed optimization procedure is supported by theoretical results that show the convergence of the procedure to a global optimal solution (see the references in [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF]).

Physical model

Let O be the center of the Earth. Denote by r T the Earth's mean radius. Consider the frame R I = (O, i I , j I , k I ) centered at O and such that the vector k I is co-linear with the North-South axis of rotation, the vector i I is located in the equatorial plane of the Earth and points to the Greenwich meridian at an elected date set here as t = 0. The vector j I completes the orthonormal frame. This frame is considered as inertial. Consider also the frame R R = (O, i R , j R , k R ) that coincides with R I at time t = 0 and that is rotating with the Earth around the axis k I = k R with the angular velocity Ω. Let G be the mass center of the vehicle and V it's velocity. The state of the spacecraft can be characterized by the Cartesian coordinates

( X, V ) in the frame R R with X = x, y, y, , V = V x , V y , V z , .
Let us define also the vertical local frame

R V = (G, i V , j V , k V ) centered at G such that k V
is co-linear with r G and pointing in the same direction. The vector j V is in the orthogonal plane to k V and pointing to the local North. The third vector i V := j V ∧ k V is defined in such way to complete the orthonormal frame. The launcher may be also represented by the spherical coordinates of the position of G in R R and those of the velocity in the frame R V .

These coordinates will be denoted by (r, L, l, v, χ, γ). The formulas that allow to pass from one coordinate system into another are classical and can be found in [START_REF] Mooij | The motion of a vehicle in a planetary atmosphere[END_REF]. The total mass of the launcher will be denoted as m ≥ 0.

Axis, angles, and forces

The launcher is subject to different forces that we describe here below.

Gravitational force: The gravitational field is defined as

- → g = -µ r 2 I + J 2 r T r
2 A e r , where µ is the Earth's gravitational constant, J 2 is the second order term of the harmonic expansion of the gravitational field and I is identity matrix. The matrix A in the definition of the gravitational field is defined as follows:

A =   1 -5 sin 2 (l) 0 0 0 1 -5 sin 2 (l) 0 0 0 3 -5 sin 2 (l)   So that the gravitational force is -→ F g = m - → g .
Aerodynamic forces: It is assumed here that the plane of symmetry of the vehicle coincides with the plane ( i V , k V ) in the reference frame R V . The aerodynamic forces are:

• The drag force:

-→ F D opposite to the velocity -→ V .

• The lift force:

-→ F L 0 is neglected in this application due to the technical specifications of the considered launcher.

Thrust force: It is assumed that the direction of the thrust force coincides with the axis of the launcher. The orientation of the thrust is defined by the incidence angle α and the sideslip angle δ. The modulus of the thrust force is given by F T (r) = βg 0 I sp -SP (r) where g 0 = 9.81 ms -2 , P (r) is the atmospheric pressure, β is the propellant flow rate, I sp is the specific impulse and S is the surface.

Coriolis force --→ F CO and centripetal force --→ F CP . These functions are defined by:

--→ F CO = 2m - → Ω ∧ - → V and --→ F CP = m - → Ω ∧ ( - → Ω ∧ --→ OG),
where -→ Ω is the Earth's angular velocity. These two forces are important to be taken into account as far as the launchers's trajectory is represented in a relative reference frame and not in the inertial one.

Motion's equations

It follows from the Newton's law of the motion that:

d X dt = V , m d V dt = -→ F g + -→ F D + -→ F L + -→ F T - --→ F CO - --→ F CP . (1) 
Let us denote

         F C v = Ω 2 r cos (sin γ cos -cos γ sin cos χ) F C γ = 2Ω cos sin χ + Ω 2 r cos (cos γ cos +sin γ sin cos χ) v F C χ = Ω 2 r v sin cos sin χ cos γ -2Ω (sin -tanγ cos cos χ)
the components of the vector

-→ F C = - --→ F CO - --→ F CP in spherical coordinates. Straightforward
calculations yield to the motion's equation in the spherical coordinates:

dr dt = v sin γ d dt = v r cos γ cos χ dv dt = -g r sin γ + g cos γ cos χ + F T (r) m cos α cos δ - F D (r, v, α) m + F C v dγ dt = -cos γ g r v - v r -sin γ cos χ g v - F T (r) mv sin α +F C γ dχ dt = -g sin χ v cos γ - v r cos γ tan sin χ + F T (r) cos α sin δ m v cos(γ) +F C χ (2) 
where we have isolated the differential equation for the component L:

dL dt = v r cos γ sin χ cos . (3) 

Mass evolution

The evolution of the mass m(t) is also needed in order to get a complete model. This evolution is given by the ODE:

ṁ(t) = β(t) (4) 
where the function β is known and represents the consumption flow rate and depends on the launcher's parameters. In the sequel, we denote by β EAP > 0, β E1 > 0 and β E2 > 0 the mass flow rates for the boosters, the first and the second stage of the launcher respectively. For sake of simplicity, we shall consider that these rates are known constants.

Dynamical system

As mentioned in the previous subsection, the motion of the Longitude variable L can be isolated from the other variables (indeed, none of the other variables depend on L). So, in the sequel, the state variable will be defined as (x, m) ∈ R 6 , with x = (r, l, v, χ, γ). During the phases where one or more engines are on, the system is controlled by the direction of the thrust force. Let

U := [α min , α max ] × [δ min , δ max ],
be the control set with constants α min/max and δ min/max such that

[α min , α max ] ⊂ [-π 2 , π 2 ] and [δ min , δ max ] ⊂ [-π, π].
The control variable vector will be denoted by u = (α, δ) ∈ U . Set U ad as the set of all admissible controls: U ad := {u := (α(.), δ(.)) : measurable function on [0, +∞) that takes values in U }.

The differential equations governing the evolution of the dynamical system depend on the phases of the flight.

Phase 0. The mission of the launcher starts when the vehicle leaves the launch base. Both boosters along with the stage E 1 are ignited and consume propellant with flow rates β EAP and β E1 respectively. The initial mass of the launcher is known:

M init := M EAP + M E1 + M E2 + m F Structure + m CU P ayload + M P,EAP + M P,E1 + M P,E2 P ropellant . ( 5 
)
The trajectory of the spacecraft during this phase is defined by two parameters : ψ 0 , the shooting azimuth and ω basc , constant inclination speed. In this phase of the flight, no further control is acting on the launcher, see [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF] for more details. The values of the parameters ψ 0 and ω basc are unknowns that must be determined in such a way to optimize the launcher's consumption. The boosters are ejected at a given time t 0 , once all the propellant is consumed. The set of possible positions corresponding to a large sample of the parameters (ψ 0 , ω basc ) can be obtained by a simple integration of the motion's equations. Let us denote by X 0 the set of all possible states of the launcher at time t 0 (the end of phase 0) for all values of parameters (ψ 0 , ω basc ) in a given set P Ini . Each point of X 0 can be considered as image by a known application Ψ of shooting parameters (ψ, ω):

x ∈ X 0 ⇔ ∃p = (ψ, ω) ∈ P Ini , x = Ψ(p).
The total mass of the launcher at time t 0 (the end of phase 0) can be explicitly calculated:

m(t 0 ) = M 0 = M E1 + M E2 + m F Structure + m CU P ayload + M P,E1 -β E1 t 0 + M P,E2 P ropellant . (6) 
Remark, that at the end of this phase the launcher is assumed to be out of the atmosphere. So, for all the following phases the aerodynamic forces can be neglected.

Boost 1. This part of the mission starts from the set X 0 and ends when the launcher has reached the given injection region on the transfer orbit, GTO. Denote C the set of possible injection states. The following hypothesis will be assumed Hypothesis 1 (Properties of the set C) The set C is a segment of a single GTO orbit around of its perigee.

During the first boost, the engines of the first stage are on until the complete propellant consumption of the first stage. The first stage is ejected at a known time t 1 . Then the engines of the second stage are on, during the time interval [t 1 , t 2 ]. The evolution of the launcher is described by the following system of differential equations

F 1 :    dx dt = f 1 (t, x(t), m(t), u 1 (t)), t ∈]t 0 , t 2 [ dm dt = β 1 (t) x(t 0 ) ∈ X 0 , m(t 0 ) = M 0 , u 1 ∈ U ad (7) 
where f 1 (t, x, m, u) is the function corresponding to the right hand side of the system of differential equations [START_REF] Bérend | An interior point approach to trajectory optimization[END_REF]. The thrust force and propellant flux functions are defined as follows:

F T (t) = β E1 g 0 I sp , t ∈ [t 0 , t 1 ] β E2 g 0 I sp , t ∈ [t 1 , t 2 ] , β 1 (t) = β E1 , t ∈ [t 0 , t 1 ] β E2 , t ∈ [t 1 , t 2 ].
The end time t 2 of the first boost is unknown and may be optimized. It can be bounded by the known constant

T 2 = t 1 + M P,E2 β E2
corresponding to the maximal duration of the propellant consumption for the engine of the second stage. So one has:

t 0 < t 1 < t 2 ≤ T 2 . Let us define M 1 = M E2 Structure + m CU P ayload + M P,E2 P ropellant (8) 
the total mass of the launcher at the time t 1 , after ejection of the first stage. At the end time t 2 of the first boost, the following state constraint should be satisfied :

x(t 2 ) ∈ C, m(t 2 ) ≥ 0 ( 9 
)
where C is the injection coordinates subset of a given GTO orbit (satisfying (H1)).

The ballistic flight. Once the launcher has reached a GTO, the engine of the second floor is off. Then follows a ballistic flight phase. The duration of this phase is not fixed and depends on the GTO parameters. Denote t 3 > t 2 the end time of this phase. The trust force is zero because all engines are off. Therefore, the launcher's motion is governed by an uncontrolled and autonomous differential system:

G : dx dt = g(x(t), m(t)) t ∈]t 2 , t 3 ] dm dt = 0 ( 10 
)
where g(x, m) is the function corresponding to the right hand side of the system of differential equations (2) with zero thrust force. Let us denote Φ g (t, (x, m)) the associated flow map, such that for each (x, m) the function Φ g (•, (x, m) is solution of [START_REF] Crandall | Viscosity solutions of Hamilton Jacobi equations[END_REF] with initial condition Φ g (t 2 , (x, m)) = (x, m).

Boost 2. This phase can start when the launcher has reached a position near the apogee of the GTO. The second engine is ignited to perform the orbital transfer to GEO. Once the GEO reached at some unknown time t f > t 3 , the mission is completed. During this phase, the state equations are controlled by the direction of the thrust force and are autonomous:

F 2 :    dx dt = f 2 (x(t), m(t), u 2 (t)), t ∈]t 3 , t f [ dm dt = β E2 . x(t f ) ∈ C f , u 2 ∈ U ad (11) 
where f 2 (x, m, u) is the function corresponding to the right hand side of the system of differential equations ( 2) with constant thrust force: F T = β E2 g 0 I sp .

Optimal control problem

Let u = (u 1 , u 2 ) ∈ U ad × U ad and x ∈ X 0 . An admissible trajectory corresponding to u and x is the absolutely continuous function (

x(•), m(•)) = x u,t2,t3 (x,M0) (•), m u,t2,t3 (x,M0) (•) defined on [t 0 , t f [ such that • ∃t 1 < t 2 < T 2 such that (x(•), m(•)) is solution of (7) associated to the control u 1 (•) on the time interval [t 0 , t 2 [ with initial condition x(t 0 ) = x, m(t 0 ) = M 0 ;
• At time t 2 , the condition ( 9) is satisfied; [START_REF] Mooij | The motion of a vehicle in a planetary atmosphere[END_REF] on the time interval [t 3 , t f [ associated to the control u 2 (•) and satisfying the terminal condition x(t f ) ∈ C f . The optimal control problem aims to maximize the final propellant mass at the end of the mission.

• ∃t 3 > t 2 such that (x(•), m(•)) is solution of (10) on the time interval [t 2 , t 3 [ • ∃t f > t 3 such that (x(•), m(•)) is solution of
                   Maximize m u,t2,t3 (x,M0) (t f ) x u,t2,t3 (x,M0) , m u,t2,t3 (x,M0)
is an admissible solution associated with (u, x, t

2 , t 3 ) u ∈ U ad × U ad , t 1 < t 2 < t 3 < t f , x ∈ X 0 , x u,t2,t3 (x,M0) (t 2 ) ∈ C, and x u,t2,t3 (x,M0) (t f ) ∈ C f . (P)

HJB approach

First, the optimal control problem (P) is characterized with two reachability problems and a parameter optimization. As explained in the section (2.4) the optimization over the set of shooting parameters is equivalent to the optimization over the set of initial states X 0 . The other parameters of the problem are the durations τ 2 = t 2 -t 1 and τ 3 = t 3 -t 2 of the first boost and of the ballistic flight respectively. It is assumed here that these parameters take their values in some known intervals:

τ 2 ∈ I τ2 = 0, M P,E2 β E2 and τ 3 ∈ I τ3 = τ min 3 , τ min 3 .

Reachability problems

Let us associate with two controlled phases of the flight the following reachability problems.

Definition 4.1 Let (x u2 (x,m) , m u2 (x,m) ) be a solution of [START_REF] Mooij | The motion of a vehicle in a planetary atmosphere[END_REF] starting at (x, m) at time τ = 0 and associated with an admissible control u 2 ∈ U ad . The backward reachable set of duration τ for the system [START_REF] Mooij | The motion of a vehicle in a planetary atmosphere[END_REF] and the target C f is the set:

R C f F2 (τ ) = (x, m) ∃u 2 ∈ U ad s.t. x u2 (x,m) (τ ) ∈ C f , and 
m u2 (x,m) (τ ) ≥ 0 . ( 12 
)
Set D := Φ(I τ3 , C × [0, M 0 ]). By definition of the dynamical system [START_REF] Crandall | Viscosity solutions of Hamilton Jacobi equations[END_REF], the hypothesis (H1)

implies that the set D is a segment of the same orbit. So, one can notice that

∀x ∈ C, ∀(y, m) ∈ D, ∃τ 3 ∈ I τ3 s.t. (y, m) = Φ(τ 3 , (x, m)).
On another hand, since the dynamics F 2 is autonomous, the backward reachable set R C f F2 (τ ) does not depend on the initial time but only on the duration. Then one can define also the minimal duration function to reach the target. 

T F2 (x, m) = inf τ ∈ [0, τ max f ] (x, m) ∈ R C f F2 (τ ) . ( 13 
)
Definition 4.3 Let (x u1 (x,m) , m u1 (x,m) ) be a solution of [START_REF] Bokanowski | Roc-hj software[END_REF] starting at (x, m) at time t = t 0 and associated with an admissible control u 1 ∈ U ad . The backward reachable set at time t 2 for the system F 1 defined by [START_REF] Bokanowski | Roc-hj software[END_REF] and the target C the set:

R C F1 (t 2 ) = (x, m) ∃u 1 ∈ U ad s. t. x u1 (x,m) (t 2 ) ∈ C, and m u1 (x,m) (t 2 ) ≥ 0 (14)
From the above definitions it is clear that the following result holds.

Theorem 4.1 Consider an initial position x ∈ X 0 and fix (τ

2 , τ 3 ) ∈ I τ2 × I τ3 . Set t 2 = t 1 + τ 2
and t 3 = t 2 + τ 3 . Then for a given control u ∈ U ad there exists an admissible trajectory

(x, m) = x u,t2,t3 (x,M0) , m u,t2,t3 (x,M0) if and only if (i) (x, M 0 ) ∈ R C F1 (t 2 ) (ii) ∃t f Φ g ( τ 3 , (x(t 2 ), m(t 2 )) ) ∈ R C f F2 (t f -t 3 ). (15) 
Then, for any admissible trajectory one can write explicitly the corresponding final mass m u,t2,t3 (x,M0) (t f ):

m u,t2,t3 (x,M0) (t f ) = m u,t2,t3 (x,M0) (t 2 ) -β E2 (t f -t 3 ) = M 1 -β E2 (t 2 -t 1 ) -β E2 (t f -t 3 ) (16) 
Due to the hypothesis (1) the terminal time t f in (15) does not depend on x(t 2 ) but only on m u,t2,t3 (x,M0) (t 2 ).

Solution algorithm

To solve the problem (P) the sets of parameters are discretized taking uniform grids. Let P ∆ Ini = {(ψ i , ω j ), i, j = 1, . . . , N I } be a subset of N I ×N I values in P Ini and X ∆ 0 the corresponding finite subset of initial positions ( see [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF] for more details about the computation procedure). Let

Ξ ∆ = {(τ i 2 , τ j 3 ), i, j = 1, . . . , N τ } be a discrete subset of I τ2 × I τ3 .
It is assumed that, when the discretization mesh step ∆ tends to 0, the sets X ∆ 0 and Ξ ∆ tend respectively to X 0 and I τ2 × I τ3 , in the sense of convergence of sets. Let C ∆ be the discrete approximation of the set C of injection states on the GTO and D ∆ , the set of images of C ∆ by the flow map Φ g . The algorithm for solving the optimal control problem (P) is the following:

Step 1-Solve the minimum time optimal control problem for the system F 2 and compute the minimum time function (13).

Step 2-For any (τ 2 , τ 3 ) ∈ Ξ ∆ solve the reachability problem (14) with t 2 = t 1 + τ 2 .

Step 3-For every x ∈ X ∆ 0 such that (x, M 0 ) ∈ R C F1 (t 2 ) compute the corresponding trajectory x u1 (x,M0) , m u1 (x,M0) solution of ( 7) such that x u1 (x,M0) , m u1 (x,M0) (t 2 ) ∈ C and compute, by direct minimization

M 2 (x, t 2 ) = β E2 min (y,m(t2))∈D ∆ β E2 T F2 (y, m(t 2 ))
Step 4 Compute by direct maximization over the set of parameters (x, τ 2 ) the optimal final mass sup

x∈X0,τ2∈Iτ 2 [M 1 -β E2 (t 2 -t 1 ) -M 2 (x, t 2 )]
4.3 HJB approach to solve reachability problems

4.3.1 Characterization of the reachable set R C F1 (t 2 ).
This problem can be solved with the approach developed in [START_REF] Bokanowski | Minimum time control problems for non autonomous differential equations[END_REF] for the reachability problems with non-autonomous dynamical systems. Indeed, when the time horizon t 2 is known, one can easily rewrite the system F 1 under the following form

F 1 :    dx dt = f 1 (t 2 -t, x(t), m(t), u 1 (t)), t ∈]t 0 , t 2 [ dm dt = β 1 (t 2 -t) x(t 0 ) ∈ X 0 , m(t 0 ) = M 0 , u 1 ∈ U ad .
Let ϕ be a Lipschitz continuous function that characterize the target set C as follows: x ∈ C ⇔ ϕ(x) ≤ 0. Typically, one can use the signed distance function. Then, following [START_REF] Bokanowski | Minimum time control problems for non autonomous differential equations[END_REF], one can define the value function

v 1 (x, m, t 2 ) = inf u1 ϕ(x u1 (x,m) (t 2 )) ∨ (-m u1 (x,m) (t 2 )) (17) 
where a ∨ b = max{a, b}. It is shown in [START_REF] Bokanowski | Minimum time control problems for non autonomous differential equations[END_REF] that this value function is a unique Lipschitz continuous solution of

∂v 1 ∂t + H 1 (t, x, m, D (x,m) v 1 (x, m, t)) = 0 v 1 (x, m, 0) = ϕ(x) ∨ (-m) (18) 
with H 1 (t, x, m, p) = max u1∈U -p • F 1 (t, x, m, u) and that this function characterize the reachable set R C F1 (t 2 ) as follows: (x, m) ∈ R F1 (C, t 2 ) ⇔ v 1 (x, m, t 2 ) ≤ 0. here again the approach introduced in [8] will be used. The system F 2 is autonomous. Let ψ be a

Lipschitz continuous function that characterize the target set C f as follows:

x ∈ C f ⇔ ψ(x) ≤ 0.
Then, following [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF], one can define the value function

v 2 (x, m, τ ) = inf u2 ψ(x u2 (x,m) (τ )) ∨ (-m u2 (x,m) (τ )). ( 19 
)
According to [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF], v 2 (x, m, τ ) is a unique Lipschitz continuous solution of 

∂v 2 ∂τ + H 2 (x, m, D (x,m) v 2 (x, m, τ )) = 0 v 2 (x, m, 0) = ψ(x) ∨ (-m) (20) 

Numerical results

This section presents some numerical results obtained using ROCHJ (see [START_REF] Bokanowski | Roc-hj software[END_REF]) software for solving HJB equations. The data used for the simulations was provided by CNES together with an example of optimal trajectory calculated by CNES using Shooting methods. The considered launcher is an Ariane-type two-stage spacecraft. The numerical data used in all the computations are the same as in [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF].

After the computation of the value functions v 1 and v 2 (by solving a HJB equation for each one), an optimal trajectory for a given initial condition (x, M 0 ) is computed by following the proposed solution algorithm as follows:

Step 1. Compute a trajectory (x u1 (x,M0) , m u1 (x,M0) ) that reaches the target GTO set C at time t 2 , using the value function v 1 . (See [START_REF] Bokanowski | Global optimization approach for the climbing problem of multi-stage launchers[END_REF] for more details about reconstruction algorithm).

Step 2. Integrate the motion equations for the ballistic flight [START_REF] Crandall | Viscosity solutions of Hamilton Jacobi equations[END_REF] starting from (x u1 (x,M0) (t 2 ), m u1 (x,M0) (t 2 )) until a given time t 3 > t 2 . Note first that the approach presented in this paper is a global approach that provides the optimal trajectory (with the best performance). This is an advantage compared to other numerical approaches based on classical optimization algorithms which provide generally only local solutions. The approach doesn't require any particular initialization of the computation, unlike the approaches based on shooting algorithms which require a good initial guess to guarantee the convergence of the computational process.

The quality of our approach depends on the computation grids used to solve the HJB equations. In Fig. 2, one can see that the approximated trajectories are quite similar during Phase 0 and Boost 1. They are all close to the reference solution, and the error approximations decrease as the size of the grids increase. The following grids were tested: grid 1: 20 × 8 × 20 × 20 × 16 × 5, grid 2: 30×12×30×30×24×5, grid 3: 40×16×40×40×32×5 , and grid 4: 50×20×50×50×40×5.

The Fig. 1 shows the trajectories obtained by integration of the ballistic flight equations [START_REF] Crandall | Viscosity solutions of Hamilton Jacobi equations[END_REF] from the end points of the first boost trajectories obtained from different computational grids.

One can notice that only the more finest computational grid allows to obtain a good approximation of the target GTO such that the ballistic flight phase reaches a segment of GEO and allows to perform a good transfer maneuver.

It should be pointed out that the cost of computation depends also on the grid used for solving the HJB equations. The presented results were obtained using a computer with Intel XEON E5-2695 (24 Cores) processor and a multi-threaded ROC-HJ Sofware. The whole numerical simulations on a grid 1 take about 450 seconds, while on a more finest grid 4, the computation takes 6 hours. To compute the global optimal trajectory one needs to solve the corresponding HJB equations ( 18) and (20) on a sufficiently fine grids. The Fig. 3 shows the obtained optimal two-boost trajectory, starting on the Earth and arriving on the GEO with a small propellant mass gain:

m(t f ) = 200kg.

Conclusion

The paper introduces a new mathematical formulation of the launching problem that leads to a global optimization procedure based on Hamilton-Jacobi-Bellman approach. Recent theoretical and numerical development in HJB approach allow to tackle this trajectory optimization problem including complex flight phases with two boosts and a ballistic flight. Other optimization procedures have already been extensively studied and used in aerospace literature, and their features are very well known (precision, convergence, ...). However these approaches provide (in general) local optima and their convergence are very sensitive to the initialization of the optimization algorithms. The Hamilton-Jacobi approach turns out to be quite effective and provides a global solution. Even though, it should be noticed that the HJB approach requires a CPU time that increases as the size of the grid increase.
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with H 2

 2 (x, m, p) = max u∈U -p•F 2 (x, m, u). This function characterizes the minimum time function as follows : T F2 (x, m) = min{τ > 0 v 2 (x, m, τ ) ≤ 0}.

Figure 1 :

 1 Figure 1: Balistic flight prolongations of the first boost trajectories for different grids

Figure 2 :

 2 Figure 2: Optimal trajectories with different grids in spherical coordinates: atmospheric flight and boost 1
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