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ABSTRACT
The Acoustic Black Hole effect (ABH) is a passive vibration damping technique without added mass based
on flexural waves properties in thin structures with variable thickness. The usual implementation on plates
is a region where the thickness is reduced with a power law profile, covered with a visco-elastic layer. The
inhomogoneity induces a decrease of the wave speed and an increase of the amplitude in the small thickness
region, which makes the energy dissipation more efficient due to the absorbing layer. The wave amplitude
in the ABH easily reaches the plate thickness and is the origin of geometrical nonlinearities. These nonlin-
earities can generate coupling between linear beam eigenmodes of the structure and induce energy transfer
between low and high frequency regime. This phenomenon may be used to increase the efficiency of the
ABH treatment in the low frequency regime where it is usually inefficient. An experimental investigation
shows that the ABH termination displays a nonlinear behaviour and allows for modal coupling. A strongly
nonlinear regime can also be observed, which is associated with Wave Turbulence. A model of nonlinear
ABH beam as von Kármán plate of variable thickness and a modal resolution of the problem confirm the
observed effects and gives more insights on these results.
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1. INTRODUCTION

The control of undesired vibrations is an important concern in many industrial applications. The
classical methods for broadband vibration reduction generally involve the use of heavy layers of
damping material. These methods are well-known and very efficient but also lead to an added
mass that can be prohibitive in the transport industry for example. There is thus a need for
damping techniques without added mass, such as the Acoustic Black Hole (ABH) effect [1, 2].

As described by Mironov [3], this effect takes advantage of the flexural wave properties in
a plate with inhomogeneous thickness. It can be shown that waves propagating in a beam with
thickness h(x)

h(x) = εxm, m ≥ 2, (1)

slow down without being reflected and that their travel time in the profile tends to infinity if
thickness tends to zero. The residual thickness in this "Acoustic Black Hole" profile is however
too large to obtain the effect wanted but this can be compensated by adding a thin viscoelastic
layer [1]. The reflection coefficient of the extremity is then considerably reduced. Other the-
oretical works propose a more refined model for the reflection coefficient [2] and demonstrate
the increase of the modal overlap [4]. Experimental evidences of the effect are numerous [5–7].

The minimum thickness of the ABH extremity needed to obtain an important damping is
very small (few dozens of microns) and the displacement amplitudes at the extremity become
large with respect to the thickness. It questions the linearity of the response of the structure.
This paper proposes to demonstrate the nonlinear behaviour of a beam with an ABH extremity
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and to show that the geometrical nonlinearities have an influence of the damping properties
of the ABH. The first part is an experimental observation of an ABH beam. The second part
proposes a numerical model to simulate the response of an ABH beam in nonlinear regimes.
Finally, the numerical results are presented in the third part.

2. EXPERIMENT

2.1 Setup

The experimental study concerns two aluminium beams : the first is uniform with dimensions
1.3 m × 20 mm × 5 mm, the second with dimensions 1.5 m × 20 mm × 5 mm, has a Acoustic
Black Hole termination of length 0.35 m; the thickness of this extremity decreases quadrati-
cally down to 50 µm approximately. A thin damping layer is applied on the ABH extremity
(see Fig. 1).

The experimental setup consists in a shaker (LDS V201), an amplifier (LDS PA25E), a force
sensor (PCF 208C03), an accelerometer (PCB 352C29) and an acquisition card (NI-USB4431).
It is driven by a Labview interface and the results are exported and treated with MATLAB.
The beam to be measured is vertically suspended and excited at midpoint with the shaker. The
accelerometer is placed at an arbitrary location on the beam.

Figure 1: Extremity of the ABH beam. The length of the variable thickness region is 35 cm.

2.2 Filtered white noise excitation

The beams are excited with a filtered white noise excitation on the 200-300 Hz range, for several
amplitudes. The power density spectrums of the responses are displayed on Fig. 2. Fig. 2(a)
shows that the uniform beam has a linear behaviour since the power is concentrated in the
excitation range, except for few artefacts that may come from the setup. On the contrary, in the
ABH case (see Fig. 2(b)), the power largely leaks outside the excitation range for high levels
of excitation. This energy transfer can be attributed to a nonlinear behaviour. It is particularly
interesting since it could be used to transfer energy from low to high frequency domain, that
is inherently more damped, in order to increase the efficiency of the ABH treatment in low
frequency. However, no reduction of the vibratory levels with the increase of amplitude can be
observed in this experiment.

3. MODEL OF NONLINEAR ACOUSTIC BLACK HOLE

3.1 A von Kármán plate model

The ABH beam is modelled as a nonlinear von Kármán plate [8, 9] with variable thickness. The
geometry of the plate is described on Fig. 3. The thickness in the ABH region is given by:

h(x) = ht + (h0 − ht)
(x− ladd)m

lmABH

, (2)

where h0 is the thickness of the plate thickness in the uniform region, ht is the minimum thick-
ness of the plate, m is the exponent of the ABH profile, lABH is the length of the region of
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Figure 2: Power density spectrum of the response to a filtered white noise (200-300 Hz) excitation, normalized by
the standard deviation of the force for (a) uniform beam and (b) ABH beam. σF denotes the standard deviation of
the exciting force.

variable thickness and ladd is the length of the extension of small constant thickness.

The equation of motion for the transverse displacement w then writes, following the devel-
opments proposed in [10, 11]:

ρh(x)ẅ + ∆(D(x)∆w)− (1− ν)L(D(x), w) = p+ L(w,F ) (3)

where the Airy stress function F respects:

∆(
1

Eh(x)
∆F )− (1 + ν)L(

1

Eh(x)
, F ) = −1

2
L(w,w) (4)

and where p is the exciting force per unit surface, E is the Young modulus, ν is the Poisson
ration, h is the thickness, D(x) = Eh(x)3/12(1 − ν2) is the bending stiffness, ρ is the mass
density and L(f, g) is the Monge-Ampère bilinear operator which reads, in cartesian coordi-
nates:

L(f, g) = fxxgyy + fyygxx − 2fxygxy, (5)

where fxx denotes the second derivative of f with respect to x.

In the case of a plate with free edges, the boundary conditions writes, on an edge with normal
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Figure 3: Schematic view of the ABH plate thickness profile. h0 is the thickness of the plate thickness in the
uniform region, ht is the minimum thickness of the plate, m is the exponent of the ABH profile, lABH is the length
of the region of variable thickness and ladd is the length of the extension of small constant thickness. The damping
layer stands between abscissas xl1 and xl2.

n and tangent τ [4, 11]:

− ∂

∂n

(
D

(
∂2w

∂n2
+ ν

∂2w

∂τ 2

))
− 2(1− ν)

∂

∂τ

(
D
∂2w

∂n∂τ

)
= 0, (6)

∂2w

∂τ 2
+ ν

∂2w

∂n2
= 0, (7)

F =
∂F

∂n
= 0. (8)

3.2 Modal projection

A modal projection method [12] is used for solving this model. Eqs. (3) and (4) are projected on
the linear eigenmodes of the structure. The conservative and linear associated problems read:

ρh(x)ẅ + ∆(D(x)∆w)− (1− ν)L(D(x), w) = 0 (9)

and
∆(

1

Eh(x)
∆F )− (1 + ν)L(

1

Eh(x)
, F ) = ζ4F (10)

to which are added the boundary conditions (6-7). These are eigenvalue problems with solutions
(ωk,Φk(x)) and (ζn,Ψn(x)), respectively. The displacement and the Airy stress function are
expressed as:

w(x, t) =

NΦ∑
k=1

Φk(x)qk(t), (11)

and

F (x, t) =

NΨ∑
n=1

Ψn(x)βn(t). (12)

It is emphasized that the modes are normalized such that their scalar product is unitary:

< Φk,Φk >= 1. (13)

The projection on the linear modes gives the formulation (14-15) quadratic in (q, β), which
writes:

βp(t) = − 1

2ζ4
p

NΦ∑
i=1

NΦ∑
j=1

Hp
i,jqi(t)qj(t), (14)

q̈s(t) + ω2
sqs(t) = Fs(t) +

1

Ms

NΦ∑
k=1

NΨ∑
n=1

Es
k,nqk(t)βn(t), (15)
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with Ms =
∫
S
ρhΦsΦsdS the modal masses, Fs = 1

Ms

∫
S
pΦsdS modal force, and the coupling

coefficients:
Hp

i,j =

∫
S

ΨpL(Φi,Φj)dS, (16)

and
Es

k,l =

∫
S

L(Φk,Ψl)ΦsdS. (17)

3.3 Linear modes

Due to the variable thickness, the solution to the eigenproblems (9-10) is particularly difficult
and needs a dedicated numerical approach. The solutions are obtained using a finite difference
method [4]. The use of an uniform grid for a structure where the wavelength varies spatially can
result in a high computational cost. This problem is solved using a grid adapted to the flexural
wavelength variation. The coefficients Hp

i,j and Es
k,l are computed with the expressions (16,

17) from the numerical mode shapes, following the general procedure also described in [13] for
finite element shell models.

3.4 Damping

The damping in the system is taken into account by assuming a small modal damping in the
eigenvalue problem in displacement. The dissipative problem is written using a complex bend-
ing stiffness:

D∗(x) = D(x)(1 + jη(x)), (18)

where η(x) is an equivalent loss factor obtained using the Ross-Ungar-Kerwin [4, 14] law for
modeling the viscoelastic layer effect. The resolution of this new eigenvalue problem gives the
modal loss factors ξs that are then directly used in the system (14-15), which finally reads:

βp(t) = − S2
w

2ζ4
pSF

NΦ∑
i=1

NΦ∑
j=1

Hp
i,jqi(t)qj(t), (19)

q̈s(t) + 2ξsωsq̇s(t) + ω2
sqs(t) = Fs(t) +

SF

Ms

NΦ∑
k=1

NΨ∑
n=1

Es
k,nqk(t)βn(t). (20)

This method is advantageous since it yields a dissipative time evolution problem that can be
solved in the same manner as for the conservative one. Secondly, it has been decided to include
modal damping factor only on Eq. (20) for the transverse motions w. Neglecting possible losses
in Eq. (19) can be more easily justified because inertia effects are not taken into account for the
in-plane motions.

3.5 Time integration

The system of Eq. (19-20) is solved using a conservative integration scheme described in [12],
that is conditionally stable. The first step is to discretize the modal coefficients qs(t):

qs(t)→ qns , (21)

where t = n∆t with ∆t time step, and the derivation operators with finite difference operators.
The conservative scheme then writes:

δttq
n
s + 2ξsωsδt.q

n
s + ω2

sq
n
s =

SF

Ms

NΦ∑
k=1

NΨ∑
l=1

Es
k,lq

n
k [µt.β

n
l ] + F n

s , (22)

µt−β
n
p =

−S2
w

2ζ4
pSF

NΦ∑
i=1

NΦ∑
j=1

Hp
i,jq

n
i [et−q

n
j ], (23)
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with the following discrete operators:

δttq
n =

qn+1 − 2qn + qn−1

∆t2
, (24)

δt.q
n =

qn+1 − qn−1

2∆t
, (25)

µt−q
n =

qn + qn−1

2
, (26)

µt.q
n =

qn+1 + qn−1

2
. (27)

et−q
n = qn−1. (28)

The stability condition of such a scheme is [12]:

fe > πfmax, (29)

where fe = 1/∆t is the sampling rate and fmax is the largest frequency retained in the modal
truncation for the transverse motion w.

4. NUMERICAL RESULTS

4.1 Parameters

The model is used to simulate the responses of five beams, denoted A, B, C, D and E. Tab. 1
gathers the parameters shared by all the configurations Tab. 2 presents the specificity of each
configuration (see the geometry on Fig. 3). Configuration A is a uniform beam. Configurations
B and C are beams with an ABH profile, covered and non covered with a damping layer, re-
spectively. Configurations D and E are ABH beams with an extension of constant thickness and
their termination is partially (D) or totally (E) covered with the damping layer.

The beams are discretized with a 1000×100 grid and the number of modes taken into account
in the computation is NΦ=100 and NΨ=2000. A convergence study, not presented in this paper
for the sake of conciseness, allows to conclude that only 500 in-plane modes actually contribute
to the coupling coefficients and permits to reduce the computational cost of this study.

Geometry
L 1.5 m
b 20 mm
h0 5 mm
ht 50 µm
lABH 30 cm
hl 100 µm

Material
E 70 GPa
ρ 2700 kg.m−3

ν 0.3
El 1 GPa
ρl 1000 kg.m−3

ηl 0.4

Table 1: Common material and geometrical parameters.

Name A B C D E
ladd (mm) / / / 100 100
xl1 (mm) / 0 / 100 0
xl2 (mm) / 300 / 400 400

Table 2: Extension and damping layer lengths.
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4.2 Nonlinear regimes

The simulated beams A and B are first subjected to a sine excitation of increasing amplitude
between 0 and 20 N during 10 s. The frequency is arbitrarily chosen to be 111 Hz. The
time-frequency spectrograms of the response at the excitation point (x0=0.6 m, y0=0.01 m)
are plotted on Fig. 4. The uniform beam A responds linearly: the spectrum only contains the
excitation frequency. This not the case for the ABH beam B, the spectrum of which containing
a large number of odd harmonics. This is the signature of a nonlinear regime where the energy
is transferred to the high frequency part of the spectrum thanks to the appearance of numerous
harmonics.

(a)

(b)

Figure 4: Spectrograms of the response to a sine at 111 Hz with increasing amplitude for configurations (a) A and
(b) B.
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4.3 Energy transfer

In order to observe the potential for an increased efficiency of the ABH in low frequency, the
configurations A, B and C are excited with a white noise filtered on the 10-400 Hz range. Power
density spectra of their response are displayed on Fig. 5 for several excitation amplitudes. The
result for the uniform beam A (see Fig.5(a)) is as expected since the structure behaves linearly:
the power is totally contained within the excitation range whatever the excitation amplitude.
In the case of the covered ABH beam B, the response is linear for small amplitude but energy
leaks toward high frequency when the amplitude increase (see Fig.5(b)). Even if the spectrum
has a broadband content, the energy transfer is not sufficient for a significant reduction of the
resonance peaks to be observed in the excitation band. However in the case of the non cov-
ered ABH beam C (see Fig.5(c)), the increase of amplitude of excitation allows for an efficient
energy transfer and for a significant reduction of the resonances peaks at low frequency. The
nonlinear effects tend to be so important here that a reduction is observed even without damp-
ing in the structure. In order to have more insight on these effects, two more configurations are
simulated.

The constant thickness extension of configurations D and E is meant to increase the nonlineari-
ties of the response. These beams are subjected to the filtered white noise excitation and re-
sults are presented on Fig. 6. Configuration D presents interesting results since the response is
strongly nonlinear even for small amplitude excitations; for large amplitude excitation a signif-
icant reduction of the resonance peak can be observed. The equivalent added damping is due
to nonlinear effects. When the same extension is fully covered (E), the response is linear (see
Fig. 6(b)) which shows that an important damping tends to counteract the nonlinear effects,
while the two phenomena were balanced in configuration D. More insight can be gained on
these results by realizing a parametric study of the importance of the extension length and the
damping layer characteristics.

5. CONCLUSIONS

In this paper, the nonlinear behaviour of ABH beams has been investigated. The experiment
showed that the spectrum of the response of an ABH beam to a filtered white noise is not
limited to the excitation range but is broadband, due to nonlinear effects and the large ampli-
tudes of displacement of the small thickness region. The development of a numerical model
of nonlinear von Kármán plate with variable thickness confirms the experimental observation.
The nonlinearities allow to excite a broadband spectrum from a low frequency excitation. This
phenomenon of energy transfer can be used to reduce the amplitude of the resonance peaks in
low frequency and thus increase the efficiency of the ABH treatment. An extension of constant
thickness can be added to the termination in order to increase the nonlinear effects while the
damping layer tends to reduce these effects.
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