V. V. Krylov and F. J. Tilman, Acoustic ???black holes??? for flexural waves as effective vibration dampers, Journal of Sound and Vibration, vol.274, issue.3-5, pp.3-5605, 2004.
DOI : 10.1016/j.jsv.2003.05.010

V. B. Georgiev, J. Cuenca, F. Gautier, L. Simon, and V. V. Krylov, Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect, Journal of Sound and Vibration, vol.330, issue.11, pp.2497-2508, 2011.
DOI : 10.1016/j.jsv.2010.12.001

M. A. Mironov, Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval, Soviet Physics: Acoustics, vol.34, issue.3, pp.318-319, 1988.

V. Denis, A. Pelat, F. Gautier, and B. Elie, Modal Overlap Factor of a beam with an acoustic black hole termination, Journal of Sound and Vibration, vol.333, issue.12, pp.2475-2488, 2014.
DOI : 10.1016/j.jsv.2014.02.005

URL : https://hal.archives-ouvertes.fr/hal-01288274

D. J. O-'boy, V. V. Krylov, and V. Kralovic, Damping of flexural vibrations in rectangular plates using the acoustic black hole effect, Journal of Sound and Vibration, vol.329, issue.22, pp.4672-4688, 2010.

E. P. Bowyer, D. J. O-'boy, V. V. Krylov, and J. L. Horner, Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile, Applied Acoustics, vol.73, issue.5, pp.514-523, 2012.
DOI : 10.1016/j.apacoust.2011.12.010

V. Denis, F. Gautier, A. Pelat, and J. Poittevin, Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination, Journal of Sound and Vibration, vol.349, pp.67-79, 2015.
DOI : 10.1016/j.jsv.2015.03.043

URL : https://hal.archives-ouvertes.fr/hal-01288278

T. Von-kármán, Festigkeitsprobleme im maschinenbau, Enzyclopadie der Mathematischen Wissenschaften, vol.4, issue.4, pp.311-385, 1910.

A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, 1995.

G. J. Efstathiades, A new approach to the large-deflection vibrations of imperfect circular disks using Galerkin's procedure, Journal of Sound and Vibration, vol.16, issue.2, pp.231-253, 1971.
DOI : 10.1016/0022-460X(71)90485-8

O. Thomas and S. Bilbao, Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, Journal of Sound and Vibration, vol.315, issue.3, pp.569-590, 2008.
DOI : 10.1016/j.jsv.2008.04.014

M. Ducceschi and C. Touzé, Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals, Journal of Sound and Vibration, vol.344, pp.313-331, 2015.
DOI : 10.1016/j.jsv.2015.01.029

URL : https://hal.archives-ouvertes.fr/hal-01134639

C. Touzé, M. Vidrascu, and D. Chapelle, Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models, Computational Mechanics, vol.298, issue.4???5, pp.567-580, 2014.
DOI : 10.1007/s00466-014-1006-4

D. Ross, E. L. Ungar, and E. M. Kerwin, Damping of plate flexural vibrations by means of viscoelastic laminae, Structural damping, 1960.