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ABSTRACT
A number of musical instruments (electric basses, tanpuras, si-
tars...) have a particular timbre due to the contact between a vibra-
ting string and an obstacle. In order to simulate the motion of such
a string with the purpose of sound synthesis, various technical is-
sues have to be resolved. First, the contact phenomenon, inher-
ently nonlinear and producing high frequency components, must
be described in a numerical manner that ensures stability. Second,
as a key ingredient for sound perception, a fine-grained frequency-
dependent description of losses is necessary. In this study, a new
conservative scheme based on a modal representation of the dis-
placement is presented, allowing the simulation of a stiff, damped
string vibrating against an obstacle with an arbitrary geometry. In
this context, damping parameters together with eigenfrequencies
of the system can be adjusted individually, allowing for complete
control over loss characteristics. Two cases are then numerically
investigated: a point obstacle located in the vicinity of the bound-
ary, mimicking the sound of the tanpura, and then a parabolic ob-
stacle for the sound synthesis of the sitar.

1. INTRODUCTION

In many musical instruments, across various cultures, the interac-
tion between a vibrating structure and an obstacle is a key feature
leading to amplitude-dependent timbral modification, and is es-
sential in order to replicate the resulting sound. This contact may
arise due to the excitation of the instrument [1, 2], in which case
the exciting mechanism may be considered as lumped, or during
its consequent vibrations [3]. In the latter case, the contact can be
pointwise (e.g. the case of string/fret contact in an electric bass) or
distributed (e.g. string/bridge contact in a sitar). Such interactions
are strongly nonlinear, which complicates significantly its numer-
ical study.

Following analytical studies of the contact between a string
and a rigid obstacle [4, 5, 6], a number of numerical methods have
been developed in order to simulate the interaction between a vi-
brating string and an obstacle. Waveguides are used in [7, 8, 9, 10],
coupled with finite difference schemes in [11], where the string is
ideal, and [12], where the string is damped and stiff and the ob-
stacle is located at one end of the string. A modal description is
presented in [13] for modelling an ideal string vibrating against
a parabolic obstacle at one boundary and in [14] for a dispersive
lossy string where an obstacle consolidated at the bridge of a tan-
pura is considered. This instrument is also modelled in [15, 16],
where the motion of a stiff damped string against an obstacle is
obtained by discretising Hamilton’s equations of motion. Finally,
a finite difference method is developed in [3], also allowing the

simulation of a stiff, damped string with an obstacle having an ar-
bitrary shape. The case of the interaction between a string and a
fretboard is in particular described in [17]. This obstacle is also
considered in [18] where the Functional Transformation Method
is used. However, in these models, eigenfrequencies and damping
parameters cannot be arbitrary, but must follow a distribution spec-
ified by a small number of tuning parameters.

In this study, we present a conservative numerical scheme to
model a stiff damped string vibrating against an arbitrarily shaped
obstacle. The key features of the scheme are as follows. A modal
expansion is used as a starting point for the linear case (i.e., in the
absence of contact). By using an equal number of modes and dis-
cretization points, a linear transformation relates the spatial dis-
placement and the modal coordinates, so that the contact force
is treated directly with the displacement. Finally a regularized
contact force together with an energy-conserving time-stepping
scheme are implemented. Eigenfrequencies and damping parame-
ters of the string can be adjusted at ease, and in particular accord-
ing to experimental measurements so that sound synthesis can be
more realistic.

Numerical results of the scheme are illustrated by considering
two different obstacles for synthesizing the sounds produced by a
string vibrating against a point obstacle and a distributed obstacle,
mimicking the bridge of the tanpura and a flat bridge respectively.
Sound examples are available at
www.lam.jussieu.fr/Membres/Issanchou/Sounds_DAFx16.html.

2. MODEL SYSTEM

Consider a stiff string of length L (m), tension T (N/m), and with
linear mass density µ (kg/m). Stiffness effects in the string are
characterised by Young’s modulus E (Pa ) of the material, and the
moment of inertia I = πr4/4, where r is the string radius, in m.
The string vibrates in the presence of an obstacle assumed not in
contact with the string at rest and described by a fixed profile g(x),
x ∈ [0, L]. See Figure 1. Under the assumption of small displace-
ments, the dynamics of the string is described by the following
equation of motion:

µutt(x, t)− Tuxx(x, t) + EIuxxxx(x, t) = f(x, t), (1)

where u(x, t) is the transverse displacement of the string in a sin-
gle polarisation perpendicular to the barrier. Partial differentiation
with respect to time t and coordinate x are indicated by multi-
ple subscripts. Simply supported boundary conditions at the string
endpoints are assumed:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, ∀t ∈ R+.
(2)
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No damping is considered as yet, and a detailed model of loss
will be introduced once modal analysis has been perfomed. See
Section 3.1.

u(x,t)

z

y
x

0 Lg(x)

Figure 1: A string of length L vibrating against an obstacle g(x).

f(x, t) represents the contact force of the barrier upon the
string. In general, it should be positive at times and locations
along the string for which the string and barrier are in contact. A
power-law expression is selected for the contact force. This choice
has already been shown to be successful in the realm of musical
acoustics [3, 17, 16, 19, 20]. The interaction force thus reads:

f(x, t) = f(η(x, t)) = K [η(x, t)]α+ , (3)

where α ≥ 1 is a constant value, η(x, t) = g(x) − u(x, t) is
a measure of interpenetration of the string into the barrier, and
[η]+ = 0.5 (η + |η|) is the positive part of η [3]. Such a power-
law model of a repelling force due to a collision may be interpreted
as a compression of the medium in the case of flexible objects
(such as, e.g., a piano hammer [21]). In the present case, it is
best thought of as a regularized (smooth) force penalising such
interpenetration [22]. As such, the constant K ideally will take
on a very large value. This regularized approach contrasts with
nonsmooth methods for which no penetration is allowed [23, 24].

One particular advantage of the present choice relies in the fact
that the force f derives from a potential ψ:

f =
dψ

dη
, with ψ(η) =

K

α+ 1
[η]α+1

+ . (4)

This property is of special interest in the design of energy-conserving
numerical methods. See Section 3.3.

2.1. Energy Balance

Energy techniques play an important role in the construction of
numerical methods for highly nonlinear systems, as in the present
case of the string in contact with a barrier. For instance, it is used
in the present case of distributed collisions in [3], in the case of
finite difference schemes. The basic strategy is to associate, with
a given numerical method, a numerical conserved or dissipated
energy quantity, which is itself a positive semi-definite function of
the state. As such, it can be used to bound the dynamics of the
system, and to find sufficient numerical stability conditions.

The continuous energy expression associated with (1) is obtai-
ned by multiplying (1) by ut and then employing integration by
parts over the spatial domain. It may be written as:

H =

∫ L

0

[
µ

2
(ut)

2 +
T

2
(ux)2 +

EI

2
(uxx)2 + ψ

]
dx. (5)

It satisfies H ≥ 0 and the following equality:

dH

dt
= 0, (6)

implying that energy is conserved. The first three terms in the ex-
pression correspond to stored energy due to the effects of inertia,
tension and stiffness, respectively. The final term denotes the en-
ergy stored in the collision mechanism. Note that, as losses have
not yet been introduced, the system is Hamiltonian. When losses
are introduced, one should expect a balance of the form

dH

dt
+ Q = 0, (7)

for some function Q(t) ≥ 0, with the interpretation of power loss,
implying that

0 ≤H (t) ≤H (0) (8)

for t ≥ 0. It is not easy to give a simple expression for Q in
the case of realistic models of loss in strings, which are usually
expressed in the frequency domain [14], and not in terms of a spa-
tiotemporal PDE system. Thus our expression for power loss is
postponed until a modal analysis has been carried out. See Sec-
tion 3.1.

3. NUMERICAL SCHEME FOR A STRING VIBRATING
AGAINST AN OBSTACLE

The main characteristics of the numerical scheme are the follo-
wing:
1. An exact scheme for a lossy linear oscillator without obstacle,
as described in in [19], is used as a building block.
2. Each mode of the string can be described, in isolation, with
such an oscillator. Therefore we apply the exact scheme to each
mode, ensuring a fine description of frequencies and losses, ad-
justed for each mode. Then we add a force term F (corresponding
to a modal representation of f in equation (1)). At this point, we
obtain an equation in terms the modal coefficients of u.
3. Taking as many modes as interior points of the spatial mesh, we
can rewrite the equation on u directly, through Fourier transforma-
tion. Then the force term is expressed as in [3], in order to obtain
a conservative scheme.

3.1. Modal analysis

The modal expansion for the displacement of the string is as fol-
lows:

u(x, t) =

∞∑
j=1

qj(t)φj(x), with φj(x) =

√
2

L
sin

(
jπx

L

)
(9)

for simply supported boundary conditions.

Inserting the expansion of u in (1), one obtains:

µ(q̈ + Ω2q) = F, (10)

where q is a vector containing modal coefficients, and Ω is a di-
agonal matrix such that Ωj,j = ωj = 2πνj .
Eigenfrequencies are given by νj = j c

2L

√
1 +Bj2, where B =

π2EI
TL2 describes the inharmonicity created by taking into account

the stiffness of the string. Finally the vector F represents the modal
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projection of the contact force, with Fj =
∫ L

0
f(x, t)φj(x)dx.

Equation (10) describes a lossless string, where the linear part
corresponds to the description of a lossless oscillator for each mode.
Therefore, losses can now be introduced by associating each mode
with a lossy oscillator. Then (10) becomes [19]:

µ(q̈ + Ω2q + 2Σq̇) = F, (11)

where Σ is a diagonal matrix such that Σj,j = σj . A damping
parameter σj is now associated to each modal equation, and can
be tuned at ease in order to consider any frequency dependence.

Let us now introduce the theoretical model for losses proposed
in [14], which will allow us to determine realistic values to damp-
ing parameters in (11). This model takes into account the three
main dissipation mechanisms in musical strings, namely friction
with surrounding air, viscoelastic and thermoelastic behaviour of
the material as internal losses. The following expression of the
quality factor Qj =

πνj
σj

has been given as:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te , (12)

where subscripts ve and te refer to viscoelastic and thermoelastic
losses, and:

Q−1
j,air =

R

2πµνj
, R = 2πηair + 2πd

√
πηairρairνj ,

Q−1
j,ve =

4π2µEIδve
T 2

ν2
j .

In these expressions, ηair and ρair are, respectively, the dynamic
viscosity coefficient and the air density. In the rest of the paper,
they are set to the following values, assumed constant: ηair =
1.8 × 10−5 kg m−1s−1 and ρair = 1.2 kg m−3. Finally this
loss model depends on two parameters that can be fitted from
e.g. experimental measurements, as performed for example in
[14, 25, 20]: the viscoelastic losses angle δve, and the constant
value Q−1

te characterizing the thermoelastic damping. It results in
a frequency-dependent loss model which accurately takes into ac-
count the damping mechanism present in musical string vibrations
[14, 25, 20].

3.2. Spatial discretization

The spatial discretization is defined as xi = iL
N

, i ∈ {0, ..., N}.
Boundary conditions are u(x0, t) = 0 and u(xN , t) = 0 ∀t ∈
R+. In the following, only the values of u on the grid with i ∈
{1, 2, ..., N − 1} are thus needed in any calculation.

Considering N − 1 modes, the following relationship is ful-
filled, ∀i ∈ {1, 2, ..., N − 1}:

ui(t) =

N−1∑
j=1

qj(t)φj(xi) =

N−1∑
j=1

qj(t)

√
2

L
sin

(
jπi

N

)
. (13)

This can be written in matrix form as u = Sq, where Si,j =
φj(xi), ∀(i, j) ∈ {1, ..., N − 1}2. The inverse of S can easily be
calculated: S−1 = L

N
ST . This linear relation between u and q

will be useful in the following analysis.

3.3. Time discretization

Some notations are first introduced:

uni = u(n∆t, xi)

δt−un =
un − un−1

∆t

δt+un =
un+1 − un

∆t

δt.u
n =

un+1 − un−1

2∆t

δttu
n =

un+1 − 2un + un−1

∆2

〈u,v〉 = ∆x
∑

j∈{1,...,N−1}

ujvj .

Let us now consider the following time discretization of (11):
µ

∆t2
(qn+1 −Cqn + C̃qn−1) = Fn, (14)

where C, C̃ are diagonal matrices such that :

Ci,i = e−σi∆t
(
e
√
σ2
i−ω

2
i ∆t + e−

√
σ2
i−ω

2
i ∆t
)

C̃i,i = e−2σi∆t.

When the contact force is not present, the modal approach may
be viewed as an assembly of independent linear oscillators. This
temporal integration scheme gives an exact solution in this case, as
shown for example in [19], ensuring that at least the linear part is
well-approximated (indeed, perfectly). The contact force, through
which modes are coupled, remains to be determined. In order to
avoid the difficulty linked to this coupling, the dynamical equation
for the modal displacements vector q is rewritten for the physi-
cal displacement vector u. Thanks to the linear relationship stated
above between u and the modal displacement q, the discrete equa-
tion on u can be written as:

µ

∆t2
(un+1 −Dun + D̃un−1) = fn, (15)

where D = SCS−1 and D̃ = SC̃S−1. The contact force ex-
pression used in the present approach is the same as in [3]: fn =

− δt−ψ
n+1

2

δt.un , where ψn+ 1
2 = 1

2
(ψn+1 + ψn) and ψn = ψ(ηn).

This formulation allows for a conservative scheme when there is
no loss, and a dissipative one otherwise.

Therefore, at each time step, the following equation must be
solved:

r + b +m
ψ(r + a)− ψ(a)

r
= 0, (16)

where r = un+1 − un−1 is the unknown, a = un−1, m = ∆t2

µ

and b = −Dun + D̃un−1 + un−1. The Newton-Raphson algo-
rithm may be used to this end [3].

Compared to a finite difference approach, the major advantage
is the consideration of damping parameters and frequencies that
can be adjusted mode by mode. However, the matrices D, D̃ are
full in the modal case, as opposed to sparse in the case of local
finite difference approximations, and computation time increases
accordingly (see section 4.2).

Numerical energy analysis and stability conditions for the scheme
are provided in the next section.
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3.4. Stability analysis

The numerical scheme (15) is in a form close to actual implemen-
tation. However, in order to derive the discrete energy associated
to the scheme, it is more convenient to rewrite it in terms of dis-
crete temporal operators. Following the given in the case of an
oscillator in [19] to get an equivalent scheme, one obtains:

µ
[
Č1δttq

n + Č2qn + Č3δt.q
n] = Fn, (17)

with Č1, Č2 and Č3 diagonal matrices satisfying:

Č1ii =
1 + (1− γi)ω

2
i ∆t2

2

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

Č2ii =
ω2
i

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

Č3ii =
2σ∗i

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

.

The coefficients γi and σ∗i may be written as

γi =
2

ω2
i∆t2

− Ai
1 + ei −Ai

σ∗i =

(
1

∆t
+
ω2
i∆t

2
− γi

ω2
i∆t

2

)
1− ei
1 + ei

where

Ai = e−σi∆t
(
e
√
σ2
i−ω

2
i ∆t + e−

√
σ2
i−ω

2
i ∆t
)

and ei = e−2σi∆t.

(18)
The scheme for the displacement u thus may be written as:

µ
[
Ď1δttu

n + Ď2un + Ď3δt.u
n] = fn, (19)

where Ď1 = SČ1S−1, Ď2 = SČ2S−1 and Ď3 = SČ3S−1.
The force term is expressed as previously.

A discrete energy balance can be obtained by taking the inner
product between equation (19) and δt.un:

δt−Hn+ 1
2 = −µ

〈
δt.u

n, Ď3δt.u
n〉 . (20)

where :

Hn+ 1
2 =

µ

2

〈
δt+un, Ď1δt+un

〉
+
µ

2

〈
un+1, Ď2un

〉
+
〈
ψn+ 1

2 , 1
〉
.

(21)
Ď3 is positive semi-definite, so that the scheme is strictly dis-

sipative. Therefore it is stable if the energy is positive.

Since the force potential is non-negative, the stability condi-
tion is given by:〈

δt+un, (Ď1 −
∆t2

4
Ď2)δt+un

〉
≥ 0. (22)

It is therefore sufficient to have (Ď1 − ∆t2

4
Ď2) positive semi-

definite, which is true if (Č1 − ∆t2

4
Č2) is positive semi-definite.

Consequently, the condition that must be satisfied may be written
as:

1 + ei +Ai
1 + ei −Ai

≥ 0 ∀i. (23)

Equation (23) is satisfied if 1 + ei ± Ai > 0.This is always true,
and hence the scheme is unconditionally stable. The same conclu-
sion is obtained in the limiting case σi = 0 ∀i, using the same
reasoning leading to 22 with a reduced expression of γi.

3.5. Contact losses

Nonlinear losses due to contact can be added in the presented
framework, following the considerations developed in [26, 3]. The
contact force given by (3) may be modified as:

f =
dψ

dη
− du

dt
Kβ[η]α+, (24)

with β ≥ 0.

The energy (5) of the system (with no loss inherent to the
string) then satisfies [3]:

dH

dt
= −Qcontact (25)

where

Qcontact =

∫ L

0

(ut)
2Kβ[η]α+dx. (26)

The additional damping term may be discretised using the fol-
lowing expression [3]: δt.unKβ[ηn]α+.

Instead of (16), the equation to be solved at each time step is
then:

(1 + c)r + b +m
ψ(r + a)− ψ(a)

r
= 0, (27)

where c = ∆t
2µ
Kβ[g−un]α+. The discrete energy balance is given

by:

δt−Hn+ 1
2 = −µ

〈
δt.u

n, Ď3δt.u
n〉− 〈δt.un, δt.unKβ[ηn]α+〉 .

(28)
Since 〈δt.un, δt.unKβ[ηn]α+〉 ≥ 0, the dissipation in the system
is then increased.

4. APPLICATION TO MUSICAL INSTRUMENTS AND
SOUND SYNTHESIS

In this section, the numerical scheme presented previously is used
to simulate the motion of a string vibrating against an obstacle.
The cases of a point obstacle and a distributed obstacle are consid-
ered.

The string to be considered here is of length L = 1.002 m,
under tension T = 180.5 N and with linear mass density µ =
1.17×10−3 kg/m. Musical strings are known to have a very small
stiffness. Consequently, the inharmonicity coefficient B intro-
duced in Section 3.1 is chosen to beB = 1.78×10−5, correspond-
ing to measured values according to the protocol described in [20].
In order to show the ability of the model to incorporate a complex
damping law, the theoretical loss model introduced in section 3.1
is used. The values δve = 0.0045 and Q−1

te = 0.000203 have
been chosen, and correspond to experimental data, obtained using
the method exposed in [20]. This model has a complex frequency
dependence and accounts for the main loss mechanisms present in
strings.

First, a time step, or sample rate has to be chosen. To this
end, a convergence study has been undertaken, as elaborated in
the following section.
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4.1. Convergence study

Contact problems lead to the spontaneous generation of high fre-
quencies in the system, due to the very short timescales resulting
from collisions between very stiff objects, as in the present case.
This implies, at least in theory, a need for a high sampling rate
in order to obtain accurate results, which should decrease as the
contact stiffness does. The presence of damping, particularly at
high frequencies, is expected to be an ameliorating factor. In order
to highlight such accuracy issues, as they relate to the time step,
convergence results are presented here.

Consider a point obstacle located at x = 6 mm (see Section
4.3). In Figure 2, time history and spectrograms of simulation out-
put are shown, where output is taken as the velocity at the bridge.
For the contact restoring force, K = 1013 and α = 1.3 in order
to obtain a stiff contact, limiting penetration of the string in the
obstacle to the range of 1× 10−8 m. With K = 109 for instance,
the penetration attains about 1 × 10−5 m and the resulting sound
richness is significantly altered. The string is initially plucked at
x = L/2, with a maximal displacement of 1.8 mm.
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Figure 2: At left : time-domain output signals. At right : spec-
trograms. From top to bottom : Fs = 128, 256, 512 and 1024
kHz.

Figure 2 clearly highlights that for a sample rateFs = 1/∆t =
128 kHz, the simulated sound is far from convergence (it is sub-
stantially different from the result with Fs = 1024 kHz), and thus
not reliable. From Fs = 256 kHz, the general shape of the time
history, together with the spectral dynamics, seems to be correctly
reproduced. However, detailed view inside the signal and auditory
comparisons definitely evidenced that the high frequencies com-

ponents are not well reproduced, such that this sample rate is still
insufficient. Finally, careful inspection crossed with listening tests
shows that a sample rate of at least Fs = 1 MHz is necessary
for convergence of numerical results. To be confident with the ac-
curacy of the simulations presented below, the sampling rate has
been fixed for all the simulations to Fs = 2 MHz. Note also that
careful comparisons with experimental results have been presented
in [20], for which a sample rate of 2 MHz was also necessary to
obtain very satisfactory results over long simulation times.

4.2. Computation cost

In this part, computation times of the numerical scheme are dis-
cussed. The computations have been realized with MATLAB on
a single CPU with a clock at 2.4 GHz, and time costs are given
in table 1 for the computation of one second of sound, rounded
up to the nearest minute when N = 1001. Steps which are con-
trolled are the Newton-Raphson loop, the computation of b,a, rn

in (16), the computation of the energy given in (21) and finally the
total time is given. It clearly appears that the most costly steps are

N − 1 = 500
Fs 44.1 kHz 88.2 kHz 176 kHz 1 MHz

Newton-Raphson 0.7 1.3 2.6 9.8
b,a, rn in (16) 1.5 3.1 6 31.4

Energy 0.8 1.7 3.5 16.8
Total time 3.1 6.4 12.5 59.5

N − 1 = 1001
Fs 44.1 kHz 88.2 kHz 176 kHz 1 MHz

Newton-Raphson 1 2 4 14
b,a, rn in (16) 5 7 14 119

Energy 3 6 12 54
Total time 10 16 30 189

Table 1: Computation times, in minutes, for N − 1 = 500 and
N − 1 = 1001.

the computation of b,a, rn and the energy, i.e. products of matri-
ces and vectors, most probably because involved matrices are full.
Therefore, the computation time is mostly driven by N , so that a
judicious way of reducing computation cost may be to adapt the
spatial grid to the obstacle, making the space grid finer around the
obstacle and larger elsewhere.

4.3. Point obstacle: case of the tanpura

The tanpura is an Indian instrument which is played by plucking
open strings. The strings are connected to a curved bridge over
which a thread is carefully installed makes the sound very specific
to this instrument. This bridge and its thread (fully modelled in
[15]) can mostly be described as a two point bridge [14]. Therefore
in this part, this two point bridge is considered: assuming that the
bridge is at x = 0, a point obstacle is located at x = 6 mm.
Two initial conditions are considered, by plucking the string at
x = L/5 and x = 4L/5, and the velocity of the string is computed
at the bridge.

Parameters of the contact force are K = 1013 and α = 1.3 as
in Section 4.1, and the spatial grid is such that N = 1001. At the
initial time a smoothed triangle with a maximal amplitude of about
1 mm is imposed as the initial displacement, with no velocity. This
small value has been chosen in order to show that even for very
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Figure 3: Spectral evolution of velocities at the bridge (a) no obstacle, plucking at x = L/5 (b) point obstacle, plucking at x = L/5 (c)
point obstacle, plucking at x = 4L/5.

small displacements, the contact can introduce strong nonlinear
effects which are clearly audible and visible on signals.

When there is no obstacle, one can observe rejection of modes
which are not excited by the initial condition, as well as a faster
damping of high frequencies compared to low frequencies (see
Figure 3). When the obstacle is added, all modes are present and
energy is transmitted from modes to others. Spectrum tendencies
are similar to those encountered in [15] (numerical results) and
[14] (experimental results).

The velocity signal for the string with an obstacle is mostly
positive (see Figure 4), this is due to the close position of the mea-
sure position to the obstacle. Moreover, the effect of the string
stiffness implies dispersion which is clearly visible on temporal
signals, and constitutes a precursor. When the plucked point is at
x = 4L/5 rather than x = L/5, the precursor needs more time
to reach the obstacle, therefore it is much more developed when
arriving, which explains the high frequencies richness of the tem-
poral signal in Figure 4.

Moreover, according to [14], the frequency sliding depends on
the plucking position, which is also observed here.

The temporal evolution of energy Hn+ 1
2 is presented in Fig-

ure 5. It decreases faster when there is an obstacle, probably
because energy is transmitted to higher modes, which are more
damped. For a plucking point at x = 4L/5, the energy decreases
faster than at x = L/5, since more high frequencies are generated
by the bridge.

4.4. Distributed obstacle

In this part, a distributed parabolic obstacle is considered at one
end of the string, that could mimic the case of a sitar. Its shape is
as follows:

g(x) = −ax2, (29)

where we set a = 0.0065. The length of the obstacle is 19 mm
(see Figure 6). Such a value, small compared to realistic ones (see
for instance [13], where a measure gives a = 0.5778), is chosen
in order to make the contact between the string and the full length
of the bridge arise. No particular adjustment is made in terms of
inclination, however interesting observations can already be made.

Numerical parameters K, α and the initial condition are the
same as previously. Temporal and spectral evolutions are pre-

0 0.01ve
lo

ci
ty

 (
m

/s
) × 10-3

0

5

10

0.2 0.21

× 10-3

0

5

10

0.98 0.99

× 10-3

0

5

10

0 0.01ve
lo

ci
ty

 (
m

/s
)

× 10-3

-5
0
5

10

0.2 0.21

× 10-3

-5
0
5

10

0.98 0.99

× 10-3

-5
0
5

10

time (s)
0 0.01ve

lo
ci

ty
 (

m
/s

)

× 10-3

0
2
4

time (s)
0.2 0.21

× 10-3

0
2
4

time (s)
0.98 0.99

× 10-3

0
2
4

(a)

(b)

(c)

Figure 4: Temporal evolution of velocities at the bridge for a point
obstacle mimicking the case of the tanpura (a) no obstacle, pluck-
ing at x = L/5 (b) point obstacle, plucking at x = L/5 (c) point
obstacle, plucking at x = 4L/5

sented in Figures 7 and 8, as well as the energy of the signal.
Because of the obstacle, the velocity signal at the bridge as a mi-
nimum value close to 0.

Similarly to the case of the point obstacle, a precursor is vi-
sible from the first periods and high frequencies are highly excited
by the contact, which results in narrow peaks on temporal signals
(Figure 7). As mentioned in [12] for experimental results on a
complete instrument, the absence of rejection and a descending
formant can clearly be observed in Figure 8. Moreover, as in the
point obstacle case, the energy decrease is faster than when there
is no obstacle, which may be due to the transfer of energy from
lower to higher modes, combined with larger damping at high fre-
quencies.
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5. CONCLUSION

A numerical method combining a modal approach and an energy-
conserving scheme for the case of the string in contact with a bar-
rier has been introduced. Due to the modal approach, the linear
parameters of the strings (eigenfrequencies and damping coeffi-
cients) can be set independently for each mode, allowing for flex-
ible control over frequency-dependent loss. In particular, linear
characteristics of a measured string can be used in order to obtain
very realistic sounds, as proposed in [20]. Such complete con-
trol over damping rates for the string constitutes one of the major
advantages of a modal approach to synthesis. The scheme itself,
though with modal characteristics, operates ultimately in the spa-
tial domain, much like a finite difference scheme, though with the
special property of being exact under linear conditions. Such a
method can thus be viewed as a type of spectral method [27], ac-
companied by a time-stepping method which is tuned according
to the modal frequencies (unlike, e.g., more typical methods such
as leap-frog, or members of the Runge-Kutta family). As with
spectral methods, though the updates are no longer sparse, as in
the case of FD schemes, it may be possible to employ fast trans-
forms (such as a variant of the FFT) in order to perform the updates
(which in this case, follows directly from the sinusoidal structure
of the matrix S).

It has been shown that a high sample rate is necessary in or-
der to obtain reliable results for simulations over a long duration.
Computation time, which does not allow a real-time simulation at
present on a standard machine, could be improved by considering
a variable spatial step, finer in the region surrounding the obsta-
cle, and possibly a variable time step [28], since high temporal
precision is only necessary when the string is in contact with the
obstacle. In audio applications, though, such algorithmic refine-
ments must be treated with care—the use of a variable grid spacing
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Figure 8: Spectral evolution of the velocity at the bridge, dis-
tributed obstacle

will entail a loss of structure in the resulting update matrices, and
the use of a variable time step must necessarily be accompanied by
some form of on-line sample rate conversion which is perceptually
transparent.

The next steps of this research will consider more closely the
comparison between the outcomes of these numerical methods and
measurements realized on a real string and/or on real instruments.
To this end, and also in the interest of higher quality synthesis, a
parametric study on the contact force parameters should be car-
ried out, and the incorporation of various additional features of the
string/barrier system would be of interest. One such feature is the
extension of string vibration to two polarisations, as recently ex-
plored in the context of bowed string synthesis [29] and in case
of the tanpura [30]. At present, there is not a model of an excita-
tion mechanism, and a refined plucking model could be included,
perhaps modeling the dynamics of the player’s fingers [31]. Ulti-
mately, a complete instrument will require a model of coupling to
the instrument body, acoustic radiation, and possibly sympathetic
strings [32].
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