
HAL Id: hal-01370820
https://hal.science/hal-01370820

Submitted on 23 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Iterative Algorithm for Forward-Parameterized Skill
Discovery

Adrien Matricon, David Filliat, Pierre-Yves Oudeyer

To cite this version:
Adrien Matricon, David Filliat, Pierre-Yves Oudeyer. An Iterative Algorithm for Forward-
Parameterized Skill Discovery. Sixth Joint IEEE International Conference Developmental Learning
and Epigenetic Robotics (ICDL-EPIROB), Sep 2016, Cergy-Pontoise, France. �hal-01370820�

https://hal.science/hal-01370820
https://hal.archives-ouvertes.fr

An Iterative Algorithm for Forward-Parameterized Skill Discovery

Adrien Matricon∗†‡ David Filliat∗‡ Pierre-Yves Oudeyer†‡
∗ U2IS, ENSTA ParisTech, Université Paris Saclay, Palaiseau, France

† INRIA, Université de Bordeaux, Bordeaux, France
‡ Flowers Team, INRIA / ENSTA ParisTech, France

Email: {adrien.matricon, david.filliat}@ensta-paristech.fr, pierre-yves.oudeyer@inria.fr

Abstract—We introduce COCOTTE (COnstrained Complexity
Optimization Through iTerative merging of Experts), an iterative
algorithm for discovering discrete, meaningful parameterized
skills and learning explicit models of them from a set of behaviour
examples. We show that forward-parameterized skills can be seen
as smooth components of a locally smooth function and, framing
the problem as the constrained minimization of a complexity
measure, we propose an iterative algorithm to discover them.
This algorithm fits well in the developmental robotics framework,
as it does not require any external definition of a parameterized
task, but discovers skills parameterized by the action from data.
An application of our method to a simulated setup featuring a
robotic arm interacting with an object is shown.

I. INTRODUCTION

Long term planning becomes a difficult problem in robotics
when it is performed in the low-level motor control space.
An efficient way to reduce its complexity is to introduce
higher-level actions that abstract away the low-level difficulties
and enable us to work in a smaller and discrete space.
For example, in the context of reinforcement learning, [1]
introduces the concept of options (also called skills), which are
high-level actions leading to a known state. In this framework,
primitive skills (e.g. joint torques and angles controllers) can
be composed into higher-level ones (e.g. picking up an object,
going to lunch, traveling to a distant city), forming a repertoire
of skills that can be used for planning.

Skill knowledge is what allows an agent to select and chain
discrete actions towards a goal, and is therefore crucial for
many applications. While this knowledge can be carefully
crafted by expert engineers, there has been an effort in recent
years in developing methods for skill and parameterized-skill
learning ([2], [3], [4], [5]).

A skill can be defined as the knowledge of both an action
(usually a policy) and its result (reward, new state of the
system, etc), given a specific setup or context (initial state,
weights of elements, etc). As such, skills can be understood
as instances of forward models. They can also be understood
as instances of inverse models, as they contain both the
knowledge of a task (i.e. context and desired result) and of
an action that solves it.

In the literature, the concept of skills is often generalized to
parameterized skills in an inverse sense ([2], [3], [4], [5]):
each variation of a parameterized task is associated to an
action that solves it (e.g. in the thought experiment presented
in Figure 1, a task-parameterized skill could be how to move
the cube to a given position, which is defined for a limited
domain of (xinitial, xedge,xobject) and which associates to

each reachable position xobject a value of xactuator that
produces this result).

Fig. 1. Thought experiment: an actuator moves on a table along an horizontal
axis x, its action parameterized by its final position xactuator . It is moving
towards an object at xinitial, in the direction of an edge located further at
xedge. (xinitial, xedge) define the context of this setup, and its result is the
final position of the object xobject.

In this paper, we introduce another way to generalize skills
to parameterized skills, this time in a forward sense: the con-
text and action are parameterized, and each of their variations
is associated to the corresponding result (e.g. in the former
example, a forward-parameterized skill could be pushing the
cube without it falling, which is defined for a limited domain of
(xinitial, xedge,xactuator) and which associates to each value
of xactuator the value of xobject resulting from this action).

Fig. 2. Two types of parameterized skills

Figure 2 illustrates the difference between both parameteri-
zations. Note that if a given result can be attained by various
actions (like the final position xedge which is attained by all
values of xactuator superior to xedge in the example), only one
can be associated to a task instance by a task-parameterized
skill, while a single forward-parameterized skill like pushing
the cube off the table can cover all those cases, thus making
this representation more versatile. Task-parameterized skills
are very practical for industrial applications, with externally
given tasks in controlled environments, but limit the adapt-
ability in open-ended learning scenarios where having several
ways to reach the same result may prove critical.

Forward-parameterized skills are particularly relevant to the
field of developmental robotics where, without any external
definition of parameterized tasks, a robotic agent is expected
to discover sensorimotor contingencies, how to control its own
body and how to interact with its environment [6]. Discovering
forward-parameterized skills is a way to make representations
of actions emerge that can be manipulated and chained at
a symbolic level. Furthermore, similar forward models have
already been shown to be very usable for planning [7].

In this paper, we introduce a formalism that reduces
forward-parameterized skill learning to discovering and learn-
ing the smooth components of a locally smooth function.
We propose an iterative algorithm to solve it by performing
the constrained minimization of a complexity measure, and
apply our method to a simulated setup featuring a robotic arm
interacting with an object.

II. RELATED WORK

A. Task-parameterized skills

While we focus on forward-parameterized skills, other re-
searchers have investigated task-parameterized skills and how
to build a function a = f(τ), where τ and a are vectors
of parameters respectively representing a task and an action
solving that task.

In [3], the usual Reinforcement Learning approach for a
single task, i.e. to learn a policy of the form u = πa(s)
(where s represents the state and u the control), is extended
into a search for a general policy u = πa(s, τ) which solves
all variations of the task. This approach enables an agent to
learn a given task-parameterized skill, but does not address the
problem of discovering and learning of several parameterized
skills simultaneously.

In [5], parameterized skills are discovered through explicit
learning of the function a = f(τ). Some hypotheses enable
the authors to ensure that each τ corresponds to a unique a,
that f is locally smooth and that all values of a lie on disjoint
manifolds in the action space. They then learn those manifolds,
train an approximator on each one and map them to the task
space. Discovering and learning the smooth components of
f in such a way is expected to be of lower complexity and
dimensionality than learning a global model covering the entire
task space. While we share this idea of learning locally smooth
low-complexity functions, applying the approach to forward
models (discovering manifolds in the result space, learning
approximators on each one and mapping them to the context-
action space) cannot be done as there is not a one-to-one
correspondence between possible manifolds in the result space
and parameterized skills: a single result may be reachable by a
variety of forward-parameterized skills, or even by an infinity
of instances of a single parameterized skill.

B. Locally smooth function approximation

Our approach relies on approximating a locally smooth
function and identifying its smooth components. From an al-
gorithmic point of view, the idea of performing a regression to

approximate a function that may not even be fully continuous
has been explored in several learning algorithms.

In Locally Weighted Regression (LWR) [8], no explicit
model is learned from the training data. When the value of
the function at a given point x is needed, a local linear model
is trained through linear weighted least square regression, with
weights given by a kernel centered on x (generally a Gaussian
kernel), giving more importance to data in the neighbourhood
of x than to points far from it. That local model is then used to
approximate the value of the function at x. Locally Weighted
Projection Regression (LWPR) [9] improves on LWR by
performing a low-dimensional affine projection before fitting
the linear model, allowing the regression to focus on the
relevant dimensions. While both LWR and LWPR approximate
functions that are not smooth and that are possibly only
piecewise continuous, no explicit model is learned, making
those methods impractical for our purpose. Furthermore, the
locality of the regression also makes them data-inefficient.

In Kernel Ridge Regression (KRR) [10], also known as
Kernel Regularized Least Squares, a global model is learned
as a linear combination of basis functions, under the form:

f(x) =

M∑
i=1

wi · k(x,xi)

where the (xi)i≤M are the input values of the datapoints and k
is a kernel function (for example a Gaussian kernel). Gaussian
Process Regression (GPR) is very similar to KRR with a
Gaussian kernel, but slightly differs in the way the weights are
computed during the regression [11]. Although KRR and GPR
explicitly learn a model (unlike LWR and LWPR), it is a global
model and not a collection of local models, which makes those
methods impractical for discovering discrete components of
a locally smooth function. Furthermore, the locality of the
regression induced by the kernels makes those methods data-
inefficient as well.

In Mixture of Experts (ME) [12], several approximators
(generally neural networks) called experts are trained. The
input space is split by a gating network that determines for
each input the expert or blend of experts most likely to
approximate the output. This approach seems to be what
we need but, to the best of our knowledge, existing ME
methods all fall short on one point: the number of experts and
their complexity are not both automatically determined. Some
adaptative approaches built on ME find ways to grow either the
complexity or the number of experts after setting the other, like
in [13] where there is only one expert at first and the number
of experts increases as datapoints become more numerous, but
to the best of our knowledge those approaches still require
to set either the complexity or number of the experts before
any learning occurs. Because of this, two or more experts
might be needed to represent a single complex parameterized
skill, while simple parameterized skills may be approximated
by overly complex models. This makes the method data-
inefficient and lowers its probability of generalizing well to
new, unseen data.

C. Constrained complexity minimization

The idea of a constrained complexity minimization has
been successfully applied to other problems in other fields of
research. Rate-distortion theory [14] is a branch of information
theory that deals with the question of representing a signal
with as few bits by symbol as possible (complexity mini-
mization) so that it can be reconstructed without exceeding a
given distortion (constraint on the error). In motion planning,
[15] approximate observed trajectories through a library of
Dynamic Motion Primitives (DMP), using as few DMPs as
possible under the constraint that the error must stay under a
given threshold. The library itself is grown in such a way that
it does not contain high-complexity DMPs if simpler ones
have performed well on the past trajectories. While those
approaches bear similarities to our own, they are applied
to fundamentally different problems and are not usable for
forward-parameterized skill learning.

III. FORWARD-PARAMETERIZED SKILLS

Let us use c ∈ RNc , a ∈ RNa and R ∈ RNR as notations for
vectors of parameters respectively representing contexts, ac-
tions and results. We formally define a forward-parameterized
skill as a deterministic function f , smooth over a subdomain
of the context-action space, such that R = f(c,a) + δ with δ
a stochastic noise function. This assumes that f is unimodal
and that stochasticity is entirely due to noise, which is a
relatively common assumption. Similarly to [5], we expect
parameterized skills to be of low complexity, compared to a
global model covering the entire context-action space, and to
each use only a subset of relevant dimensions from the context-
action space.

Let us now consider the forward model of the robot’s
capabilities, describing all of its possible interactions with the
world. Such a model would be of the form:

R = F (c,a) + ∆(c,a)

where F is a deterministic function and ∆ a stochastic noise
function.

A parameterized skill can thus be seen as a restriction of
F to one of the subdomains of the context-action space on
which it is smooth. Learning parameterized skills is therefore
equivalent to learning the smooth components of the locally
smooth function F .

An intuition of this can be gained by looking at the simple
thought experiment in Figure 1, where an actuator moves on
a table along an horizontal axis towards an object. The result
one would expect from such an experiment (represented in
Figure 3) would show F smooth over three subdomains A,
B and C, corresponding to three parameterized skills where
the object is respectively left untouched, pushed forward on
the table or pushed off the edge of the table. The frontiers
between the subdomains reflect sudden changes in the context
of the action (reaching the object or the edge of the table).

The goal of the algorithm we present in this work is to
automatically discover forward-parameterized skills from the
experimental data (i.e. to group together instances of the same

Fig. 3. Expected results of the thought experiment presented in Figure 1
xobject = F (xactuator) + ∆(xactuator), with F (in blue) smooth on 3
subdomains A, B and C (see text for details)

parameterized skill while keeping distinct parameterized skills
separate) and to learn an explicit model (i.e. an expert in the
ME terminology) for each of them.

In this work, we make the strong assumption (whose validity
shall be discussed later on) that there is a known deterministic
bound ε on ∆, such that for each dimension i and each value
of (c,a), we have:

|∆i(c,a)| ≤ εi(c,a)

Each datapoint p in the training data is of the form
(Rp, cp,ap, εp), where εp = ε(cp,ap) can be interpreted as
a precision on the value of Rp.

IV. COCOTTE ALGORITHM

A. Constrained complexity minimization

At the heart of our approach is the idea of approximating
F , which is a function that is only locally smooth. Functions
that are not smooth can be approximated by smooth functions
(most approximators are actually C∞), but this generally
comes at the cost of an increased complexity of the model
(given a sensible measure of complexity).

The idea behind our algorithm is to explicitly minimize the
overall complexity of a collection of models approximating
F . As approximating this function with one model for each
domain on which it is smooth should lead to a lower com-
plexity than using a single model, we expect those domains
to spontaneously emerge from the complexity minimization.

The quality of a model is also known to depend on how
well that model’s complexity reflects the complexity of the
underlying reality it describes. Models that are too simple are
generally unable to give good predictions, even on the training
data (underfitting). Conversely, models that are too complex
will have a low probability of generalizing well to new, unseen
data [16] (overfitting). Given some constraints to prevent the
models from being too simple, (i.e. to guarantee that good
enough predictions can be given on the training data), we
expect the collection of model resulting from a complexity
minimization to have good generalization properties. We can
also expect the algorithm to be data-efficient, as simple models
need fewer datapoints to be trained.

B. Some definitions

We assume given (Sf , comp), where Sf is a set of families
of approximator functions (e.g. the set containing the family
of all first-order Fourier series, the family of all second-order
Fourier series...), and comp : Sf → N is a complexity measure
over this set (e.g. with the set from the previous example, the
function associating each family of Fourier series to their order
of approximation).

We define the complexity of a function f , as:

comp(f) = min
s∈Sf

s3 f

comp(s)

Further given a set Sd of M datapoints (Ri, ci,ai, εi)i≤M ,
we define the normalized error of a function f on Sd the
vector E(f) ∈ RM×NR such that:

∀i ≤M, ∀j ≤ NR, E(f)i,j =

∣∣∣∣Ri
j − f j(ci,ai)

εij

∣∣∣∣
A function f is said to explain Sd if it verifies:

∀i ≤M, ∀j ≤ NR, |Ri
j − f j(ci,ai)| ≤ εij

that is to say if:
‖E(f)‖∞ ≤ 1

Using this definition, we define the complexity of a set of
datapoints as:

comp(Sd) = min
f explainsSd

comp(f)

= min
s∈Sf

s.t. ∃f ∈ s
f explainsSd

comp(s)

C. An iterative algorithm for complexity minimization

We now introduce COCOTTE (COnstrained Complexity
Optimization Through iTerative merging of Experts), an itera-
tive algorithm to determine a collection of domains on which
F is smooth and to learn explicit models approximating F
on each of those domains. COCOTTE first assimilates those
domains to sets of datapoints, proceeding in two steps:

1) It relies on constrained complexity minimization to de-
termine, over all possible partitions of the datapoints,
the one with the lowest sum of complexities and its
associated models,

2) It then trains a classifier to determine the actual domains,
i.e. to map every point of the context-action space to a
set of datapoints and its associated model.

In step 1, trying all possible partitions of the datapoints
and estimating their complexity has a high computational cost.
Instead of exploring all those possibilities, we use a greedy
iterative approach (see Algorithm 1), illustrated on Figure 4
on the case of a simple step function. This approach works in
three phases:

1) The search is initiated in a state of high overall complex-
ity, where each datapoint is in its own set and associated
to a model that predicts it perfectly. This is the most
granular partition of the datapoints.

2) Then sets of datapoints in this initial partition are
iteratively merged into larger sets, decreasing the gran-
ularity and complexity of the partition. Candidate pairs
of sets for merging are selected in a greedy manner,
starting with the closest sets (the reason for this shall be
discussed later on). If merging a pair of sets increases the
overall complexity of the partition, they are left separate
and the next candidate pair of sets is considered.

3) Finally, artifacts of the merging process are removed.
They are sets of datapoints which appear early on
in the merging phase at the frontiers between smooth
components of F . We consider that a set whose points
can all be distributed into other sets (also trying the
closest ones first) without inducing a jump in complexity
is an artifact, and that distributing its points should
reduce the overall complexity of the partition.

As for step 2 of the algorithm, we use a standard Random
Forest classifier. Though we did not explore the choice of
classifier, other supervised classifiers should also work.

Algorithm 1 Step 1 of the COCOTTE algorithm
Input: Sd set of datapoints

1) Initialization:
Sm ← ∅ . partition of the datapoints
for p ∈ Sd do

Add {p} to Sm . Each point in its own set
end for

2) Merging phase:
repeat

Select two sets s0, s1 in Sm

if comp(s0 ∪ s1) ≤ comp(s0) + comp(s1) then
Replace s0 and s1 by s0 ∪ s1 in Sm

end if
until No two sets can be merged

3) Artifact elimination:
repeat

for s ∈ Sm do
Remove s from Sm

for p ∈ s do
Select a set s′ ∈ Sf

Add p to s′

end for
if no overall complexity decrease then

Roll back the changes, put s back in Sm

end if
end for

until No set can be distributed

D. Dealing with multidimensionality

When R is multidimensional or of unknown dimension, it
may be more practical to use one-dimensional approximator
functions over each dimension than to use multi-dimensional
approximator functions over all dimensions at once.

Fig. 4. Algorithm illustration on a simple step function: each point starts in
its own set, then sets are iteratively merged together (starting with the closest
ones), and finally artifacts at the frontiers between smooth components of F
are removed and their point distributed into other models.

In this case, the complexity of f = (f0, ..., fNR
) is the

multidimensional complexity (comp(f0), ..., comp(fNR
)) and

the condition for merging two sets s0 and s1 is:

∀j ≤ NR, comp(s0 ∪ s1)j ≤ comp(s0)j + comp(s1)j

E. Implementation of COCOTTE

We implemented COCOTTE in C++ 1, using multivariate
polynomial functions as one-dimensional approximators over
each dimension. Given d available dimensions, the family
of all polynomials of degree N using those dimensions is
associated to the complexity N × d + 1. As the complexity
of a family of functions increases with d, the families using
irrelevant dimensions are of higher complexity and discarded
during the constrained complexity minimization, ensuring rel-
evant variables selection.

Let s0 and s1 be two sets of datapoints that we are trying
to merge, explained on a given dimension by polynomial
functions of respective complexities c0 and c1. We know that
if a merge is possible, on this dimension the complexity of
the union of the sets falls between max(c0, c1) and c0 + c1.
This allows us to use a binary search to search for function
leading to the minimum complexity.

The distance between two sets of datapoints that we use
to select pairs of candidates during the merging phase is the
smallest Euclidian distance between a point of the first set and
a point from the second set.

Determining if a given family of polynomial functions can
explain the datapoints is done by searching for the function
f within that family that minimizes the error ‖E(f)‖∞ and
checking if this error is below 1. This search can be formulated
as a linear program and performed by an adequate solver.

In order to greatly improve the speed of our implementation,
we introduced a heuristic to reduce the number of families
of polynomial functions that we have to consider: if we call
V0 and V1 the sets of available dimensions in the families of
functions used to respectively explain the formerly mentioned
sets s0 and s1, we only consider families of polynomial
functions using at most one dimension not in V0 ∪ V1 to
determine the complexity of s0∪s1. This heuristic ensures that
the algorithmic complexity is linear in the number of irrelevant
dimensions during each merge without harming the quality of
the results.

1https://github.com/AdrienMatricon/cocotte

V. EXPERIMENTS

In order to demonstrate our algorithm capabilities, we
report first experiments where datapoints are generated from
variations of two manually defined policies on a robotic arm,
and show that our algorithm can discover meaningful skills
from this data.

A. Simulation environment

We use the simulation environment from [17], which fea-
tures a robotic arm fixed to a table on which lays a cubic
object. The robotic arm configuration is completely determined
by the angles of its 6 joints and the gripper, and is described
by 7 real parameters between 0 and 1. In this environment,
the arm always starts in the same configuration (see Figure 5),
then performs a policy defined by a succession of waypoints.

Fig. 5. Initial configuration of the simulation

We consider policies of the form πa = [q0, q1], equivalent
to policies defined by q1 from initial configurations given by
q0, so that in the previous notations c = q0 and a = q1.

B. Experimental setup

For visualization purposes, we choose to artificially make
the underlying structure of the problem 2-dimensional. To
that effect we manually determine two distinct behaviours A
and B with policies πA

a = [qA0 , q
A
1], where qA0 and qA1 are

configurations respectively to the left and right of the cube
so that the arm moves to the right towards the cube, and
πB
a = [qB0 , q

B
1], where qB0 and qB1 are this time respectively

to the right and left of the cube so that the arm moves to the
left towards the cube. We then introduce variations of πA

a by
making both the context and action vary:

π = [qA0 + t0 × (qA1 − qA0), qA0 + t1 × (qA1 − qA0)]

with t0 ∈ [−1, 0] and t1 ∈ [t0, 1.5]. We introduce similar
variations of πB

a and gather the data from all simulations, with
R being the final position of the cube, to which we add a
uniform noise of amplitude 1cm on each coordinate, and ε
being the sum of the estimated amplitudes of the simulation
noise and added noise. We randomly perform variations of πA

a

or πB
a , and gather a training set of 300 datapoints as well as a

test set of 10000 datapoints that we will use to visualize what
has been learned.

We expect COCOTTE to discover the structure of the data
by itself, and to identify discrete parameterized skills such as
pushing the cube to the left and pushing the cube to the right.
We expect it to group most variations of πA

a together, most

variations of πB
a together, and to learn a general model for

each parameterized skills. We also expect it to learn models
that are at most 2-dimensional, as each variation of πA

a or
πB
a is by construction entirely determined by (t0, t1), and to

identify relevant dimensions.

C. Results

After the training, for each datapoint (Rp, cp,ap, εp) of the
test set, we ask the algorithm to assign (cp,ap) to a parameter-
ized skill and to predict the final position of the cube Rp. As
can be seen on Figure V-C, which shows those predictions for
the y-coordinates, four models have been learned. Those are
meaningful and correspond to parameterized skills: pushing
the cube on the table to the left (in green), pushing the cube
on the table to the right (in orange), pushing the cube off the
table to the right (in blue), and not moving the cube (in red).

Fig. 6. Predictions of the y-coordinate of R on the test set. In grey: actual
values from the simulation. In blue, green, red, orange: predictions from the 4
models. The green model is of complexity 4 (degree 3, 1 relevant dimension
q1,0), the orange model of complexity 3 (degree 2, 1 relevant dimension q1,0),
while the other two models are constant polynomials (complexity 0). See text
for more information.

More quantitative results are displayed on Figure 7, which
shows the evolution of the total complexity and error rate over
the y-coordinate as COCOTTE is run on random subsets of
the training set of increasing cardinality. At first, there are few
constraints and the overall complexity of models is low. It then
increases with the number of points, i.e. of constraints, before
going down as the density of points becomes high enough for
the local structure to emerge and for the constraints to avoid
wrong merges (artifacts). It finally converge to the complexity
of the model presented in Figure . As for the error-rate, it
steadily goes down as more points are added, which seems to
confirm that our approach is not prone to overfitting and leads
to good generalization properties.

D. Discussion

As argued in the introduction, our approach does not sup-
pose the external definition of parameterized tasks, but is able
to discover parameterized skills from data, thus being applica-
ble in a developmental scenario beyond the initial controlled
experiments reported in this paper. From a developmental

Fig. 7. Evolution of the total complexity and error-rate over the y-coordinates
when running COCOTTE over random subsets of the training set of increasing
cardinality (showing mean and standard deviation over 80 executions of the
algorithm). Above: evolution of the total complexity over the y-coordinates
(sum of the one-dimensional approximator complexities over all models).
Below: evolution of the error-rate (percentage of points in the test set with
prediction error above the precision treshold). See text for more information.

perspective, it would therefore be interesting to have the robot
actively gather new datapoints by exploring the parameter
space of previously discovered skills so as to check their
limits of validity. It would also be interesting to associate this
procedure with motor and goal babbling in order to explore
the space of possible effects and discover new skills.

In the experiments we performed, our algorithm managed
to discover parameterized skills and to learn an explicit model
for each of them. Those parameterized skills seem meaningful
and correspond to parameterized skills that humans could
intuitively identify, like pushing the cube off the table to
the right. The collection of models that has been learned
constitutes a repertoire of discrete parameterized skills, which
can be used for planning. Although the robotic agent was
made to explore variations of two externally given policies
πA
a and πB

a , one must note that the parameterized skills that
were discovered do not directly reflect those policies: the
parameterized skill not moving the cube generalizes instances
of both πA

a and πB
a , while the other instances of πA

a lead to
the two distinct parameterized skills pushing the cube on the
table to the right and pushing the cube off the table to the
right.

The merging phase of our algorithm is performed in a
greedy manner, selecting the pair of closest sets first as
candidate for merging. The reason for this is to have local
structures emerge first, especially in the areas dense with
datapoints. Local structure manifests itself as a decrease in
complexity: when merging the sets s0 and s1, local structure
causes comp(s0∪s1) < comp(s0)+comp(s1). This decrease
in complexity makes it harder to merge s0∪s1 with any other
set s2, as it needs to verify:

comp(s0 ∪ s1 ∪ s2) ≤ comp(s0 ∪ s1) + comp(s2)

< comp(s0) + comp(s1) + comp(s2)

We therefore constrain the models we learn to comply with
the local structures, which makes it much harder for wrong

merges to happen. In practice, as soon as a certain density of
datapoints is reached, the only wrong merges we see happen-
ing during experiments are those at the frontiers between two
smooth components of F , where the merges do not reflect a
local structure and do not reduce the complexity. The resulting
sets are then removed during the artifact elimination phase of
our algorithm, and their datapoints distributed among other
sets.

The main assumption we make in this work is that of the
existence of a known deterministic bound ε on the stochastic
noise function ∆, an assumption that we use to define the
ability of a function to explain a set of datapoints, which is
at the core of COCOTTE. This assumption strongly contrasts
with the usual hypothesis of a Gaussian noise, and may seem
like a strong assumption because it does not allow for any
outlier. Let us first note that if there are indeed no outliers, our
assumption is actually much weaker than the hypothesis of a
Gaussian noise, because it does not assume any distribution for
∆ at all. This being said, the reason why we allow ourselves
to make this assumption is that we have other ways we could
use to deal with outliers. For example, adding outliers to a
set of datapoints should cause a jump in complexity, because
they are inconsistent with the inliers. If they are relatively
low in number, they should stay within small sets during the
merge phase, and interfere very little with the emergence of the
good models. We should therefore be able to devise a filtering
method to discard them after the merge phase, similarly to
what we did for artifact elimination.

An easily overlooked aspect of our iterative algorithm is that
it does not involve hand-tuning any parameter or hyperparame-
ter. We do rely on estimates of ε in the data we use as input for
our algorithm, which does behaves like a parameter if chosen
by hand (too low and some sets will not be merged, too high
and the models will underfit the data), but those estimates
have a real-world meaning and are not meant to be hand-
tuned. For example, if Ri is a value measured by a sensor,
the corresponding εi should be the precision on that sensor
given by the manufacturer.

VI. CONCLUSION

We have presented a method to discover and learn explicit
models for parameterized skills. The key idea is that parame-
terized skills can be seen as smooth components of a locally
smooth global model of the robotic agent’s capabilities. Fram-
ing the problem as a constrained complexity minimization,
we proposed an iterative algorithm to solve it and reported
promising results, discovering meaningful parameterized skills
within a robotic agent’s experiences. In future work, we
intend to apply our algorithm in real developmental robotics
conditions, where the robotic agent gathers data by itself
through motor and goal babbling.

ACKNOWLEDGEMENTS

This work is supported by the DREAM project2 through
the European Unions Horizon 2020 research and innovation

2http://www.robotsthatdream.eu

program under grant agreement No 640891.

REFERENCES

[1] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning,” Artif. Intell., vol. 112, no. 1-2, pp. 181–211, 1999. [Online].
Available: http://dx.doi.org/10.1016/S0004-3702(99)00052-1

[2] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Auton. Robots, vol. 33, no. 4, pp. 361–379, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10514-012-9290-3

[3] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task
policy search,” CoRR, vol. abs/1307.0813, 2013. [Online]. Available:
http://arxiv.org/abs/1307.0813

[4] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in IEEE-RAS
International Conference on Humanoid Robots, 2013.

[5] B. C. da Silva, G. Konidaris, and A. G. Barto, “Learning parameterized
skills,” in Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26
- July 1, 2012. icml.cc / Omnipress, 2012. [Online]. Available:
http://icml.cc/discuss/2012/826.html

[6] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive
developmental robotics: A survey,” IEEE Trans. Autonomous Mental
Development, vol. 1, no. 1, pp. 12–34, 2009. [Online]. Available:
http://dx.doi.org/10.1109/TAMD.2009.2021702

[7] A. Ghadirzadeh, J. Bütepage, D. Kragic, and M. Björkman, “Self-
learning and adaptation in a sensorimotor framework,” in 2016 IEEE
International Conference on Robotics and Automation, ICRA 2016,
Stockholm, Sweden, May 16-21, 2016, D. Kragic, A. Bicchi, and
A. D. Luca, Eds. IEEE, 2016, pp. 551–558. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2016.7487178

[8] C. G. Atkeson and S. Schaal, “Memory-based neural networks for
robot learning,” Neurocomputing, vol. 9, no. 3, pp. 243–269, 1995.
[Online]. Available: http://dx.doi.org/10.1016/0925-2312(95)00033-6

[9] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
Incremental real time learning in high dimensional space,” in Proceed-
ings of the Seventeenth International Conference on Machine Learning
(ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July
2, 2000, P. Langley, Ed. Morgan Kaufmann, 2000, pp. 1079–1086.

[10] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning
algorithm in dual variables,” in Proceedings of the Fifteenth Interna-
tional Conference on Machine Learning (ICML 1998), Madison, Wis-
consin, USA, July 24-27, 1998, J. W. Shavlik, Ed. Morgan Kaufmann,
1998, pp. 515–521.

[11] F. Stulp and O. Sigaud, “Many regression algorithms, one unified
model: A review,” Neural Networks, vol. 69, pp. 60–79, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.neunet.2015.05.005

[12] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87,
1991. [Online]. Available: http://dx.doi.org/10.1162/neco.1991.3.1.79

[13] P. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Trans. Evolutionary
Computation, vol. 11, no. 2, pp. 265–286, 2007. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2006.890271

[14] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Nat. Conv. Rec, vol. 4, no. 142-163, p. 1, 1959.

[15] A. Lemme, R. F. Reinhart, and J. J. Steil, “Self-supervised
bootstrapping of a movement primitive library from complex
trajectories,” in 14th IEEE-RAS International Conference on
Humanoid Robots, Humanoids 2014, Madrid, Spain, November
18-20, 2014. IEEE, 2014, pp. 726–732. [Online]. Available:
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041443

[16] V. N. Vapnik, “The nature of statistical learning theory,” 1999.
[17] P. Ecarlat, A. Cully, C. Maestre, and S. Doncieux, “Learning a high

diversity of object manipulations though an evolutionary-based bab-
bling,” in Proceedings of the workshop Learning Object Affordances,
IROS 2015, Hambourg, 2015, pp. 1–2.

