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Abstract—The use of intrinsic motivation for the task of
learning sensori-motor properties has received a lot of attention
over the last few years, but only little work has been provided
toward using intrinsic motivation for the task of learning visual
signals. In this paper, we propose to apply the main ideas of
the Intelligent Adaptive Curiosity (IAC) for the task of visual
saliency learning. We here present RL-IAC, an adapted version
of IAC that uses reinforcement learning to deal with time
consuming displacements while actively learning saliency based
on local learning progress. We also introduce the use of a
backward evaluation to deal with a learner that is shared between
several regions. We demonstrate the good performance of RL-
IAC compared to other exploration techniques, and we discuss
the performance of other intrinsic motivation sources instead of
learning progress in our problem.

I. INTRODUCTION

In the context of developmental learning, robots need to
explore their environment methodically to gain knowledge in
a limited amount of time. In that regard, intrinsic motivation
(i.e. behavior driven by a reward system that is not related
to an external goal, but to the acquisition of competences or
knowledge) is an efficient drive for exploration. In this paper,
we address the problem of a mobile robot trying to learn visual
saliency of its environment from RGB-D images. The robot is
guided by intrinsic motivation, while dealing with the cost of
moving across the environment.

In robotics, intrinsic motivation has proven very efficient in
numerous applications. For example, Huang et al. [12] have
used novelty to guide visual exploration, while Chentanez et al.
[6] have used the error of prediction of salient event to speed
up a classical reinforcement learning approach. To overcome
limitations related to novelty or error in unlearnable situations,
intrinsic motivation based on progress has been proposed [2],
[20], [21]. In these approaches, the use of progress as the
main source of intrinsic motivation makes the robot focus on
cases that are neither too easy nor too hard, so that progresses
are constantly made and no time is wasted in unlearnable
situations. Those approach nevertheless rely on an empirical
local evaluation of the progress, which may reveal difficult to
obtain in high dimensional spaces such as visual signals. The
progress is then evaluated on higher level tasks such as object
recognition [19] or learning abstraction libraries [14]. Progress

has also been exploited in a reinforcement learning context,
to provide a robust exploration, flexible to non stationary
environment or wrong assumptions [16].

Visual exploration of the environment by mobile robots is
generally associated with a way to localize areas of interest on
which the robot should focus on. This localization mechanism
is typically driven by visual saliency maps [10], [18] or, if
depth information is available, geometrical segmentation [1],
[5]. In the first case, saliency maps [13], [23] highlight in
the input image areas that are ‘interesting’ in their context.
‘Interestingness’ covers a broad variety of cases and can either
be related to a specific task [10] or based on how much a
stimulus differs from its neighborhood [13]. In the second
case, indoor object segmentation based on depth information
usually relies on finding planar surfaces and objects lying on
them. Those methods can accurately detect objects on tables
or floor, but are limited by the sensor quality and geometrical
constraints (size or distance to the objects). So far, saliency
maps are mostly used as a black box and are not learned
(although sometimes refined) directly during the exploration of
a particular environment. Yet, learning visual attention directly
on the robots would make sense in a developmental perspec-
tive. It was found that human visual attention significantly
varies at different ages [11], but also between cultures [3].
This means that visual saliency is learned and modulated by
our environment.

In a previous work [8], we described a method able to
learn online a model of visual saliency. We demonstrated its
efficiency compared to state-of-the-art techniques. We also
presented some preliminary results of an exploration mech-
anism based on the Intelligent Adaptive Curiosity (IAC) [20].
A that time, we successfully applied IAC in a semi-simulated
setup without considering the time spent by the robot in
displacements. Based on these first results, we here propose
RL-IAC (for Reinforcement Learning-IAC) that provides a
way to get a trade-off between the time lost in displacements
across the environment, and the acquisition of relevant visual
samples allowing a faster and better learning. We also propose
a backward evaluation of the progress to overcome biases
introduced by a learner shared between several regions.



II. SALIENCY LEARNING

In [8], we presented an algorithm able to incrementally
learn and generate saliency maps for the task of detecting
objects in indoor environments. The method is designed to
work with an RGB-D sensor and uses the depth map as a
learning signal, a feature extractor on the RGB image, and
a classifier that predicts and generates saliency maps. More
precisely, the algorithm uses the procedure depicted in Figure
1 each time an RGB-D input is acquired:

The RGB image is sent to a feature extractor that produces
feature maps. A set of 39 features is extracted for each
pixel of the image and encodes the state of the pixel in
its neighborhood. A more detailed description of the feature
extraction can be found in [7].

On the other hand, the depth map is processed in order to
produce a segmentation mask (See the method in [5]). The
segmentation algorithm detects planar surfaces and highlights
elements of the scene that are lying on those surfaces. Ele-
ments highlighted this way are considered as being salient.
This algorithm accurately detects salient objects (high preci-
sion), but it also misses a lot of them (low recall). Because the
depth map is noisy, some pixels are not associated with a depth
value. Similarly, some elements of the depth map could not be
formally identified as salient. The segmentation then generates
a mask with three states (see colors in Figure 1): salient
(white) for elements that were clearly detected as salient, not
salient (black) for the main plane, walls, and elements that are
for sure not salient, and unknown (gray) for the others.

Last, a classifier is constantly updated based on the feature
map and the segmentation mask to learn a model of saliency.
For each pixel labelled salient or not salient, we associate
the corresponding 39 dimension feature vector and send it to
the classifier to update the model. The classifier is a modified
version of a Random Forest, adapted to be re-trained online.
For more details, please refer to [8].

As new RGB-D images are acquired and processed, the
model of saliency is updated and improved. To generate a
saliency map, we extract the RGB features from a given
image, and we send them to the classifier that produces a
score between 0 and 1 estimating how likely to be salient a
pixel is (See the saliency result in Figure 1).

To sum up with, segmentation provides on the one hand a
partial but accurate estimation of the saliency in an image:
because of depth missing data (shadows, far distance) or
because the algorithm could not clearly determine the saliency
of an object, some pixels are not associated with a salient
or not salient label. On the other hand, saliency maps are
estimated based on the RGB image only, and the saliency
is obtained for each pixel of the image. It is therefore able
to generalize from the partial information provided by the
segmentation mask. A few samples provided in Figure 2
illustrate this generalization capability.

This method of incremental learning can be coupled with an
exploration strategy so that input samples are actively selected.
This way, learning should be faster and of better quality. Based
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Fig. 1. Flowchart of the saliency learning approach

Fig. 2. Generalization capability of the saliency learning approach: the
segmentation contains gray pixels that correspond to missing data, either
because the surface is reflective (computer screen), too far, or because the
algorithm could not determine the state of the pixel. On the other hand, the
saliency map produces an estimate on the whole image and detects objects
that segmentation could not find.

on the evolution of the learning performance of the saliency,
we can compare the efficiency of the exploration strategies.

III. FROM IAC TO RL-IAC
To better understand the similarity and differences of our

approach with traditional IAC application, let us take a prac-
tical case in which IAC has been successfully applied. Take a
robotic arm and a camera and processing unit able to localize
the position of the hand in the camera frame. Suppose that
IAC is used to learn to predict the position of the hand in
the camera given a motor command of the joints of the arm.
In other words, after a training phase, the outcome of the
algorithm would be a forward model X → Y between joint
motor commands of the arm X and the 2D position of the
hand in the camera frame Y .

IAC is composed with 3 main components:
• a learner that learns a mapping X → Y ;
• a way to divide the exploration into regions;
• a meta-learner that monitors the learning evolution in

each region and estimates progresses.
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Fig. 3. IAC vs RL-IAC. Unlike IAC, our approach uses motor commands to
learn a mapping between two sensor inputs. The motor is therefore an indirect
way to provide new samples.

The notion of region is an essential element of the algorithm.
The core idea of IAC is to get a local estimation of the progress
in order to select actions that are likely to improve the model.
In the first versions of IAC [20], this local estimation was
possible by creating regions in the X space, by keeping a
history of the samples received in each region, and by training
a dedicated meta-learner in each region to predict the error
that the learner was likely to make in this region. Regions
were created and splitted incrementally as new samples were
obtained, based on the local density of samples.

To apply IAC in a classical case, the following procedure is
used: The robot takes an action (moving its arm with the input
motor command X) in a given region Ri. It receives a sensor
feedback about the consequence of the action (the 2D position
Y of the hand of the robot in the frame of a camera), while
the learner tries to predict the sensor feedback Ỹ based on
the X input and previously seen samples. The learner is then
updated based on the (X,Y ) sample, whereas the prediction
error ‖Y − Ỹ ‖ is added to the error history of the meta-learner
region Ri. Last, the progress in region Ri is re-evaluated based
on the error history over the last few samples. The next action
to be taken from the robot is then randomly chosen in the
region that has the highest learning progress.

This procedure can be directly applied for the learning of a
visual saliency model, but a special care must be considered
for a few aspects, discussed in the following sections.

A. Role of the motor commands

The mapping learned in the original IAC scenario is between
a motor command and a sensor input. In our case, IAC would
be used to learn to predict the saliency of a pixel given the
corresponding RGB feature vector. The mapping X → Y
would then be between a feature vector X extracted from an
RGB image, and the state of saliency (salient or not salient)
of this pixel, the learner being the random forest classifier. As
a result, our saliency algorithm learns a mapping between a
sensor input X (the RGB-features in Figure 3) and an other
sensor input Y (the depth segmentation in Figure 3). Motor
commands in our case are used to move the robot across the

environment to a new position and orientation. We do not
use motor command directly as new samples for our learner,
but as a way to receive new incoming samples (from the
RGB-D input), by showing a different point of view of the
environment. Once learning is finished, the model is then
completely independent from any motor command.

B. Regions definition
In the first versions of IAC [20], the regions are obtained

by splitting the input (X) space of the mapping which is also
the motor space (See Figure 3). In our case, the X space of
the mapping is the 39 dimensions space of the RGB-features
which is not well-suited to define regions. Indeed, to get a
specific input signal X , the robot has to move to a point
of view containing this signal. However, the correspondence
between points of view and visual input is not known, thus
making this space inappropriate to select samples. In more re-
cent implementation of IAC [2], [19], the algorithm considers
regions in a space of problems that are accessible to the robot.
We follow that idea by considering the space of positions and
orientations accessible by the robot. In this case, a problem
would correspond to learn saliency within a specific portion of
the environment. A region is then a subset of positions (x, y, θ)
that the robot can reach. Thus, the robot is in region Ri at time
t if its current position (x(t), y(t), θ(t)) ∈ Ri. An action in
this space is a displacement of the robot to a given position
(x′, y′, θ′). In our current implementation, the geometry of the
robot’s environment is supposed to be known, and the regions
are defined arbitrarily and manually, prior to the experiment.

C. Behavior in dynamic environments
IAC is often criticized as not being adapted to dynamic

environments. As our model is designed with regions that
are manually designed in an a priori known environment, the
implementation might look even more restrictive. However,
the term environment might refer to the space in which
regions are defined, or the space where the learner is trying
to make predictions (which are actually the same in the first
implementation of IAC). In our case, regions are defined from
a map of the place where the robot is (a building, for example).
In most cases, this map is not likely to change significantly
in time (objects in the building may move, but walls probably
won’t), thus making the regions defined stable in time. On
the other hand, visual signals (the space of the learner in our
case) are much more likely to change in time, because salient
objects are moved or illumination is changed for example. As
explained earlier, the visual model is shared between regions
and completely independent from any position in the map.
If a salient object is moved somewhere else in the room, it
will still look roughly the same in the new position, and is
therefore likely to be estimated salient by the learner, whatever
its new position. In that regard, our version of the algorithm
is compatible with dynamic environments.

D. Shared learner and backward progress estimation
Saliency shows common properties in different areas of the

environment (for example, walls are often uniform and white),



it is then more interesting to have a common learner shared
by different regions. The drawback is that taking samples
in a region may influence the learning in other regions. To
avoid catastrophic forgetting, or poor estimation of the learning
evolution in the case where a region is not visited frequently
enough, we define a way to monitor learning progress based on
previously seen examples (the backward progress estimation).

A forward evaluation of the progress in a given region Ri

(i.e. the standard evaluation used in [20] and [8]) would be
done using the following procedure: after ti−1 RGB-D frames
acquired in Ri, we would calculate the segmentation mask Oti

and the estimated saliency Eti of the new tith frame, and the
corresponding prediction error Erri(ti) would be added to the
meta-learner error history of Ri:

Erri(ti) = 1− F1(Oti , Eti) (1)

where F1(., .) is the F1 score1 obtained from pixels of Oti

labelled salient and not salient only. Then, an estimation of
the learning progress in Ri, would be obtained by a linear
regression of the error history Erri over the last τ samples
(τ = 10 in our case):Erri(ti − τ)...

Erri(ti)

 = βi(ti)×

ti − τ...
ti

+

ε(ti − τ)...
ε(ti)

 (2)

with ε(t) the residual error. The learning progress LPi in Ri is
defined as the derivative of the learning curve (or the opposite
of the error rate) in that region:

LPi(ti) = −βi(ti) (3)

With the forward evaluation, each time a new sample is
acquired in region Ri, the only learning error that is updated
is the one of Ri. However, when a single learner is shared
between several regions, adding a sample in a given region
may impact the learning error in other ones. In this configura-
tion, forward estimation is then inaccurate, as learning error is
not updated in regions where no samples have been acquired.
The proposed backward evaluation relies on a history of
features and labels in each region. At each step and for each
region, we measure the updated error based on this history
rather than on the last observed sample. Formally, after the
acquisition of k−1 RGB-D frames, the shared learner has been
updated with corresponding features and labels and produces
a model Lk−1. Among the k − 1 frames, only ti < k are
in Ri. Based on those frames, we define the observations
history Oti = {O1, O2, ...Oti} from depth segmentation and
the features history Fti = {F1, F2, ...Fti} from the feature
maps of each frame. To obtain the backward evaluation of
the error Errbackj (k) in each Rj after the acquisition of
the kth frame, we first update the learner to obtain the
updated model Lk. We then estimate saliency on the history

1F1 = 2tp
2tp+fp+fn

, where tp, fp and fn are the true positives, false
positives and false negatives. We use the F1 score as our error metrics for
Erri, because not salient pixels are representing more than 80% of the
samples, making accuracy inappropriate for error estimation.

ELk
tj = {ELk

1 , ELk
2 , ...ELk

tj }, obtained with the current saliency
model Lk applied to the feature history Ftj . Errbackj (k) is
then obtained by:

Errbackj (k) = 1− F1(Otj , E
Lk
tj ) (4)

This way, the evaluation of the error in each region is
updated each time a new model of the learner is obtained. The
procedure to obtain the learning progress based on the error
history is then exactly the same as in the forward evaluation.
For practical reasons, we also limit the size of Oti and Fti

by keeping at most 10 frames in memory from Ri, and by
randomly replacing them when new inputs are available.

E. Cost for actions and policy

In IAC, the cost for taking actions is not considered. In
that case, a greedy policy exploring the regions with highest
learning progress is enough. For a mobile robot moving in a
large environment (e.g. a building), the displacements between
two regions can be extremely time consuming, making the
greedy policy inefficient. We therefore propose to extend the
IAC policy with a RL module that estimates the best trade-
off policy between progresses and displacement. The idea is
to simulate future displacements of the robot, and to use Q-
learning [22] to determine the policy that optimizes progress
(or reward). The next displacement is taken by following this
policy, the progress in regions is updated, and a new policy is
re-estimated.

The problem is modelled as a navigation graph where
states are the regions in which progress is evaluated. Adjacent
regions are connected by edges in the graph, and the cost for
moving to an adjacent region is defined by the time a robot
would take to move between the centroids of the two regions.
See Figure 4 for an example of navigation graph. To move on
this graph, the robot can take a displacement action among
M = {up, down, left, right, stay}. If so, the robot selects
the adjacent upper, lower, left, right, or current region. If the
taken action is not allowed by the navigation graph, stay is
taken by default. After selecting the target region Rj , a new
position (x′, y′, θ′) within Rj is randomly chosen, and the
robot moves to that location. Instead of moving, the robot can
also take the action learn. In this case, the robot grabs an
RGB-D input at its current location, processes it and updates
the saliency learner as well as the meta-learners.

Suppose that at time t the robot is in region Ri. Each region
Rj of the environment is then associated with an estimated
learning progress LPj(t). To decide the next action to take,
we run a batch of 1000 simulated episodes for a horizon of
time N = 3600s (i.e. from t to t + N ) in which the robot
takes (virtual) action in the environment and collects reward
based on learning progress in the region. The time spent for
displacement depends on the distance between centroids of
two regions, whereas the time spent for updating the saliency
model is set as 1s (which is the average measured time to
update the random forests during the experiments). For each
episode, the initial state is always the region where the robot
is at time t, Ri(t). As the batch of episodes is a simulation,
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Fig. 4. An example of navigation graph. Here, the environment of the robot is an artificial building in which each room (dashed lines) contains a set of
images from a video sequence. Each region contains a subset of the video sequence and is here represented by a single image. Transitions between regions
are arbitrarily defined and are made possible by the different actions represented by arrows. Black dots between rooms represent the centroid of regions in a
corridor.

the robot is not physically moving when taking actions in M
and not grabbing frames and updating model for action learn.
Instead, the robot just receives reward associated with taking
virtual actions in a given region. As no model update is done
during this simulation, the reward based on learning progress
in a given region remains constant, and the 1000 episodes are
run in a few milliseconds only. The reward received when
taking a virtual action a in region Rj is as follows:

r(Rj , a) =

{
LPj(t) if a = learn
0 otherwise (5)

Based on the simulated episodes, we determine an optimal
policy by updating a Q-matrix according to the following rule

Q(sk, ak) = r(sk, ak) + γ Max
a′∈M∪{learn}

Q(sk+1, a
′) (6)

with γ the discount factor (0.1 in our implementation), sk
the region where the robot is after k (virtual) actions, ak the
action to take next, and sk+1 the region after taking action ak.
Once all the episodes have been simulated, we select the next
(not virtual) action at taken by the robot such that

at = Argmax
a′∈M∪{learn}

(Q(Ri, a
′)) (7)

After this action is taken, the learning progress is re-estimated
and a new batch of episodes is simulated to train a new Q
matrix and decide the next action to take.

Note that each Q-learning policy is obtained by considering
the reward as constant in time. This assumption is wrong in
practice, as each new learn action influences the learning
progress (and therefore, the reward) that would eventually
decrease to 0 when the learner cannot be any better. However,
the assumption is accurate enough to estimate the next action
to take. As the Q matrix is re-estimated before each new
action, this approximation does not introduce a significant bias.
Moreover, to force the robot to quickly get a first estimation of
the progress in each region, we forced the progress in a given
region to be very high as long as less than three samples were
collected in that region. This additional constraint has the same

effect as the R-MAX [4] exploration policy. Last, we used an
epsilon-greedy strategy to move to a random region 10% of
the time.

IV. EXPERIMENTAL RESULTS

A. Setup

For evaluation, we used a publicly available dataset called
RGB-D scenes dataset [15] and designed an artificial building
to simulate the robot’s displacements. The RGB-D scenes
dataset consists of 8 video sequences of indoor scenes of
everyday-life objects lying on tables. To evaluate the explo-
ration policy, we create a navigation graph similar to the
one of Figure 4. The navigation graph represents a building
in which each room contains a sequence (5 in total) of the
dataset. Each room is divided into 5 to 6 regions, and some
regions are connected to other rooms (as if there were doors
between rooms). A corridor in which no salient elements can
be found is also available to move between rooms. Regions
in the corridor are represented by black dots in Figure 4. To
simulate the displacement of the robot and the acquisition of
new frames, we associate a set of frames to each region of
the navigation graph. A SLAM algorithm [9] is used to obtain
the (x, y, θ) positions of each frame and divide the sequences
in regions based on their (x, y, θ) positions (Figure 5). When
the exploration policy sends a command to move the robot
to a region Ri, we randomly select a frame that belongs to
Ri, and calculate the time the robot would take to physically
move to this position. We also took 10 frames per region and
manually created a ground truth for each of them to create an
evaluation set. More precisely, the ground truth of a frame is
a mask on which objects lying on planar surfaces (i.e. salient
objects) are manually cropped. Those frames were removed
from the dataset and used for evaluation only.

B. Exploration strategies

To demonstrate the efficiency of RL-IAC versus other
exploration strategies, we run simulations in which the robot is
exploring the building based on several exploration rules. Each
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Fig. 8. Evolution of the error rate in terms of number of frames observed.
This time, RL-IAC is not the approach that performs best.

exploration strategy was tested 10 times and the average and
standard deviation error rate were used to produce the results.
To make sure that saliency is correctly learned in each room,
we used a dedicated learner in each room and corridor. Each
learner is then shared between the regions of the corresponding
rooms, but is independent from learners in the other rooms.

To evaluate the performance of the system, we follow the
evolution of the overall error rate: after each action, we apply
the available model of saliency on the evaluation set. We then
compare the ground truth of each of these frames with the
estimated saliency map, using the formula of equation 4 (based
on the F1 score). The overall error rate of the system after
each action is then defined as the prediction error averaged
over the evaluation set. Note that the overall error rate is
an extrinsic metrics used to evaluate the performance of the
system. It then differs from the region error rate, the intrinsic
metrics (based on segmentation rather than ground truth) used
to get an estimate of the error in each region in Section III-D.
As a preliminary experiment to demonstrate the need for an
efficient exploration strategy, the error rate evolution in each
room as a function of the number of frame taken in this room
is displayed in Figure 6. As rooms have significantly different
learning progress, following an exploration strategy that takes
into account the learning progress should be more efficient
than randomly selecting rooms. Figure 7 shows the evolution
of the overall error rate in time on both environments, for 4
exploration strategies:

• RND: Random selection of a region and a position in it.
Find the shortest path in the navigation graph to reach this
position. Move to that position. Once arrived, take action
learn that updates the saliency learner and meta-learner.

• IAC: Same as RND, except that the region selected is the
one with highest learning progress.

• RND+learn: Same as RND, except that during displace-
ment, the action learn is taken once in each visited region,
rather than just in the region of destination.

• RL-IAC with forward error estimation, as described in
Section III-D.

• RL-IAC with backward error estimation, as described in



Section III-D.
According to Figure 7, the random exploration strategy

(RND) is the one that provides the slowest learning. IAC is
doing slightly better, but it remains much slower than RL-IAC.
The main reason for such a gap is that both RND and IAC are
wasting a lot of time in displacement. Adding learning during
displacement (RND+learn) significantly speeds up learning,
while using RL-IAC provides the fastest learning. Last, the
backward evaluation of the progress slightly improves the
result over the classical forward evaluation.

To further validate the need to consider displacement time
in the exploration strategy, we display the results of the
experiment differently. This time, we plot the error rate versus
the number of frames observed rather than time (i.e. without
considering the displacement of the robot). This representation
is the one used in [8], where exploration based on IAC was
found to be more efficient than a random exploration. Based
on results in Figure 8, IAC is, as expected, the most efficient
approach with this representation. As RL-IAC is designed to
find a compromise between learning and displacements, the
progress between two consecutive observations is not as good
as the one obtained with IAC. Therefore, in Figure 8 where
displacement time is not represented, RL-IAC is not doing
much better than random exploration.

C. Is progress the best source of intrinsic motivation for visual
signals?

Our problem is similar to the strategic student learning
problem, which considers the case where the agent has to
select topics to learn in a limited amount of time. Lopez
et al. [17] have shown that if the learning error curves are
monotonic sub-modular, then exploring regions where learning
progress is the highest is quasi-optimal. In practice, there
is no warranty about these hypothesis, so that exploration
based on learning progress are just heuristics. We are then
interested in comparing exploration based on learning progress
with other sources of intrinsic motivation. On the other
hand, using learning progress makes the robot focus on areas
where learning is actually possible and avoids loosing time
in unlearnable or trivial ones. This makes learning progress
even more efficient when learnable areas represent a small
portion of the environment. As a result, a bigger gap should
be observed between learning progress and other strategies in
environments that are essentially unlearnable.

We evaluate the use of other sources of intrinsic motiva-
tion (namely error, novelty and uncertainty) in the RL-IAC
backward procedure. More precisely, we follow the procedure
described in Section III, except that we replace the learning
progress LPi(t) in Equation 5 by
• Errbacki (t) (see Equation 4) for error. The agent is

rewarded by exploring regions with high learning error.
• Novi(t) = 1

ti
, ti the number of frames observed in

region Ri for novelty. The agent is rewarded by exploring
regions having the fewest number of observations.

• Unci(t) =
∑ti

j=1−|E
Lt
j − 0.5| for uncertainty, where

ELt
j are saliency maps of ELt

ti , described in Section III-D.

Uncertainty measures the confidence of the learner in the
estimation and is further explained in [7]. The agent is
rewarded by exploring regions producing fuzzy saliency
maps.

We compare the performance of RL-IAC with the afore-
mentioned intrinsic motivations on the setup described above.
However, we use two different navigation graphs. The first
one is the one represented in Figure 4, where the corridor is
only composed of two regions (short corridor). The second
one is very similar, except that the corridor between rooms is
much longer and represent almost half of the regions in the
whole building (long corridor) with nothing salient inside. In
this configuration, the classifier does not learn anything in the
corridor, and the error rate is flat all along the experiment. The
comparison is displayed in Figure 9. In both configurations,
progress seems to be the best source of intrinsic motivation,
but the difference is much more significant in the long corridor
configuration. In this configuration, the error fails as the
absence of positive samples keeps the error rate very high
in the whole corridor2. novelty spends as much time in the
corridor as in the rooms, thus making learning much slower.
Uncertainty is the only one able to avoid the corridor, as, in
the absence of positive samples in the model, any input sample
returns ’0’, thus making output saliency maps not fuzzy at all.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an adapted version of the
intelligent adaptive curiosity for the task of visual saliency
learning in a building. The resulting algorithm, called RL-
IAC takes into account the cost for displacing the robot to
different areas of the environment, as well as a new way to
estimate the progress for the case of a learner shared by several
regions. The main differences between sensori-motor learning
and visual learning are here considered and might hopefully
be useful to understand how to adapt IAC to other panel
of problems. Our results show that RL-IAC enables a much
faster learning than a random exploration, and even exploration
based on IAC. In addition, the use of progress as the main
source of intrinsic motivation is discussed. The conclusion is
that progress makes a much bigger difference in environments
where a large portion of the environment is trivial to learn.
In any cases, the use of uncertainty as intrinsic motivation
also provides promising results. In a future work, we would
like to investigate incremental alternatives to navigation graphs
and predefined regions. Indeed, the use of navigation graphs
is restrictive as it forces an operator to manually determine
regions and the robot’s trajectories. We could also apply this
framework with other definitions of saliency. Instead of a
generic object segmentation, we could for example use objects
detectors and specialize our saliency to find those objects
within their environments.

2When no positive samples are observed in a region, the F1 score is either
undefined or equals 0 (So that error equals 1). If undefined, we force the F1

score to be 0
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Fig. 9. Comparison of several intrinsic motivations to explore the environment. (a) artificial building with a short corridor between rooms. (b) artificial
building with a long corridor between rooms

REFERENCES

[1] Haider Ali, Faisal Shafait, Eirini Giannakidou, Athena Vakali, Nadia
Figueroa, Theodoros Varvadoukas, and Nikolaos Mavridis. Contextual
object category recognition for rgb-d scene labeling. Robotics and
Autonomous Systems, 62(2):241–256, 2014.

[2] Adrien Baranès and P-Y Oudeyer. R-iac: Robust intrinsically motivated
exploration and active learning. Autonomous Mental Development, IEEE
Transactions on, 1(3):155–169, 2009.

[3] Aysecan Boduroglu, Priti Shah, and Richard E Nisbett. Cultural
differences in allocation of attention in visual information processing.
Journal of Cross-Cultural Psychology, 40(3):349–360, 2009.

[4] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial
time algorithm for near-optimal reinforcement learning. The Journal of
Machine Learning Research, 3:213–231, 2003.

[5] Louis-Charles Caron, David Filliat, and Alexander Gepperth. Neural
network fusion of color, depth and location for object instance recog-
nition on a mobile robot. In Computer Vision-ECCV 2014 Workshops,
pages 791–805. Springer, 2014.

[6] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. In-
trinsically motivated reinforcement learning. In Advances in neural
information processing systems, pages 1281–1288, 2004.
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