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ABSTRACT
Static instability of flexible structures forced by a paral-

lel flow, a.k.a. divergence, has been the subject of a relatively
small amount of studies, unlike flutter. In order to prepare fu-
ture studies of the collective behaviour of several slender struc-
tures coupled by the fluid in axial flow, the canonical case of
a flat flexible plate clamped at both ends is investigated nu-
merically and experimentally. The onset of divergence is de-
termined throughout a series of calculation of the fluid forces
generated by a prescribed deformation of the plate. Using the
Galerkin method, these fluid forces are expanded in the basis of
the natural modes; they exactly balance the mechanical forces
when the fluid velocity reaches the instability threshold. The
instability velocity can be determined by an eigenvalue calcu-
lation involving the fluid force expansion and the modal stiff-
nesses of the plate. Comparisons are provided with 2D an-
alytical calculations and with an experiment performed with
a 0.3m×0.03m mylar plate at Reynolds numbers varying be-
tween104 and105. A fair agreement is observed between the
3D potential calculation and the experiments, whereas the 2D
analytical solution underestimates the instability velocity.

NOMENCLATURE
C plate-to-wall distance along the y axis
D plate-to-wall distance along the z axis
E Young modulus of the plate
H plate’s width
hp plate’s thickness
Kn wavenumber associated to the n-th mode of the plate
L plate’s length
p fluid pressure
U inlet fluid velocity
ν Poisson ratio
Φ potential function associated to the fluid flow

ρ volumic mass of the fluid

INTRODUCTION
A slender structureslightly deformed andplaced in an ax-

ial flow is submitted to fluid forcesincrease the deformation.
These fluid forces, depending on the incoming fluid velocity,
can overcome the rigidity forces and lead to different types
of deformation of the structure: for static deformations, this
instability phenomenon is known as divergence or buckling,
and as flutter for dynamic deformations. For structures fixed
or clamped at both ends, divergence or buckling occurs before
flutter [1]. In this paper, the aim is to obtain the divergence
velocity for the case of a single flexible plate confined in an
axial flow with clamped-clamped boundary conditions. At the
onset of divergence, the fluid and structure forces are exactly
equal, and if a small perturbation is applied to the structure (in
the form of a natural mode shape for example),the structure
remains deformed in a marginal equilibrium state. To com-
pute numerically the critical velocity, a direct static method is
proposed and implemented. The influence of the geometry pa-
rameters on the critical velocity is then adressed, with a com-
parison between the results given by 2D and 3D calculations.

FLEXIBLE PLATE IN A CONFINED AXIAL FLOW
A plate of lengthL andwidth H is placed in a rectangular

channel of dimensionsH + 2C and 2D as sketched in figure
1. If the plate undergoesa lateral deflectionζ (x) due to an
external forcingfext, the linearized plate equation comes down
to:

Eh3
p

12(1−ν2)

(

∂ 2

∂x2 +
∂ 2

∂z2

)2

ζ = fext, (1)
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FIGURE 1. Notations

whereν and E are respectively Poisson’s ratio and Young’s
modulus of the plate, andhp is the plate’s thickness. Expand-
ing this equation in the natural modes basis is a widespread
technique ( [2], [1], [3]) and is used here to obtain a matricial
form of the equilibrium:

Eh3
p

12(1−ν2)
K4V = Fext (2)

where K4 is the rigidity matrix with only diagonal terms
(KnL)4 with Kn the wavenumber associated to thenth mode of
the plate; andV is the array build on the modal displacements
of the plateqp.

For a statically deformed plate in an axial flow, a force
distribution is generated due to the differences in the pressure
field near both sides of the plate. This external forcing is due to
the pressure forces which can be computed in the whole fluid
domain in the context of a potential flow with the help of the
Bernoulli equation:

p=−ρU
∂Φ
∂x

(3)

As any deformation of the plate can be written asζ (x, t) =
∑nqnξn whereξn is a natural mode with clamped-clamped con-
ditions, the potential can be expanded in similar terms:

Φ =U ∑
n

qnϕn (4)

The termϕp corresponds to the fluid potential around a de-
formed plate with a deflectionqpξp proportional to the plate’s
pth natural mode shapeξp with an amplitudeqp. Eachϕp satis-
fies the Laplace equation with the same boundary conditions on
the plate and on the channel walls(no penetration of the flow).

It is assumed that the derivatives of the potential above
(+) and below (−) the plate can be expanded in the basis of the
plate’s natural modes as well:

fp = ρU2qp

L ∑
n

Hpnξn,

whereHpn=
L

∫

ξ 2
n ds

∫ ∂
∂x

(ϕ+
p −ϕ−

p )ξn ds. (5)

This equation highlights the fact that the fluid forces, due to
a modal deformationξp, generate secondary deformations in-
volving other modes. In mathematical terms, the onset of static
instability is associated to a non-vanishing solution of the exact
balance between fluid and rigidity forces in the fluid-structure
equation. This marginal equilibrium is written in the natural
modes basis:

1
12(1−ν2)

E
ρU2

h3
p

L3 (KnL)4qn = ∑
p

Hpnqp (6)

Equation (6) is transformed into a matrix equality:

1
12(1−ν2)

E
ρU2

h3
p

L3 V = K−1
4 HV (7)

The critical non-dimensional velocity can be seen as the so-
lution of an eignevalue problem: divergence occurs when the
velocityU is such that there is a non-trivial solution to equation
(7), i.e. when

U

√

ρ
L3

h3
p

12(1−ν2)

E
=

√

1

eigenvalues(K−1
4 H)

(8)

NUMERICAL COMPUTATION OF THE FLUID FORCES
AND CRITICAL VELOCITY

The fluid problem is solved numerically for a 3-
dimensional geometry. The plate has a small thickness in the
geometry model, in order to provide a more realistic configura-
tion. The plate is enclosed in a ’fluid box’; at the inlet, the ve-
locity profile is uniform and at the outlet, the conditionΦ = 0 is
applied since the potential problem is solved within a constant.
On the channel walls, an ideal slip condition is applied. The
plate’s deformed profile is directly included in the geometry,
allowing to solve the fluid problem for any shape, in particular
for a natural mode shape. The mesh is refined in the length
and width directions of the plate, in order to discretize with a
good accuracy the modes up to the fifth order. The mesh of the
fluid domain is entirely built with hexahedra cells, providing
regularity in the resolution of the potential field (see figure 2).

The global resolution of the problem consists in: first,
computing the potential field and the pressure forces for each
configuration of the plate in everynth mode shape; then build-
ing the matrix of interaction between the fluid and the structure
by expanding the fluid forces on the natural modes basis; fi-
nally, finding the eigenvalues ofK−1

4 H and obtaining the non-
dimensional critical velocity.

Figure 8 shows the pressure distribution obtained with a
numerical simulation withCodeAster [4] above and below a
plate deformed in a first mode shape with a small amplitude.
This pressure distribution is non-uniform in the width direction
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FIGURE 2. Detail of the mesh generated in the fluid domain near
the plate deformed with a 5th mode shapeξ5(x)

FIGURE 3. Dimensionless pressure on the upper side of the plate
with a first mode shape and profile of the inlet velocity

Inlet velocityU = 1

Non-dimensional pressure
-0.279 -0.042 0.195 Y

Z
X

of the plate, showing that 3D effects occur near the lateral edges
of the plate. Both ends of the plate are a singularity for the
fluid; therefore the pressure distribution is truncated before the
numerical discrete expansion on the natural modes basis.

EXPERIMENTAL SET-UP
An experimental set-up is built in order to explore con-

figurations close to the numerical simulations. Therefore, a
flexible Mylar sheet is used with the following characteristics:
thicknesshp = 250µm, Young modulusE = 5.2 GPa, Pois-
son coefficientν = 0.38, lengthL = 0.226 m, widthH = 0.03
m. In order to perform clamped-clamped boundary conditions,
a streamlined piece is attached to both ends of the plate with
crossing screws; the assembly is inserted and centered in a rect-
angular box made of transparent Plexiglas (inner dimensions:
0.04 m x 0.10 m). A fan with a honeycomb grid is connected
to the box, which allows a uniform steady flow from 0 up to 50
m/s, measured with a Pitot tube at the center of the box. A laser
sensor is used to measure the deflection of the plate locally, giv-
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FIGURE 4. Mechanical characterization of the plate in a clamped-
free configuration. Blue dots: experimental points, red line: theoret-
ical values obtained with manufacturer’s values of the plate’s charac-
teristics.
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FIGURE 5. Characterization of boundary conditions. Blue dots:
experimental points, solid line: theoretical values in a clamped-
clamped configuration, dotted line: theoretical values in a pinned-
pinned configuration.

ing access to the plate’s shape and amplitude of deformation.
Figure 4 shows the mechanical behaviour of the plate ob-

tained with the response of the plates to a vibration test in
clamped-clamped conditions. The displacement of the plate’s
free end did not exceed 10 mm; in this range, the behaviour
of the plate is linear and elastic, and its natural frequency fol-
lows the theoretical law of evolution with the plate’s length as
in [5]. In figure 5, the natural frequency of the plate is obtained
with an experimental modal analysis: the vibration of the plate
is recorded after a small impact on it, and the frequency of
the first flexural mode is measured on the spectrum of the re-
sponse. The results allow to consider that the actual boundary
conditions are close to theoretical clamped-clamped boundary
conditions, and quite far from pinned-pinned boundary condi-
tions.

In figure 6 the static profile of the plate has been recorded
by by moving the laser sensor along the plate and pointing at
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FIGURE 6. Profiles of the plate under axial flow for air velocities
from 0 to 25 m/s (blue to red lines)

half width of the plate. This figure can be viewed as a photo-
graph of the plate taken from above the experimental set-up,
with the fluid flow going from the left to the right side. The
profiles are stationnary, and the error bars plotted in the figure
is the standard deviation of the temporal signal recorded at each
position in the profile. At low flow velocities, there is little de-
formation compared to the plate’s length (less than 0.05 %); at
10 m/s, the deformation starts to grow, and becomes larger than
0.1 %. As the flow velocity reaches 25 m/s, the deformation
has become larger than 1 %; but another instability arises, and
the plate starts to flutter (the corresponding measurement is not
shown on this figure). Furthermore, above 10 m/s, the plate’s
profile looses its symmetry. As the flow velocity increases, the
plate reaches a static shape of a first mode with a maximum of
deflection shifted downstream.

The amplitude of deformation follows two regimes of evo-
lution, as shown in figure 7: at low flow velocities, the plate
is deformed with a small amplitude almost constant. Above
a certain value of flow velocity, the amplitude grows fast; the
trend becomes linear with the square of velocity. In the case of
figure 7, the slope obtained by linear regression in the diverged
regime is 4 times the slope at low flow velocity (for a variance
at 0.85 in both regimes). The critical velocity is obtained by
computing the intersection between the two linear regression
trends; it marks the transition bewteen the two regimes. In fig-
ure 7, the critical velocity is estimated at 9.8 m/s.
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FIGURE 7. Evolution of the amplitude of deflection with flow ve-
locity. Blue diamonds: experimental values. Black dash dotted line:
linear regression at low flow velocities. Green dashed line: linear re-
gression after divergence.
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FIGURE 8. Evolution of the dimensionless critical velocity with
lateral confinment forCL = 0.05,0.1,0.5. Blue lines: numerical sim-
ulations. Red dots: experimental values. Black line: reference model
(see [1]).

EFFECT OF CONFINMENT ON THE CRITICAL VE-
LOCITY

The effect of lateral confinment on the critical velocity is
shown in figure 8. AsD

L decreasesthe critical velocity de-
creases. In fact, as the space between the channel walls and the
plate decreases, the efffect of the plate’s curvature on the pres-
sure variation is enhanced. The fluid forces increase whereas
the elastic forces are constant; therefore the critical velocity
is lowered.The 3D numerical simulations give a consistently
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higher critical velocity compared to a 2D model and the ref-
erence solution [1]. As the other confinment parameterC

L de-
creases, the critical velocity evolution withDL gets closer to
the 2D models curve which can be seen as the limit case of
a plate with inifinite width. The experimental results seem to
be between the 3D numerical simulations and the 2D model.
However, in the experimental configuration, the actual value
of the other confinment parameter is lower than the ones used
in the numerical simulation:CL = 0.02. Again, as the lateral
confinmentD

L decreases, the critical velocity for divergence
decreases. The difference bewteen the 3D numerical simula-
tions and experimental data may lay in the absence of friction
forces in the 3D potential model, which act alongside the plate
as an additional force. This may trigger the divergence in-
stability sooner than expected in terms of fluid velocity. On
the contrary, the 2D model underestimates the critical velocity;
this may linked to the presence of tension in the experimen-
tal set-up, as the streamlined ends do not perform a perfect
clamped-clamped boundary condition for the plate. The 2D
model also does not take into account the possible presence of
non-linearities in the plate’s behaviour, such as tension arising
due to small deformation neven at small flow velocities.

CONCLUSIONS
These results show the importance of 3D modelling (rather

than 2D) in order to predict the critical divergence velocities.
Results obtained with the two methods were expected to be dif-
ferent, but the impact of the modelling choice is quantified. For
example, the critical velocity with a 3D model is at least three
times higher than the velocity computed with a 2D model. This
ratio is even higher in extremly confined configurations (small
values of D

L ). Compared to the experimental results, the 3D
model overestimates the divergence threshold, whereas a 2D
model underestimates it; but more experimental data would be
needed in order to confirm this trend. Even if the experimental
clamped-clamped boundary conditions seems to be quite good,
there may be small tension in the plate even at rest, which
tends to shift the divergence threshold to higher flow veloci-
ties. However, the influence of lateral confinment follows the
same trends in experimental results, and in 2D and 3D models.

REFERENCES
[1] Guo, C. Q., and Paı̈doussis, M. P., 2000. “Analysis of hy-

droelastic instabilities of rectangular parallel-plate assem-
blies”. Journal of Pressure Vessel Technology,122(4),
Mar., pp. 502–508.

[2] Kornecki, A., Dowell, E., and O’Brien, J., 1976. “On
the aeroelastic instability of two-dimensional panels in uni-
form incompressible flow”.Journal of Sound and Vibra-
tion, 47(2), pp. 163–178.
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