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We investigated experimentally the flow driven by a Lorentz force induced by an axial

magnetic field
−→
B and a radial electric current I applied between two fixed concentric

copper cylinders. The gap geometry corresponds to a rectangular section with an aspect
ratio of η = 4 and we probe the azimuthal and axial velocity profiles of the flow along the
vertical axis by using ultrasonic Doppler velocimetry. We have performed several runs
at moderate magnetic field strengths, corresponding to moderate Hartmann numbers
M 6 300. At these forcing parameters and because of the geometry of our experimental
device, we show that the inertial terms are not negligible. This induces the azimuthal
velocity that depends on both I and B. From measurements of the vertical velocity we
focus on the characteristics of the secondary flow: the time averaged velocity profiles are
compatible with a secondary flow presenting two pairs of stable vortices as pointed out by
previous numerical studies. We exhibited a transition between two dynamical modes, a
high and a low frequency one. The high frequency mode, which emerges at low magnetic
field forcing, corresponds to the propagation in the r-direction of tilted vortices. This
mode is consistent with our previous experiments and with the instability described in
Zhao et al. (2011) taking place in an elongated duct geometry. The low frequency mode,
observed for high magnetic field forcing, consists in large excursions of the vortices. The
dynamics of these modes matches the first axisymmetric instability described in Zhao
& Zikanov (2012) taking place in an square duct geometry. We demonstrated that this
transition is controlled by the inertial magnetic thickness H ′ which is the characteristic
length we introduce as a balance between the advection and the Lorentz force. The key
point here is that when the inertial magnetic thickness H ′ is comparable to one geometric
characteristic length (H/2 in the vertical or △r in the radial direction) the corresponding
mode is favored. Therefore, when H ′/(H/2) ≈ 1 we observe the high frequency mode
taking place in elongated duct geometry, and when H ′/△r ≈ 1 we observe the low
frequency mode taking place in square duct geometry and high magnetic field.

Key words:moderate-Hartmann-number flows, magnetohydrodynamics, secondary flows,
regimes transition
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1. Introduction

In Magnetohydrodynamic flows (MHD) the retroaction of the fluid on the magnetic
field is controlled by the magnetic Reynolds number Rm (Moffatt (1978)). At the low-
Rm regimes considered here, the induction is negligible. An external electric current

density,
−→
j , is applied to ensure the presence of a significant Lorentz force

−→
j ×−→

B , where−→
B is the magnetic field. This forcing imposes the configuration and the properties of
the flow. Although it is intrinsically a volumic force, in extreme regimes with a high
enough magnetic field, the diffusion of momentum by the Lorentz force suppresses the
velocity gradient over a large diffusion length. In this region no current can exist, then
the imposed electric currents are constrained in flow boundary layers, letting the fluid
bulk Lorentz-force free and quasi two dimensional (Moreau (1990)).

The thickness of these so-called Hartmann layers (eH), defined by the balance between
the viscous term and the Lorentz force in the Navier Stockes equation, is controlled by
the inverse of the Hartmann number M , which only depends on the magnetic field and
on some properties of the liquid : M = HB

√

σE/(ρν)/2 with H the characteristic length
along the magnetic field direction, σE the electric conductivity, ρ the volumic mass and
ν the kinematic viscosity of the fluid. By the channeling of the currents near the top
and bottom plate into the Hartmann layer, the magnetic field also generates a boundary
layer near the axial electrode, called the Shercliff layer, which is assumed to scale like
1/

√
M (Hunt & Stewartson (1965)).

As mentioned above, one of the main action of the magnetic field is to reduce the
velocity gradients in its direction and hence to yield the flow two dimensional (Sommeria
& Moreau (1982); Pothérat (2012)). In this context, several authors studied experimen-
tally and theoretically the flow produced in a Taylor-Couette like geometry with steady
cylinders where only the Lorentz force drives the flow. Baylis & Hunt (1971) showed that
the azimuthal velocity only depends linearly on the electric current forcing under the
assumption of negligible inertial effects and in the large Hartmann number limit. The
profile of the azimuthal velocity vθ was computed in an infinite cylinder neglecting the
induction effects by Digilov (2007) and Zhao et al. (2011). Such a velocity profile close to
a Poiseuille profile at low Hartmann number becomes unstable according to the Rayleigh
criterion for M >> 1 (Chandrasekhar (2013)). Tabeling & Chabrerie (1981) studied sec-
ondary flows at high Hartmann numbers in the early 1980’s. They demonstrated that
its configuration depends on the conductivities of the walls and they introduced a more
stringent criterion for inertial effects to be negligible. Later, Tabeling (1982) reported
experimental evidences of instabilities for a limited range of forcing in a device with
η = H/(ro − ri) = H/△r ≫ 1 with H the cell height, ro and ri the outer and inner
radius respectively. The same geometry with a square section (η = 1) has been used to
study the laminar-turbulence transition by Moresco & Alboussiere (2004). They showed
that the control parameter of the transition is a Reynolds number based on the Hartmann
layer thickness as Re/M (Re = U0△r/ν with U0 the mean azimuthal velocity). This is
due to the fact that the thickness of the Hartmann layer will prevent the transition to
turbulence even at large Reynolds number. Several numerical studies of this particular
geometry have been performed. Krasnov et al. (2004) attributed the discrepancy in the
instability threshold values found between the experimental data and the linear stabil-
ity analysis to finite-amplitude perturbations. Vantieghem & Knaepen (2011) (at low
Reynolds number) and Zhao & Zikanov (2012) (at high Reynolds and Hartmann num-
bers) show the presence of two pairs of contra-rotating vortices. One is arranged along
the inner axial wall while the other is arranged along the outer axial wall. However, to
our knowledge, the configurations of the secondary flow before the establishment of the
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fully developed Hartmann regime (M >> 1) were not studied experimentally. This is
the purpose of the present article that presents runs at moderate Hartmann number in
a domain where the inertial effects cannot be negligible.
Due to the difficulty in using usual anemometry techniques in liquid metals as described
in Shercliff (1965), velocity has never been directly measured in the previous experimen-
tal studies. Local or global potential measurements were performed instead. However,
measurements of velocity profiles using ultrasonic techniques can actually be achieved
in liquid metal flows as first demonstrated by Brito et al. (2001) and Eckert & Gerbeth
(2002). Since then, several experimental studies have used this technique: Boisson & Au-
maitre (2012) to characterise travelling waves in a MHD flow and more recently Stelzer
et al. (2015a) and Stelzer et al. (2015b) to study the base flow and its instability in an
electrically driven magnetohydrodynamic flow with a free Shercliff layer.
This manuscript presents a series of behaviors that trace back transitions between dif-
ferent dynamical regimes controlled by the characteristic length of velocity gradients H ′

and the corresponding Reynolds number R′ (that will be precisely defined in section 3).
Its layout is the following. After a short description of the experimental device in section
2, we evaluate, in section 3, the importance of inertial effects in our flow. Based on this,
we determine a scaling U0 for the azimuthal velocity in our system depending on the ap-
plied electrical current and magnetic field. We show the key role of the inertial magnetic
thickness we introduced as the balance between the non-linear advection and the Lorentz
force. This scaling relies on a force-free region different from the classical one associated
to Hartmann layers but similar to even if different from the one in Duran-Matute et al.

(2011) and Pothérat & Klein (2014). It agrees with our measurements and is used to
define the key non-dimensional numbers of our system. In section 4, we determine the
time average of axial velocity profiles and we identify the transition to the growth of the
inertial magnetic thickness beyond the size of the apparatus gap. In section 5, we focus on
the two dynamical regimes that we characterize. They are compared to former numerical
studies by Zhao et al. (2011) and Zhao & Zikanov (2012) in section 6. Conclusions are
drawn in the last section.

2. Experimental setup

The experimental device, which takes over the one described in Boisson & Aumaitre
(2012) with a larger aspect ratio, is sketched in figure 1. In a Taylor-Couette like geometry,
an azimuthal Lorentz force is generated by a radial current I and an axial magnetic

field
−→
B in order to force a cylindrical layer of liquid metallic alloy: the Galinstan. The

Galinstan is made of 68.5 % of Gallium, 21.5 % of indium, 10 % of Tin. Its density is
ρ = 6.440 × 103 kg/m3, its kinematic viscosity is ν = 3.73 × 10−6 m2/s, its electrical
conductivity σ = 3.46 × 106 (S/m). In the design of the experiment, a special care
has been devoted to the homogeneity of the input current and magnetic field, without
fluid motion. To this aim, the inner and the outer cylinders used as electrodes are made
of a large mass of copper. This is also why we divide the current departures in eight
axisymmetric locations on the lateral surface for the outer cylinder and the current
arrivals in two locations on the top and bottom of the inner cylinder. The resistivity
of the overall device is less than 0.1 Ohm and is mainly due to wiring and connectors.
The plastic covers induce insulating boundary conditions where the Hartmann layers
develop. The annular duct height is H = 120 mm, its width is △r = 30 mm, the inner
and outer radius are ri = 10 mm and ro = 40 mm respectively. This imposes the mean
radius r = 25 mm. The resulting aspect ratio is η = H/△r = 4. Radial inhomogeneity
of the applied magnetic field is less than 3% within the fluid gap with an axial variation



4 J. Boisson, R. Monchaux, and S. Aumâıtre

 

 
  

 

 
 

 

 

 

1 2 3 

 

 B

△r

I

I
H

US Probe

−→v θ

ri
ro

−→e r

−→e z

Hartmann layer

Figure 1. Axial cut of the experimental device. The liquid alloy (in yellow-green) is enclosed
between two coaxial copper cylinders (in coppery color shading) of radius ri = 10 mm and ro
respectively with △r = ro − ri = 30 mm. The cylinder height is H = 120 mm and the aspect
ratio is η = H/△r = 4. The inner and outer cylinders, used as electrodes, are made of large
masses of copper. A homogeneous current is provided by two inputs on the top and bottom of
the inner cylinder and eight symmetrical departures on the outer cylinder. The top and bottom
covers are electrically insolating. The three locations of the ultrasonic probes are situated on
the bottom of the channel gray shading enumerated 1, 2, 3

never exceeding 4.5% and symmetric with respect to the mid-plane of the cell. The coil
can produce magnetic fields up to 0.15 T, while the radial current crossing the cell can
be controlled up to 100 A. vθ and vz are respectively the azimuthal and axial velocity
components. The spatial and temporal averages will be noted 〈·〉 and · respectively.
We used an ultrasonic Doppler velocimeter DOP3010 from Signal processing with two
probes which extract the projected velocity along their axis from phase correlation of
two ultrasound pulses (USP). The USP are scattered by Galinstan oxides present in
the media. The probes can be placed at different locations with slightly different angles,
three locations at r1 = 16, r2 = 25 and r3 = 34 mm with an angle of 0◦ and one at
r2 = 25 mm with an angle of 5◦ with respect to the cylinder axis (z). As vθ is deduced
from a geometric reconstruction based on the two US probes at different angles as detailed
in Boisson & Aumaitre (2012), we only have access to its time average vθ(z). Each profile
is estimated from a sampling of 500 points along the z axis. This corresponds to a spatial
resolution ∆z = 0.2 mm. We recorded at least 500 profiles per probe per measurement.
The emitting frequency of the ultrasounds is 4 MHz. The temporal resolution, defined by
the time delay between successive pulses, ranges from ∆t ≈ 0.2 s to ∆t ≈ 0.04 s for faster
regimes. This value depends on the maximum velocity of the flow, the sound speed in
the material, and the numbers of sound pulses needed to reconstruct the velocity profile.
Multi-reflections of the ultrasound beam on the Galinstan-polycarbonate interface add
systematic noise to the first 15 mm of each velocity profile. It is worth noticing that the
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volume explored by the ultrasound beam is not constant along its emitting axis. There
is a tightening of the beam up to the near field limit at about 30 mm from the probe
extremity, then the beam diverges with a diffraction angle of 2◦. This implies that the
velocity values measured are actually integrated over a sampling volume centered on the
beam axis. The width of this volume is about 3 mm at the mid-height of the cell.
Two kinds of runs were realized. The first one, named type I hereafter, is dedicated
to the determination of the mean configuration of the secondary flow. The procedure
is the following. We wait for the permanent regime to be established before recording
500 profiles per probes, one probe after another. The length of the transient regime is
appreciated using the direct visualization of the velocity profiles captured by the probes.
The second kind of runs, named type II, is dedicated to the dynamical behavior. Here,
we also wait for the permanent regime to be established and then we record alternatively
a profile on each probe. The procedure is repeated at least 500 times and up to 2000
times at a rate of about 10 profiles per second in order to access the flow dynamics.
Runs were performed at five different Hartmann numbers (M = 45, 114, 182, 250, 318),

corresponding to a magnetic field
−→
B ranging from 0.02 to 0.14 T, to an electric current

I ranging from 1 A to 100 A and to Reynolds numbers ranging from 12000 to 42000. It
has to be noted that, as we only have two probes, 2 different runs at the same forcing
had to be performed to get the mean profile at the three radial locations. The probe at
r2 = 25 mm is always operating and is used to validate the measurement reproducibility
by comparing the mean profiles acquired by this probe during 2 similar runs.

3. Dimensionless numbers and scaling of the azimuthal velocity

Usually, for high magnetic field M ≫ 1, in the case where the inertial terms are
negligible, the thickness in which electric currents are concentrated is deduced from the
balance between the Lorentz force and the viscous drag. Thus, in this case it reduces to
the Hartmann layer eH = 1/(

√

σ/(ρν) · B). Neglecting Hartmann friction with respect
to inertial effect is possible when its characteristic time scale becomes large with respect
to the inertial one. Their ratio goes as Re/M which is always larger than 30 in our high
curvature geometry and for our range of Reynolds numbers. Thus, the main contribution
balancing the Lorentz force in the Navier-Stokes equations is the advection term. In order
to test that assumption, we adapted the dimensionless number introduced by Baylis &
Hunt (1971) to a rectangular section. With our definition of the Reynolds and Hartmann
numbers, the inertial term is predominant if:

Re2

M4
× H4

16△r2r2
≫ 1, (3.1)

Ba = H4

16△r2r2 is a dimensionless coefficient taking into account the geometry to ponder

the interaction parameter N = M4

Re2 .The influence of this coefficient can be important: for
example, in the present work Ba ≈ 23 and in the Zucchini device used by Stelzer et al.
(2015a) Ba ≈ 1.5× 10−2, explaining why both experiments explore completely different
regimes even if both present comparable interaction parameters.
In figure 2 we compare the explored ranges of BaN

−2 in several studies using similar
geometries than the one we present here. This figure illustrates that our investigation
of flows where inertial effects can be predominant are done for the first time to our
knowledge with direct ultrasound measurements. Indeed, Baylis (1964) only focused on
demonstrating the feasibility of using electric potential measurements to show insta-
bilities in liquid metal flows. Later, Baylis (1971) pointed out, with electric potential
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Figure 2. Comparison of the explored values of the dimensionless number defined in Baylis &
Hunt (1971) which compares the inertial term to viscous term for different works. The reported
studies are classified chronologically along the vertical axis. The blues ones are experiments were
the velocity measurements system is based on the electric potential. The red ones are numerical
studies. The yellow/orange ones are experiments were the velocity measurements system is based
on ultrasound.

measurements, changes of the friction factor dependance that could be related to the
transition between the inertial regimes to the viscous regimes, as his range of parameter
BaN

−2 spans on both parts. Tabeling (1982), Moresco & Alboussiere (2004) and Stelzer
et al. (2015a) focused on regimes where the viscous balance holds, while Mikhailovich
et al. (2012) investigated the decay of mean velocity components and turbulent fluctu-
ations. The numerical works of Zhao et al. (2011) and Zhao & Zikanov (2012), that we
compare our results with, cover both regimes. The latest work can be compared to ours
only in the more extreme regimes we explored, that is to say when BaN

−2 < 1.

Therefore, if we balance the Lorentz force by the inertial term in Navier-Stokes equa-
tion, it follows:

U2
0

H ′
∼ JB

(ρ)
, (3.2)

where U0 is the mean azimuthal velocity scaling and H ′ is the characteristic length
of the velocity gradient. In the following, we will refer to H ′ as the inertial magnetic

thickness. We define the bulk as the region where the total current vanishes, letting
the flow supposedly force-free. Consequently, the characteristic length of the velocity
gradient corresponds to the layer thickness where the electric currents are constrained.
From these assumption and definition, we determine that radial current density J in this
layer corresponds to the total applied current over the section of fluid :
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Figure 3. The ratio of the experimental mean azimuthal velocity value over the scaling 〈vθ〉/U0

as a function of U0. The circles corresponds to values extracted from the small gap device from
Boisson & Aumaitre (2012) (corresponding to △r = 12 mm and r̃ = 93.3 mm), the crosses
correspond to the values measured in the larger gap presented here (corresponding to △r = 30
mm and r̃ = 13 mm). Colors encode the five tested Hartmann numbers according to the legend.

J ∼ I

r̃H ′
, (3.3)

with r̃ = riro
△r a dimensional parameter taking into account the variation of the current

density imposed by the device geometry and H ′ the thickness of the layer along z where
the current is present. This only holds if H ′ is smaller than H/2. This definition re-
minds the Lorentz force diffusion length introduced by Duran-Matute et al. (2011) and
Pothérat & Klein (2014), the difference being that we consider here the total Lorentz
force (including the gradient part due the radial currents).

Then, by replacing 3.3 into 3.2 H ′ cancels and the azimuthal velocity scales like :

U0 ∼
√

IB

(r̃ρ)
. (3.4)

Note that this scaling still holds for H ′ > H/2. In that case H just replaces H ′ in 3.3
and 3.2.

From our definition of the bulk as the force-free region, using the fact that the bulk
velocity is mainly in the azimuthal direction, we can infer that the induced radial current
density is:

J ∼ σU0B (3.5)
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Combining equations 3.4 and 3.5 we obtain :

H ′ ∼ 1

σB3/2

√

ρI

r̃
. (3.6)

This latter scaling is obviously valid only if H ′ 6 H/2. In our experimental setup we
observe that H ′ is large compared to the Hartmann layer thickness (H ′ > 40eH) but
it is rather comparable to the gap width (0.25 6 H ′/△r 6 25) and to the cell height
(0.06 6 H ′/H < 4.2). We thus expect important effects to be observed when H ′ gets
comparable to the system height, H .
We experimentally test these scaling laws. First we determine the mean azimuthal veloc-
ity value 〈vθ〉 by reconstructing the azimuthal velocity profile from the mean profiles mea-
sured at r2 with two different angles. Then we average this profile between z1 = 30 mm
and z2 = 90 mm to focus on velocity values in the bulk. In figure 3, we compare the
experimental azimuthal velocity extracted from the large gap device of figure 1 (colored
crosses) and from the one reported in Boisson & Aumaitre (2012) (black circles) to:

U0 ≈ 2.1

√

IB

(r̃ρ)
− 0.015. (3.7)

Regardless of the aspect ratios, the agreement is very good with only two adjusted nu-
merical parameters. It thus justifies the scaling proposed in equation 3.4. The prefactor
probably only depends on the experimental device specifications (ohmic resistance of the
electric cables, cylinders composition and thickness, . . . ) and the offset takes into account
the viscous linear behavior at low forcing. It has to be noted that U0 depends both on I
and B in contrast with the work of Baylis (1971) or Stelzer et al. (2015a) for example.
Because most of our runs are performed at BaN

−2 > 1, inertial effects still holds, thus,
in our case, the electric currents are not constraint to Hartmann layers. Then the rele-
vant non-dimensional parameters are the Reynolds numbers which ranges from 12000 to
42000 and R′ which is the Reynolds number based on the inertial magnetic thickness H ′:

R′ ≡ H ′U0

ν
≡ I

σνr̃B
. (3.8)

We must stress that R′ and H ′ are both increasing functions of I and decreasing func-
tions of B. Hence using R′ or H ′ as control parameter produces qualitatively similar
representations of our results. Moreover, when M → +∞, U0 ∼ I/(r̃

√
σρν) and the

characteristic length is eH , then R′ tends to the Reynolds number based on the Hart-
mann layer thickness. Moresco & Alboussiere (2004) showed that it also controls the
transition to turbulence in high Hartmann regime (M ≫ 1).

4. Time averaged measurements

4.1. Profiles of the axial velocity

We focus here on the topology of the secondary flow. In order to do so, vz(r, z) is measured
at the three radii r1, r2 and r3. Figure 4 represents time averaged vz(r1, z), vz(r2, z) and
vz(r3, z) profiles for 5 different R′ values ranging from 0.4× 104 to 2.8× 104. Note that
as the probes are situated at the bottom of the channel pointing in the upward direction,
when vz > 0 the flow is going up. Measurements at r2 and r3 reveal the existence of two
different types of velocity profiles, when R′ is changed.
For R′ 6 0.5 × 104, in the lower half of the device, the fluid is going downward in the
middle of the gap and upward along the inner and the outer walls. Symmetrically, in
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Figure 4. vz(r, z) profiles for different R′. On the left, we display the mean profiles at
r1 = 16 mm, in the middle the ones at r2 = 25 mm, and on the right the ones at r3 = 34 mm.
Colors encode the five tested Hartmann numbers according to the legend. The high frequency
spatial structures correspond to systematic noise, see text for details.

the upper half, the fluid flows upward in the middle of the gap and downward along the
inner and the outer walls. The comparison with the numerical studies by Vantieghem
& Knaepen (2011) and Zhao & Zikanov (2012) suggests the following interpretation. In
their square duct aspect ratio, they found a secondary flow that consists of two pairs
of large counter-rotating vortices, one pair near the inner wall and the other near the
outer. In their simulations, the two vortices in the lower part of the duct have the same
circulation sense, opposite to that of the two in the upper part. This configuration is
compatible with the axial velocity profile at R′ 6 0.5 × 104 presented in figure 4, if the
vortex centers are located between r1 and r2 for the inner vortices and beyond r3 for the
outer vortices. This configuration is also compatible with the mechanism of generation
of the Dean secondary flow due to inertial forces in a curved channel. Indeed, in these
flows, the pressure gradient induced by the curvature is not balanced by the centrifugal
force in the boundary layer, then it produces an inward flow at the top and bottom of
the channel.
For R′ ≈ 1 × 104, vz(r2, z) and vz(r3, z) change drastically while vz(r1, z) does not. In
this case, in the lower half of the device, the fluid is going downward near the inner wall
and in the middle of the gap and it is going upward near the outer wall. Symmetrically,
in the upper half, the fluid is going upward in the middle of the gap and downward
along the inner and the outer walls. This would suggest that the magnetic field shifts
the mean position of vortices centers toward the outer wall. They would then be located
between r2 and r3 for the inner vortices, squeezing the outer vortices close to the outer
wall. Nevertheless, according to simulations by Vantieghem & Knaepen (2011); Zhao
et al. (2011); Zhao & Zikanov (2012) it is likely that this observation of the mean flow
traces back to a change in the secondary flow dynamics. In section 5, we will address the
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Figure 5. Intensity of the normalized axial velocity profile measured at r2 vz(r2, z)/U0 in the
(R′, z)-plan smoothed over a window of size ∆z = 2 mm. The dot-dashed line at R′ = 0.5× 104

represents the topological change in the mean flow.

dynamical aspects of this transition.
In order to underline that the topological change is controlled by R′, we represent the
vz(r2, z)/U0 profiles (encoded in color) as a function of z and R′ in figure 5. Despite
some noisiness around R′ ≈ 5 × 103 (dot–dashed line) where the transition occurs, the
secondary flow topology evolution is well ordered by R′ that appears as a good control
parameter for this transition. Observing the figure from large to small R′, we see that the
amplitude of the secondary flow is rather stable for R′ going from 2.5× 105 to 1.5× 104.
Below R′ = 1.5 × 104, the secondary flow shrinks and the extrema shift close to the
center of the cell. It is only below R′ = 5 × 103 that the direction of the time averaged
flow measured by the probe changes. We focus on the origin of this transition in the next
section.

4.2. Spatial fluctuations of the mean secondary flow and the signature of the

”magnetic” regime

As mentioned in section 4, in figure 5 we observe a shrink of the vz(r2, z)/U0 amplitude for
R′ 6 1.5×104 followed by a change of sign in the axial velocity. To quantify this shrink of
the secondary flow, we compute the spatial root mean square of the mean velocity profile
vrms
z (r = r2)/U0 displayed in figure 6 as a function of R′. This represents the secondary

flow amplitude normalized by the scaled azimuthal velocity. As we perceived previously,
the secondary flow amplitude increases from 4% for small R′ to a maximum of 10% of
the azimuthal velocity at R′ ≈ 1.5 × 104. Beyond this value the amplitude stabilizes to
values of order 8− 9%. It is well known that high magnetic fields, corresponding to low
R′ bidimensionnalise conducting liquid flows (Moreau (1990)). In our case, it implies a
decrease of axial flow intensity.



11

10
4

10
5

0.02

0.04

0.06

0.08

0.1

0.12

 

 

v
r
m

s

z
/
U

0

R′

M = 45

M = 114

M = 182

M = 250

M = 318

Figure 6. The amplitude |v|
z
(r2) normalized by the scaling of the azimuthal velocity U0 along

R′. Crosses refer to the cases H ′/△r > 1 called ”hydrodynamic” regimes and circles correspond
to H ′/△r 6 1 named ”magnetic” regimes. Colors correspond to different Hartmann numbers.

Secondary flow behavior thus shows the existence of two regimes: at high R′, where
inertial terms dominates magnetic force, the secondary flow amplitude directly depends
on the mean azimuthal velocity. We will refer to this case as ”hydrodynamic” regimes.
At low R′ that we will associate to ”magnetic” regimes, the amplitudes of the secondary
flow are drastically reduced and decrease faster than the azimuthal flow. In figure 6, we
marked as ◦ regimes where H ′ is smaller than △r and as + regimes where H ′ is greater
than △r. We can see that all the H ′/△r 6 1 values are situated in the part of the curve
where the amplitude of the secondary flow decreases. Therefore, this confirms that, in
the so-called ”magnetic” regime, the relevant length for velocity gradients is H ′. While
when H ′/△r > 1, the gap △r where centrifugal effects take place, becomes the relevant
length. As both R′(I, B) and H ′(I, B) are biunivocal functions, this onset can be placed
around R′ ≈ 1.5× 104 in our experiment (marked by the dash line in figure 6 where we
also report the dot-dash line at R′ ≈ 5 × 103 which corresponds to the change of sign
in the time averaged velocity of figure 5). This limit also corresponds to a drop in the
secondary flow amplitude showing again that this change may be associated with another
transition between two regimes.

5. Dynamical measurements

5.1. Spectral analysis

In this section, to characterize the dynamical properties of the transition at H ′/△r = 1,
we will rely on type II runs described in 2. We only focus on the probe at r = r2. To
get a better insight of the transition, 2000 profiles are recorded consecutively with time
sampling from ∆t ≈ 0.2 s to ∆t ≈ 0.04 s for faster regimes. These longer measurements
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Figure 7. Temporal power spectral density. It is calculated in each axial sample probed by
the the US sensor and averaged over a spatial window z ∈ [20, 100] mm. Five different R′ are
represented. Spectra are shifted for clarity. The colored areas distinguish: in red, the lowest
frequency mode, named excursion; in yellow, the tilted mode 1; in green, the tilted mode 2; in
blue, the high frequency regime dominated by the noise.

allow us to resolve low frequency modes. In figure 7, we report power spectral density
(PSD) for different R′. The PSD plotted in figure 7 are obtained as follow. The PSD
in time is computed at each point along the z axis located between 20 and 100 mm
and then these PSD are averaged together. In the figure, they are vertically shifted
to improve clarity and the frequency is non-dimensionalised by the azimuthal rotation
frequency (frot = U0/(2πr̄)). Starting from the PSD at the lowest R′ = 0.2×104, we can
distinguish four regions and three distinct peaks:
• The region below 0.2 frot colored in red on figure 7, contains a low frequency mode

that we call excursion for a reason that will be clarified in the discussion of section 6.
For R′ = 0.2× 104 this is the most powerful peaks.
• A second peak is included in the region between 0.2 frot and 0.7 frot (in yellow in

figure 7). We called the corresponding tilted mode 1.
• A smaller peak appears between 0.7 frot and 2 frot (in green in figure 7). This mode

is named tilted mode 2 in the following.
• The last region (in blue on figure 7) does not contain peaks any more but reveals

the level of the background velocity fluctuations.
This mode identification relies on the study of space-time diagrams as the ones shown in
fig. 9 and on the corresponding time correlation function as the ones reported in fig.10.
At R′ = 0.2×104 most of the energy is concentrated in the 3 peaks while it is much more
distributed for higher R′. Nevertheless the previous segmentation remains valid at higher
R′ although the relative energy contained in each region evolves. The background noise
decreases drastically when R′ is reduced. Regarding the dimensionless control parameter,
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tilted mode 1 and the last dashed line at R′ = 3× 104, where the tilted mode 1 starts to decay,
corresponds to the balance H ′ = H/2.

we observed –as expected– a similar tendency with H ′/△r (not shown), without being
able to determine if this number provides better description.
In order to quantify the relative weight of theses modes, we extract the evolution of their
relative energy in each region as a function of R′. This is done by integrating the PSD
within the 4 different domains (f < 0.2frot, 0.2frot < f < 0.7frot, 0.7frot < f < 2frot,
2frot < f) and by dividing it by the total energy of the spectra. Note that the results
hardly depend on the exact values chosen for the limiting frequencies. In figure 8 we
report the modes contribution along R′. First, as expected, the proportion of the high
frequency fluctuations, depicted by the blue crosses, remains almost constant with R′ and
so they are probably due to higher frequency incoherent fluctuations or to measurement
noise. The lowest frequency mode amplitude, depicted by the red circles, decreases when
R′ is increased until R′ = 1.5 × 104 which also corresponds to H ′/△r = 1. It prevails
at small R′ up to R′ = 0.5 × 104 corresponding to the left dot-dashed line. Above
R′ = 1.5×104, it remains nearly constant. The two other modes amplitudes (depicted by
the yellow stars and the green diamonds for the Titled mode 1 and 2 respectively) start
to grow and dominate around R′ = 0.5 × 104. The tilted mode 2 reaches its maximum
around R′ = 104 whereas the tilted mode 1 grows until R′ ∼ 2× 104 and decreases above
R′ = 3 × 104. This last value coincides with values of the driving parameter around
H ′ = H/2 (shown by the right dashed line). Above this value, at higher R′, the free force
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Figure 9. Spatiotemporal diagram of vz(r2, z, t) along the dimensionless time t = τfrot. From
left to right: R′ = 2.3×104, R′ = 0.8×104 and R′ = 0.3×104 . The color map is [−60, 60] mm/s
for the two graphs on the left, and it is reduced to [−20, 20] mm/s for the right one. The red (resp.
the blue) corresponds to positive (resp. negative) vz(r2, z, t) values. On the left, structures are
moving from the covers toward the duct center. In the middle, these structures are destabilized
by a low frequency mode. On the right, the low frequency mode which corresponds to slow
excursions of positive or negative vz(r2, z) is observed.

bulk definition we used becomes irrelevant. The tilted mode 1 remains the dominant mode
until R′ = 105. Above this value of R′, the energies of the regions with peaks are coming
from the background velocity fluctuations.
We have represented by vertical lines in figure 8 the different transitions mentioned above.
From these observations, one may interpret the different regimes as follow. At high R′ and
H ′ the Lorentz force acts as would do the pressure gradient in the Dean configuration. At
such large Reynold numbers, the flow is highly fluctuating. When R′ is decreased and H ′

becomes of order of H/2 inductive effects start to act and attenuate the fluctuations. The
tilted mode 1 clearly becomes dominant in this regime. When R′ is further reduced, H ′

becomes the smallest scale of the problem and the magnetic effects prevail and reduce the
fluctuations. In the following we will focus on describing the different dynamical modes
we have extracted in order to get their characteristics and relate them to the different
thresholds we captured.

5.2. The dynamical modes characterization

Figure 9 gathers the spatiotemporal diagrams of the axial velocity for 3 different R′

values. Time is normalized by the rotation frequency as t = τfrot. For the highest R′

value (left graph), structures, corresponding to the titled mode 1, drift from the top and
bottom covers to the duct center. These structures consist of alternative positive and
negative axial velocities with a greater intensity in the upward direction in the upper
part of the duct and in the downward direction in the lower part of the duct. Their
axial wave number is k = 2π/H . When R′ decreases, the structures are destabilized and
their propagation is blurred as can be seen in the central panel of figure 9. In addition,
low frequency modulations appear. In this particular regime (R′ = 0.8 × 104), there is
coexistence of the three dynamical modes as we can see in figure 8. Finally for smaller
R′ values (right panel) the amplitude of the flow is divided by 3 (for readability the
colorbar has been changed). Propagative structures are not present any more. Instead,
larger structures, evolving on long time scales without any axial propagation nor any
noticeable periodicity, are observed. This is why we refer to this mode as the excursion
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Figure 10. Time correlation function 〈v(δz, t)〉 along the dimensionless time t = τfrot. From
left to right: R′ = 2.3× 104 the tilted mode 1, R′ = 0.8× 104 combination of tilted mode 1, tilted
mode 2 and excursion mode, R′ = 0.3 × 104 excursion mode. The color map is [−0.2, 1] for all
graphs.

mode mentioned previously.
To better characterize these structures, we calculate the normalized time correlation for
different distance intervals δz between measurement points. As the primary structures
are propagating toward the middle of the duct, we only calculate the normalized time
correlation over z ∈ [z1 = 20 mm, z2 = 70 mm]:

〈v(δz, τ)〉 = 1

N

1
∑

N

v′(z, τ)v′(z + δz, τ)

v′(z, τ)2
, (5.1)

where τ = t · frot is the dimensionless time, v′(z, τ) = v(z, τ) − 〈v(z, τ)〉 is the axial
velocity fluctuations, N = (z2 − z1)/δz is the number of intervals we can extract in
the region of interest. The 2D autocorrelation functions presented in figure 10 confirm
the first observations made about the spectra of figure 7. At high R′ (typically larger
than 105, not shown), structure amplitudes are small compared to the noise level and
are hardly visible. The structure amplitudes grow when the R′ decreases and get clearly
visible over the noise background as illustrated in the left panel of figure 10. For even
lower R′, half period structures and a low frequency modulation appear as illustrated in
the central panel. Finally the initial structures disappear completely and only the low
frequency mode subsists (right panel of figure 10). This observation confirms results of
figure 8, i.e. there are several exchanges of the predominant mode controlled by either H ′

or R′ that lead to a reduction of the secondary flow and to a change of sign in the axial
velocity. When the tilted modes become dominant (1.5 × 104 6 R′ 6 105), the phase
velocity of the waves in dimensionless unit (given by the slope of the structure in fig-
ure 10) is stable with R′. It means that the dimensional phase velocity is proportional to
U0 . In addition, whatever the azimuthal velocity, since the axial wave number is around
kH = 2π, the period is around T = 2/frot. This tends to prove that the corresponding
structures are actually only advected by the mean flow.
To investigate the level of noise on the dynamical modes, we estimate the contrast of
the pattern in figure 10. It can be obtained from the value of the first minimum of the
normalized auto-correlation function in time 5.1 taken at ∆z = 0. These values are rep-
resented as a function of R′ in figure 11 where we can see the presence of a minimum
around R′ ≈ 2.4 × 104. This regime corresponds to the left graphs in figure 9 and fig-
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Figure 11. Minimum of the normalized self-correlation function in time for different R′ as a
measure of the contrast of the wavy pattern. The blue crosses identify the minimum of each
run. Circles are locally averaged values with error bars standing for the local dispersion. The
dash-dotted lines correspond to some of the thresholds displayed in figure 8. See text.

ure 10 and to the maximum of the tilted mode 1 contribution represented in figure 8.
For R′ > 2.4 × 104 the evolution does not present any clear tendency. However, below
R′ ≈ 5 × 103, the value of the first minimum is no longer negative. This is due to the
superposition of the lowest frequency mode (excursion mode) and the higher frequency
modes (titled modes) in the correlation function. Below this point the fast oscillations are
not intense enough compare to the slow oscillations to generate a negative first minimum
in the correlation function. This fact confirms that the excursion mode is predominant
below this point.

6. Discussion

Regarding our results and previous studies, it seems that we observe two different
dynamical modes taking place respectively at low and moderate R′. In this section we
compare our measurements to numerical studies of such forcing, especially Zhao et al.

(2011) and Zhao & Zikanov (2012). Even if both used cells with aspect ratio different
from our –infinite cylinders in Zhao et al. (2011) and square duct in Zhao & Zikanov
(2012)– they worked in the same range of parameters. According to their geometry,
their range of Reynolds and Hartmann layer thickness, one can evaluate BaN

−2 > 1,
R′ ∼ 1500 and H ′/△r ∼ 0.15 in the infinite annular configuration of Zhao et al. (2011)
and BaN

−2 6 10−2, R′ ∼ 1.8× 104 and H ′ = H/4 in the square duct of Zhao & Zikanov
(2012). In the former configuration, i.e. when the conductive fluid is confined between two
infinite concentric cylinders, axisymmetric perturbations consisting of counter-rotating



17

   

Figure 12. Schematic cut of the cell with a sketch of the mechanism involved in the tilted modes.
The ellipses represent the stretched vortices and the gray area represents the volume investigated
by the probe. Each right curve represents the corresponding velocity profile measured by the
probe. The outer vortex is tilted in radial direction with a positive angle in the bottom part
and a negative angle in the top part. The vortex is created in the bulk, then its center shifts
toward positive r-direction. Then vortices intensity decreases and they disappear near the outer
cylinder.

toroidal vortices concentrated in the outer half of the channel are observed. The vortices
are elongated in the axial direction due to the influence of the magnetic field which tends
to suppress velocity gradients in its direction. Moreover, as the vortices are arranged side
by side in the radial direction, they have elliptic shapes. The large axes of these ellipses
are close to the magnetic field direction with slightly tilted angle toward the r-direction.
A key point here is that the counter-vortices have two possible orientations, thus, the
tilt angle can either be positive or negative. The Lorentz and centrifugal forces equally
contribute to the two angle configurations and the selected mode depends on the initial
conditions. Zhao et al. (2011) also found that these modes present time oscillations. The
dynamics involves the creation of a new vortex in the inner part of the channel whose
center shifts in the positive r-direction and whose amplitude grows. Finally, the vortex
intensity decreases and vanishes near the outer cylinder. This leads to the general shift
of all vortices. For more details see Zhao et al. (2011).

This secondary flow is compatible with the structure dynamics of the titled mode re-
ported in the previous sections. Indeed if we project the velocity created by the tilted
vortices along the cylinder axis, the combination of the center shift in the positive r-
direction and the tilt would produce the pattern we observe in the left panel of figure 9.
As the forcing has a mirror symmetry with respect to the mid-plan normal to ~ez, we ex-
pect that the flow respects this symmetry. Therefore the vortices in the upper and lower
part of the duct must be tilted with opposite angles. Whatever is the tilted angle, the
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vortices centers always shift toward the positive r-direction, therefore the sign of the tilt
angle determines the sense of propagation of the structure we observe. Vortices rotating
in the clockwise direction would create structures propagating in the downward direction,
while those rotating in the anticlockwise direction would create structures propagating
in the upward direction. This explains why we observe structures going in opposite sense
(from the covers to the center of duct).
In figure 12, we report the schematic evolution of the time oscillation of the vortices
network and its consequences on the axial velocity measurements obtained by the probe
at r2. As mentioned above, between infinite cylinders the tilt angle sign is determined
by initial conditions. However, here the presence of top and bottom boundaries could
remove the degeneracy of the system and force a tilt angle. Therefore, depending on the
duct aspect ratio and on the Hartmann number opposite tilt angles can be observed.
This ascertainment is reinforced by the results of Boisson & Aumaitre (2012) who, at
moderate Hartmann number and in a smaller aspect ratio, observed travelling waves
emerging from the duct center and going toward the top and bottom boundaries. In this
system the vortices would be tilted in a symmetrical manner than the one we presented
in figure 12. This is compatible with the hypothesis that the duct geometry could in-
fluence the secondary mode topology. Another point that supports this assumption, is
the fact that the thickness of the inertial magnetic layer H ′ is about half the height of
the cell (H/2) at the maximum of predominance of the titled modes. Supposing that
the tilted mode wavelength is determined by H ′, the matching between those and the
axial characteristic length would favor the emergence of the mode. In this description
the tilted mode would be characteristic of small aspect ratio devices. Nevertheless we
observed a discrepancy with the numerical results of Zhao et al. (2011) concerning the
oscillation period. Indeed they found a period an order of magnitude larger than the one
we actually observe. This could be due to the different aspect ratios which would modify
the dynamics. Moreover we observed that the frequency oscillation is ∼ 0.5frot in the
parameter range where these titled modes prevail, thus is growing linearly with Re in
contrast to the low frequency that Zhao et al. (2011) estimated. That is why we con-
clude that the vortices shift we observed is somehow induced by the mean flow advection
leading to a smaller period and a linear dependence on Re.
The low frequency mode –so-called the excursion mode– represented in the right panel

of figure 9 corresponds to excursions of positive velocity from the lower part to upper
part of the duct (from t ≈ 20 to t ≈ 30) and the opposite (from t ≈ 30 to t ≈ 40). That
is to say to the expansion of one of the two large vortices near the outer wall and its
drift toward the opposite half of the duct. These slow events are accompanied by the
growth of the kinetic energy and end by its decrease. This corresponds very well to the
description of the first axisymmetric instability Zhao & Zikanov (2012) found numeri-
cally in a square duct. We have observed these excursion modes, for Re = 17000 with
our definition which corresponds to half the threshold given by Zhao & Zikanov (2012).
However, as the present aspect ratio is greater than that of the square section, a different
threshold is not necessarily surprising. The dimensionless duration of these slow events
is approximately τ = 30, which is less but of the same order of magnitude than the one
calculated by Zhao & Zikanov (2012) and that corresponds to the low frequency peak
we observed in the figure 7. Therefore we can assume that the low frequency mode we
captured corresponds to the first axisymmetric instability described in Zhao & Zikanov
(2012). Our interpretation of the apparition of these excursion modes is related to the
inertial magnetic layer being smaller that the gap. In these regimes the competition be-
tween the geometrical effects favoring structures with characteristic lengths of the order
of △r and the induction effects generating structures at the smaller length H ′. Then, we
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Figure 13. Scheme of the mechanism involve in the excursion mode. The outer vortex inflates
in the z-direction and r-direction. This low frequency contribution generates the change of sign
in the time averaged profiles that we represented in figures 4 and 5.

could assume that the adaptation of the magnetic structures to the cell would create the
excursion mode until it can actually fit the geometry. In this description the excursion
mode would be characteristic to small aspect ratio devices. It has to be noted that the
numerical simulations of Zhao & Zikanov (2012) were performed at much lower BaN

−2

values that here. However, we only observe excursion modes for high Hartmann numbers,
that is to say for the lower part of our BaN

−2 range where the inertial effects begin to
be weak.

7. Conclusion

In this paper we have presented experimental results obtained in η = O(1) aspect ratio
duct forced electromagnetically at moderate Hartmann numbers. In most of our regimes,
the inertial effects cannot be neglected. It constitutes a step toward the understanding
of the mechanisms in action when a magnetic field yields to 2D flows of conducting
fluids. The measurements were performed using ultrasound probes at different angles and
different radial positions. First we proposed a scaling for the azimuthal velocity which
depends on the product between the electric current and the magnetic field suggesting
that the current is not restricted to the Hartmann layer. Therefore, we constructed an
intermediate layer, H ′ –named the inertial magnetic thickness– that depends on the
electric current and on the magnetic field where the electric current is concentrated. This
layer is larger than the laminar Hartmann layer.We suggest that this characteristic length
controls the flow structure. Therefore, we propose that the inertial magnetic thickness
we introduced in this article could be applied to all kinds of MHD flow regimes at
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Figure 14. Diagrammatic sketch of the transitions involved in the experimental setup as func-
tion of the pertinent control parameter R′ and the characteristic length scale H ′, the inertial
magnetic layer.

moderate Hartmann numbers and where the inertial effects cannot be neglected, as the
controlling parameter of the dynamics. The Reynolds number R′ constructed from H ′

coincidently have the same I and B dependencies than the one introduced by Moresco
& Alboussiere (2004) even if the latter relied on a balance between the Lorentz force and
viscous dissipation while in our case inertial terms are used to balance the Lorentz force.
To establish our scaling, we have assumed the existence of a force-free bulk where the
induced current are proportional to σU0B. This assumption seems corroborated by our
results that present clear transitions controlled by H ′ and R′. Nevertheless an explicit
test would require measurement of the azimuthal velocity field which is clearly out of
reach in the present geometry.
Our work suggests that the time averaged secondary flow is composed of two sets counter-
rotating vortices arranged radially. We also observe a transition between two regimes of
the secondary flow. They seem controlled by both H ′, the inertial magnetic thickness and
R′ –a Reynolds number based on H ′. The flow topology in the second regime is difficult
to determine directly from the time averaged measurements, however our dynamical
studies suggest a probable scenario. The magnetic field diminishes velocity gradients in
its direction (the axial direction) while inertial forces enlarge these gradients in the radial
direction. For large R′ (high centrifugal force), we measure the recirculation induced by
the inner vortices. This recirculation scales with the Reynolds number, while in the
”magnetic” regime it varies nonlinearly with respect to the Reynolds number.
This means that the magnetic field reduces velocity gradients in its direction. For small

R′ (high magnetic field), the secondary flow in the middle of the duct has a very small
contribution to the time averaged secondary flow. The excursion of the outer vortices
characterizing the first axisymmetric instability described by Zhao & Zikanov (2012)
seems responsible for the change of sign we observed on the time averaged mean flow.
Finally, the first dynamical mode we observe must be vortices tilted in the radial direc-
tion and advected by the mean flow. These vortices present in the unbounded cylinder
calculations of Zhao et al. (2011) travel radially and give birth to the axial velocity
waves observed here and in Boisson & Aumaitre (2012). Depending on the tilt angle,
we can observe a propagation in the sense z > 0 or z < 0. The tilted modes seem to
be enhanced when the inertial magnetic layer thickness is between the gap width and
half the cell height in such a way that the magnetic effects match the centrifugal and
inertial effects in this geometry. When the inertial magnetic layer is increased further,
the induction cancels out and the magnetic strength cannot sustain these structures out
of the 3D turbulent fluctuations any more. As a contrary to excursion mode the relevant
dimension is the cylinder height in this mode. Therefore, as we have summarized in fig-
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ure 14, we have attributed the presence of these two dynamical modes to the experiment
aspect ratio which shares geometrical features with the infinite cylinder but also with
the square section duct depending on which geometric characteristic length matches the
inertial magnetic layer thickness. As mentioned before our aspect ratio and the range of
parameters we explored are somehow different from the ones of Zhao et al. (2011); Zhao
& Zikanov (2012). A more accurate comparison would require dedicated simulations that
could actually also be used to validate the existence of a force-free bulk.

The authors would like to thank L. Cherfa, V.Padilla for their help in the experimental
design, the laboratory PhotoRB for its help on the first visualisation process, Y. Bertrand
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Pothérat, Alban & Klein, Rico 2014 Why, how and when mhd turbulence at low becomes
three-dimensional. Journal of Fluid Mechanics 761, 168–205.

Shercliff, J. A. 1965 Textbook of magnetohydrodynamics .



22 J. Boisson, R. Monchaux, and S. Aumâıtre

Sommeria, J & Moreau, RJ 1982 Why, how, and when, mhd turbulence becomes two-
dimensional. Journal of Fluid Mechanics 118, 507.
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