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STABLE PERFECTLY MATCHED LAYERS FOR A CLASS OF ANISOTROPIC

DISPERSIVE MODELS. PART II: ENERGY ESTIMATES ∗

Maryna Kachanovska1

Abstract. This article continues the stability analysis of the generalized perfectly matched layers for
2D anisotropic dispersive models studied in Part I of the work. We obtain explicit energy estimates
for the PML system in the time domain, by making use of the ideas stemming from the analysis of
the associated sesquilinear form in the Laplace domain. This analysis is based on the introduction of a
particular set of auxiliary unknowns related to the PML, which simplifies the derivation of the energy
estimates for the resulting system. For 2D dispersive systems, our analysis allows to demonstrate the
stability of the PML system for a constant absorption parameter. For 1D dispersive systems, we show
the stability of the PMLs with a non-constant absorption parameter.

1991 Mathematics Subject Classification. 65M12, 35Q60.

.

Introduction

The method of the perfectly matched layers (PML), introduced by Bérenger [1, 2], is used ubiquitously in
engineering and physics communities to compute a solution to a problem posed in an unbounded domain.
However, it is well-known that for some classes of problems (e.g. the wave propagation in anisotropic and/or
dispersive media) the classical PML method may result in instabilities [3,4]. For a class of anisotropic dispersive
models PMLs were stabilized [5].

In this work we continue the analysis of the stable PMLs constructed in [5]. This class of systems describes
the wave propagation in metamaterials and plasmas in 2D. In the frequency domain, they can be written in the
form of an anisotropic dispersive wave equation:

ε1(ω)−1∂2xu+ ε2(ω)−1∂2yu+ ω2µ(ω)u = 0, ω ∈ R,

where ε1(ω), ε2(ω) have a meaning of a dielectric permittivity and µ(ω) is a magnetic permeability. They
depend on frequency non-trivially and satisfy Im(ωεj(ω)) > 0, j = 1, 2, Im(ωµ(ω)) > 0 for Imω > 0, an
assumption connected to the stability of the model, cf. [6].

In the time domain, such systems correspond to the Maxwell’s equations with currents, which are coupled
to the electromagnetic field through the ordinary differential equations.
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In [5] a method of construction of stable perfectly matched layers for this class of models is suggested. It
is based on the ideas of Bécache et al. [4] for isotropic metamaterials, which, in turn, generalizes the work
of Cummer [7] for the Drude model. However, the analysis in the aforementioned works does not cover the
question of the decay of an energy associated with the newly constructed PML systems.

This questions was answered for the classical PML applied to isotropic, non-dispersive Maxwell equations
by Bécache and Joly [8]. In a more general case, the derivation of energy estimates for PML systems does
not seem trivial. For example, in [8] the authors have obtained energy estimates for the PML for isotropic
Maxwell equations written in the Zhao-Cangellaris formulation [9]. The derivation of the energy estimates for
this formulation is simpler compared to e.g. Bérenger’s split formulation. Our approach is different from that
of [8], where the PML system was given a priori. We suggest to look for a formulation that would be equivalent
to the original system and would allow to obtain the energy in a simpler way. We make use of the stability
analysis in the Laplace domain, as it was done in the work [5], which provides intuition on derivation of explicit
(without appeal to the Plancherel’s theorem) energy estimates.

An alternative way to derive energy estimates is offered by the use of the method of Hagstrom and Appelö [10].
It can be applied to a very general class of systems, however, it results in energy estimates on the spatial
derivatives of unknowns [11], while most of the estimates we obtain involve the original unknowns. Moreover,
the application of this approach to dispersive models does not seem trivial, due to the need to rewrite the
original problem as a single equation, and then apply the method of [10] to the resulting problem.

This work is organized as follows. In Section 1 we state the problem under consideration. In Section 2 we
show how to construct stable PMLs for so-called generalized Lorentz models and derive the energy estimates
for the corresponding time-domain system. In Section 3 we extend these results to general passive materials.
Finally, in Section 4 we demonstrate how the ideas of the previous sections can be used to prove the stability
of the PMLs of [5] for 1D dispersive systems, for a non-constant absorption PML parameter.

1. Problem Setting

The wave propagation in 2D dispersive media is described by the Maxwell system:

∂tDx = ∂yHz,

∂tDy = −∂xHz,

∂tBz = −∂xEy + ∂yEx.

(1)

In the above we use the scaling c = ε0 = µ0 = 1. The relations between the electric field and the electric
displacement field, as well as between the magnetic field and the magnetizing field are given in the Laplace
domain. Denoting by s the Laplace variable, we set û(s) = (Lu) (s) the Laplace transform of u(t) and introduce

C+ = {s ∈ C : Re s > 0}. With this notation, the constitutive relations read D̂ = ε(s)Ê, Ĥz = µ−1(s)B̂z. We

will assume that the dielectric permittivity is a diagonal matrix

ε(s) =

(
εx(s) 0

0 εy(s)

)
.

The multiplication in the Laplace domain becomes a convolution in the time domain, which we formally denote

D = ε(∂t)E, Bz = µ(∂t)Hz.

The system (1) in the Laplace domain can be rewritten as an anisotropic dispersive wave equation:

s2µ(s)Ĥz − εy(s)−1∂2xĤz − εx(s)−1∂2yĤz = 0. (2)

To explain the assumption on the coefficients of the above equation, let us introduce the following definition.
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Definition 1.1. A function c : C+ → C is passive if it is analytic in C+ and satisfies Re (sc(s)) > 0 there.

In this work we will assume that εx, εy, µ are passive. One of the examples of passive models is offered by
so-called generalized Lorentz materials [12]:

εα(s) = 1 +

nα∑
`=0

εα`
s2 + ω2

α`

, εα` > 0, ωα` ∈ R, ` = 0, . . . , nα, α ∈ {x, y},

µ(s) = 1 +

nµ∑
`=0

µ`
s2 + ω2

µ`

, µ` > 0, ωµ` ∈ R, ` = 0, . . . , nµ.

(3)

The generalized Lorentz materials include Drude materials [4] and a 2D uniaxial cold plasma [12,13].

Remark 1.2. The passivity assumption covers nonhyperbolic models as well (e.g. the diffusion equation, with
εx(s) = εy(s) = 1, µ(s) = s−1).

In [5] it was demonstrated that the well-posedness and stability of (1) follows from the passivity of coefficients
of the sesquilinear form associated with (2). Introducing the scalar product

(u, v) =

∫
R2

uv̄dx, u, v ∈ L2,

we can define the following class of sesquilinear forms.

Definition 1.3. We will call a sesquilinear form

A(u, v) = a(s)(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v), u, v ∈ H1(R2),

passive if a(s)−1, b(s)−1, c(s) are passive.

Informally,

Passivity of a Sesquilinear Form =⇒ Time-Domain Stability of the Corresponding System. (4)

Instead of resorting to the Laplace-domain analysis of [5], one can prove stability results directly in the time
domain, using energy techniques, cf. [14]. Extending these results to the PMLs is the subject of present work.

2. Stability of PMLs for Lorentz Materials

The analysis for the generalized Lorentz materials (3) will play a crucial role in this work. This is due to the
fact that any passive material can be approximated by generalized Lorentz materials, see Section 3. Moreover,
Lorentz materials are the only representatives of a fairly general class of passive materials. To demonstrate this,
let us assume that εx, εy, µ satisfy the following assumptions, justified in [4, 12,14].

Assumption 2.1. A function r(s) is a rational function r(s) = 1 + pr(s
2)

qr(s2)
, where the polynomials pr and qr

have real coefficients, no common roots, and also deg pr < deg qr. All its zeros and poles lie in iR.

A class of passive functions satisfying the above condition is quite narrow, see [14] and references therein.

Theorem 2.2. A function r(s) satisfying Assumption 2.1 is passive if and only if r(s) = 1 +
n∑̀
=0

r`
s2+ω2

`
, where

ω` ∈ R and r` > 0 for all ` = 0, . . . , n.
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Thus, passive functions that satisfy Assumption 2.1 correspond to Lorentz materials (3).
This section is organized as follows. In Section 2.1 we formulate the time-domain system corresponding

to Lorentz materials without the PML. Next, in Section 2.2 we discuss the construction of stable PMLs for
dispersive systems, concentrating in particular on Lorentz models. In Section 2.3 we show the main idea of the
derivation of the PML system that would allow to obtain simplified energy estimates. Finally, in Sections 2.4
and 2.5 we derive the energy estimates for systems corresponding to different PMLs.

2.1. Time-Domain System without PMLs

We consider the Maxwell system (1) with Lorentz parameters (3). In the time domain, we obtain the Maxwell
equations with currents, coupled to E, Hz via ODEs, cf. [4]:

∂tDx = ∂yHz, (5a)

∂tDy = −∂xHz, (5b)

∂tBz = ∂yEx − ∂xEy, (5c)

∂tDα = ∂tEα +

nα∑
`=0

εα`λα`, (5d)

∂tλα` + ω2
α`pα` = Eα, ∂tpα` = λα`, ` = 0, . . . nα, α ∈ {x, y}, (5e)

∂tBz = ∂tHz +

nµ∑
`=0

µ`λµ`, (5f)

∂tλµ` + ω2
µ`pµ` = Hz, ∂tpµ` = λµ`, ` = 0, . . . nµ. (5g)

Let us clarify the time-domain realization of B̂z = µ(s)Ĥz (the time-domain equivalent of D = ε(s)E can be

obtained similarly). The latter equivalently reads sB̂z = sµ(s)Ĥz =

(
s+

nµ∑̀
=0

µ`
s+ω2

µ`s
−1

)
Ĥz. One defines

λ̂µ` =
1

s+ ω2
µ`s
−1 Ĥz, or, equivalently, sλ̂µ` + ω2

µ`p̂µ` = Ĥz, sp̂µ` = λ̂µ`.

Provided that λµ`|t=0 = 0 = pµ`|t=0, the above coincides with (5g) in the time domain. Similarly, for Bz|t=0 =

Hz|t=0, we verify that (5f) coincides in the Laplace domain with B̂z = µ(s)Ĥz. Let us formulate the following
known result for the system (5a-5g), see also [4]. We provide its proof since it will be of use later.

Theorem 2.3. An energy E of (5a-5g), defined below, satisfies d
dtE = 0. Here

E =
1

2

(
‖Ex‖2 + ‖Ey‖2 + ‖Hz‖2

)
+ Ex + Ey + Ez,

Eα =
1

2

nα∑
`=0

εα`
(
‖λα`‖2 + ω2

α`‖pα`‖2
)
, α ∈ {x, y}, Ez =

1

2

nµ∑
`=0

µ`
(
‖λµ`‖2 + ω2

µ`‖pµ`‖2
)
.

Proof. Test the equation (5c) with Hz, to obtain

(∂tBz, Hz)− (∂yEx, Hz) + (∂xEy, Hz) = (∂tBz, Hz) + (Ex, ∂yHz)− (Ey, ∂xHz) = 0. (6)
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We consider the first term of the above expression; using (5f),

(∂tBz, Hz) =
1

2

d

dt
‖Hz‖2 +

nµ∑
`=0

µ` (λµ`, Hz)
(5g)
=

1

2

d

dt
‖Hz‖2 +

nµ∑
`=0

µ`
(
λµ`, ∂tλµ` + ω2

µ`pµ`
)

(5g)
=

1

2

d

dt
‖Hz‖2 +

1

2

d

dt

nµ∑
`=0

µ`‖λµ`‖2 +

nµ∑
`=0

µ`ω
2
µ`(∂tpµ`, pµ`) =

1

2

d

dt
‖Hz‖2 +

d

dt
Ez. (7)

The term (Ex, ∂yHz) in (6) can be rewritten exactly like in the previous case:

(Ex, ∂yHz)
(5a)
= (Ex, ∂tDx)

(5d)
=

1

2

d

dt
‖Ex‖2 +

1

2

d

dt

nµ∑
`=0

ε`
(
‖λx`‖2 + ω2

x`‖px`‖2
)

=
1

2

d

dt
‖Ex‖2 +

d

dt
Ex. (8)

Similarly one shows that −(Ey, ∂xHz) = 1
2
d
dt‖Ey‖

2 + d
dtEy. �

2.2. Construction of Stable PMLs for Dispersive Models

Consider the system (1) written in the Laplace domain (2). To construct a PML in the region x ≥ 0, one

assumes that (2) is valid for x = x̃ ∈ C. The corresponding analytic continuation of Ĥz, denoted by Ĥz, solves
(2), with x = x̃. In [4] it is proposed to choose x̃ as follows, for some analytic function ψ(s),

x̃ =


x+ s−1ψx(s)

x∫
0

σx(x′)dx′, x ≥ 0,

x, x < 0,

σx(x) =

 σ(x) ≥ 0, x ≥ 0,

0, x < 0.
(9)

The classical PML can be obtained taking ψx(s) = 1. For dispersive materials this choice may be unstable. We
discuss how to choose ψx(s) in further sections. With this change of variables, (2) transforms into

ε−1y
(
1 + σxs

−1ψx
)−1

∂x

((
1 + σxs

−1ψx
)−1

∂xĤz
)

+ ε−1x ∂yyĤz − s2µĤz = 0, x ∈ R. (10)

By analytic continuation, Ĥz(x, y) = Ĥz(x, y) for x < 0. The resulting system should be rewritten in the time
domain. We postpone this question to future sections. The PML in other directions (e.g. for y ≥ 0) can be
constructed similarly. In corners the changes of both of the variables x and y is used.

Under (mild) assumptions on the coefficients of the sesquilinear form, one can show that the time-domain
system corresponding to (10) is well-posed, for any σx(x) ∈ L∞(R), see [15]. It seems significantly more difficult
to show the stability of the corresponding problem for variable σx(x), cf. [16]. Finer results can obtained by
studying the sesquilinear form corresponding to (10) with σx(x) = const, x ∈ R, when (9) becomes, cf. [5],

x→ x
(
1 + s−1ψxσx

)
, σx ≡ const ≥ 0, x ∈ R. (11)

In this case the sesquilinear form corresponding to (10) becomes

A(u, v) =
εy(s)−1

(1 + s−1ψx(s)σx)2
(∂xu, ∂xv) + εx(s)−1(∂yu, ∂yv) + s2µ(s)(u, v), u, v ∈ H1(R2). (12)

As most of the results of this work are derived for (11), let us discuss the reasons for this choice and its place
in the analysis of the stability of PMLs. To our knowledge, so far only the energy estimates for the classical
PMLs for non-dispersive systems are available. These results are of either of two types:
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(1) the energy estimates are derived for a PML system obtained from the change of variables (11), which,
strictly speaking, is not what is used in practice. Moreover, the analysis is available only in 2D, for
ψ(s) = 1 and non-dispersive models. Typically, such energy estimates result in the bound of the form
‖V(t)‖1 ≤ C(t)‖V(0)‖2, with C(t) depending polynomially on t. They constitute one of the steps in
the analysis of the stability of the PML models with σ 6= const. See [8, 11,17] for this kind of analysis.

(2) the energy estimates are obtained for a PML system where the change of variables (9) is performed
(again with ψ(s) = 1 and in non-dispersive case). This is indeed closer to the case of practical interest.
For 1D problems these estimates are optimal and imply stability, see [18]. However, in higher dimensions
they result in the bounds of the form ‖V(t)‖1 ≤ C(t)‖V(0)‖2, with C(t) depending on t exponentially.
Thus, such estimates are non-optimal, since they do not reflect the stability of the underlying PMLs
(the latter fact suggested by numerous experiments). This kind of results was obtained e.g. in [8, 19].

Our goal is to extend the results of the first type to 2D dispersive models, and show the stability of the PMLs
for 1D dispersive problems for σx 6= const (see Section 4). In this section we concentrate on the case σx = const.

2.2.1. Construction of Stable PMLs for Lorentz Materials in One Direction

The difficulty in the construction of the stable PML for dispersive models is the choice of the function ψx(s)
in (9). This question had been studied in [5], and for corners in particular in [20]. Let us provide several main
results on the stability of PMLs, which are formulated as passivity of the corresponding sesquilinear forms, see
(4). One of the choices of ψx(s) resulting in stable PMLs is offered by the following statement.

Theorem 2.4 ( [5]). Let εx, εy, µ be passive and satisfy Assumption 2.1. Then the sesquilinear form (12)
with ψx(s) = εy(s)−1 is passive for any σx ≥ 0.

Remark 2.5. The passivity of the sesquilinear form (12), with ψ(s) = εy(s)−1, implies its coercivity for all
s ∈ C+. To see this, one tests (12) with su, to obtain

Re (A(u, su)) = Re

(
s̄εy(s)−1

(1 + s−1εy(s)−1σx)2
‖∂xu‖2 + s̄εx(s)−1‖∂yu‖2 + sµ(s)|s|2‖u‖2

)
= Re

(
s̄εy(s)−1(1 + s̄−1ε̄y(s)−1σx)2

|1 + s−1εy(s)−1σx|4
‖∂xu‖2 + s̄εx(s)−1‖∂yu‖2 + sµ(s)|s|2‖u‖2

)
= |1 + s−1εy(s)−1σx|−4

(
Re(s̄εy(s)−1) + 2σx|εy(s)|−2 + σ2

x|εy(s)|−2 Re(s̄−1ε̄y(s)−1)
)
‖∂xu‖2

+ Re(s̄εx(s)−1)‖∂yu‖2 + Re(sµ(s))‖u‖2.

Notice that Re(s̄ε−1y ) = Re
(
sεy
−1) = Re

(
sεy|εy|−2

)
> 0, for all s ∈ C+, thanks to passivity. For the same

reason Re((sεy)−1) > 0, Re(s̄ε−1x ) and Re(sµ(s)) > 0, s ∈ C+. From this the coercivity of ReA(u, sv) follows.
The coercivity alone is not sufficient for the well-posedness or stability of the corresponding time-domain

system. In particular, one should show the analyticity of the Laplace-domain solution in C+, see [5].

This is indeed not the only stable PML change of variables. While the theorem below does not show how to
construct ψx(s), in [5] it is shown that its conditions can be ensured by choosing ψx(s) that verifies certain sign
conditions on the imaginary axis. We omit these details, since they are not important for the energy estimates.

Theorem 2.6 ( [5]). Let εx, εy, µ be passive and satisfy Assumption 2.1. Let additionally

(1) ψx(s)−1 satisfy Assumption 2.1 and be passive;
(2) εx(s)εy(s)−1ψx(s)−1 be passive;
(3) µ(s)εy(s)ψx(s) be passive.

Then the sesquilinear form

Ã(u, v) = ψx(s)εy(s)A(u, v), u, v ∈ H1(R2),

with A(u, v) given by (12), is passive for any σx ≥ 0.
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2.2.2. Construction of Stable PMLs for Lorentz Materials in Corners

Similar results can be formulated for the corner PMLs, which are obtained by the following change of variables:

x→ x
(
1 + σxψx(s)s−1

)
, y → y

(
1 + σyψy(s)s−1

)
, σx, σy ≥ 0. (13)

The associated sesquilinear form reads

Ac(u, v) =
εy(s)−1

(1 + s−1ψx(s)σx)2
(∂xu, ∂xv) +

εx(s)−1

(1 + s−1ψy(s)σy)2
(∂yu, ∂yv) + s2µ(s)(u, v), u, v ∈ H1(R2). (14)

The corner PML analogue of Theorem 2.4 can be obtained by a change of variables with ψx = ε−1y and ψy = ε−1x .

Theorem 2.7 ( [5]). Let εx, εy, µ be passive and satisfy Assumption 2.1. Then the sesquilinear form Ac(u, v)
of (14) with ψx(s) = εy(s)−1 and ψy(s) = εx(s)−1 is passive for any σx ≥ 0 and σy ≥ 0.

Notice that the above result covers the stability of the PML in one direction (by setting σx = 0 or σy = 0)
and in corners. A trivial analogue of Theorem 2.6 can be formulated as follows.

Theorem 2.8 ( [20]). Let εx, εy, µ be passive and satisfy Assumption 2.1. Let additionally

(1) ψx(s)−1, ψy(s)−1 be passive and satisfy Assumption 2.1;
(2) ψxεy = ψyεx;
(3) µ(s)εy(s)ψx(s) be passive.

Then the sesquilinear form

Ãc(u, v) = ψx(s)εy(s)Ac(u, v) = ψy(s)εx(s)Ac(u, v), u, v ∈ H1(R2),

with Ac(u, v) given by (14), is passive for any σx ≥ 0 and σy ≥ 0.

2.3. The Main Idea of the Energy Derivation for a PML System

There exists many ways to write a PML system for a given problem, see e.g. [8] and references therein, or [4].
To derive the energy conservation in an easy manner, it is crucial to introduce a very special set of auxiliary
unknowns. One of such sets can be obtained by studying the coercivity of the corresponding sesquilinear form.

2.3.1. A Toy Example: a 2D Isotropic Non-dispersive Wave Equation (Second-Order Formulation)

Let us explain our idea based on the example of the isotropic non-dispersive 2D wave equation, to which the

classical PMLs are applied in the x-direction. In the Laplace domain it reads (with f̂ being its source term):

−
(
1 + s−1σx

)−1
∂x

((
1 + s−1σx

)−1
∂xĤz

)
− ∂2yĤz + s2Ĥz = f̂ , s ∈ C+, (15)

where we assumed Hz|t=0 = 0, ∂tHz|t=0 = 0. The corresponding variational formulation reads

Aσx(Ĥz, v) =
(
1 + s−1σx

)−2
(∂xĤz, ∂xv) + (∂yĤz, ∂yv) + s2(Ĥz, v) = (f̂ , v), Ĥz, v ∈ H1(R2).

The above sesquilinear form coincides with (12) for a particular case εx = εy = µ = 1, where the change of
variables of Theorem 2.4 is performed. To show the coercivity of the sesquilinear form for all s ∈ C+, one tests

the above with v = sĤz (and then takes the real part), see Remark 2.5,

Aσx(Ĥz, sĤz) = Re
((

1 + s−1σx
)−2

(∂xĤz, s∂xĤz) + (∂yĤz, s∂yĤz) + s(sĤz, sĤz)
)

= Re
(
f̂ , sĤz

)
. (16)

Testing with v = sĤz corresponds in the time domain to testing the corresponding equation with ∂tHz (if
Hz|t=0 = 0), which is exactly what one does in order to obtain the energy estimates for the problem without
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the PML. On the other hand, it is possible to obtain some energy identities directly from (16), using the
Plancherel’s equality. To proceed with this idea, let us rewrite the first term of (16) in a more convenient form:

((
1 + s−1σx

)−2
∂xĤz, s∂xĤz

)
=

(
∂xĤz

(1 + s−1σx)
2 ,
s
(
1 + s−1σx

)2
(1 + s−1σx)

2 ∂xĤz

)
(17)

=

(
∂xĤz

(1 + s−1σx)
2 ,
s+ 2σx + σ2

xs
−1

(1 + s−1σx)
2 ∂xĤz

)

= (s̄+ 2σx)

∥∥∥∥∥ ∂xĤz

(1 + s−1σx)
2

∥∥∥∥∥
2

+ σ2
xs

∥∥∥∥∥ ∂xĤz

s (1 + s−1σx)
2

∥∥∥∥∥
2

. (18)

Thus, (16) can be rewritten as follows:

Re (s+ 2σx)

∥∥∥∥∥ ∂xĤz

(1 + s−1σx)
2

∥∥∥∥∥
2

+ σ2
x Re s

∥∥∥∥∥ ∂xĤz

s (1 + s−1σx)
2

∥∥∥∥∥
2

+ Re s‖∂yĤz‖2 + Re s‖sĤz‖2 = Re
(
f̂ , sĤz

)
. (19)

Recall the Plancherel’s identity (here η > 0) and its implication:

+∞∫
0

e−2ηt(Hz(t), v(t))dt =
1

2πi

∫
η+iR

(Ĥz(s), v̂(s))ds =⇒
+∞∫
0

e−2ηt Re(Hz(t), v(t))dt =
1

2πi

∫
η+iR

Re(Ĥz(s), v̂(s))ds.

Before applying the last identity of the above to (19), let us introduce two auxiliary unknowns:

̂ =
∂xĤz

(1 + s−1σx)
2 , Ĵ =

∂xĤz

s (1 + s−1σx)
2 . (20)

This allows us to obtain a formal energy identity (assuming zero initial conditions for j, J):

+∞∫
0

e−2ηt
(
(η + 2σx)‖j‖2 + σ2

xη‖J‖2 + η‖∂yHz‖2 + η‖∂tHz‖2
)
dt =

+∞∫
0

e−2ηt(f, ∂tHz)dt.

Importantly, this time-domain equality involves newly introduced unknowns (20). This suggests that when
writing the PML system corresponding to (15), it may be advantageous to introduce the unknowns (20). Let
us rewrite (15) in time using this idea (now taking f = 0 but assuming non-zero initial conditions):

∂2tHz − ∂xj − ∂2yHz = 0, (21a)

∂tj + 2σxj + σ2
xJ = ∂x∂tHz, (21b)

∂tJ = j. (21c)

Testing (21a) with ∂tHz, we obtain

1

2

d

dt

(
‖∂tHz‖2 + ‖∂yHz‖2

)
+ (j, ∂x∂tHz) = 0,

(j, ∂x∂tHz)
(21b)
= (j, ∂tj + 2σxj + σ2

xJ)
(21c)
=

1

2

d

dt
‖j‖2 + 2σx‖j‖2 + σ2

x(∂tJ, J)

=
1

2

d

dt

(
‖j‖2 + ‖σxJ‖2

)
+ 2σx‖j‖2.
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Combining the above, we get the following energy decay law

d

dt
E = −2σx‖j‖2, E =

1

2

(
‖∂tHz‖2 + ‖∂yHz‖2 + ‖j‖2 + σ2

x‖J‖2
)
. (22)

Indeed, when σx 6= const, the formulation (21) is not perfectly matched. However, for σx = const, it is equivalent
to another, perfectly matched formulation.

2.3.2. Remaking the Toy Example: A First-Order Formulation

Our goal is to derive the PML system in the first order formulation, like the original system (5a-5g). On one

hand, we would like to introduce unknowns that would correspond to s−1 ̂, s−1Ĵ (the energy of the first-order
formulation for the wave equation coincides with the energy of the second-order formulation with u replaced
by ∂−1t u). On the other hand, we would like to simplify the corresponding PML system of equations. First,
the system of equations in the Laplace domain with the PML change of variables, and then comment on the
introduction of the time-domain unknowns:

sĤz = − ∂xÊy
1 + s−1σx

+ ∂yÊx, (23a)

sÊy = − ∂xĤz

1 + s−1σx
, (23b)

sÊx = ∂yĤz. (23c)

In this first-order formulation we suggest to introduce an auxiliary unknown E∗y (it corresponds to −s−1Ĵ), s.t.

E∗y = − ∂xĤz

(s+ σx)2
(23b)
=

Êy
s+ σx

. (24)

This choice is advantageous for two reasons:

• there is no need to introduce an unknown corresponding to s−1 ̂, since it can be represented as a linear
combination of the existing unknowns

s−1 ̂ =
∂xĤz

(s+ σx)(1 + s−1σx)

(23b)
= − Êy

1 + s−1σx
= −

(
1− σx

s+ σx

)
Êy

(24)
= −Êy + σxÊ

∗
y .

• the above linear combination can replace the first term in the right-hand side of (23a), namely(
1 + s−1σx

)−1
∂xÊy

by ∂x(Êy − σxÊ∗y). Here we make use of the assumption σx = const.

Therefore, (23a-23c) can be rewritten in the time domain as follows:

∂tHz = −∂xEy + σx∂xE
∗
y + ∂yEx, (25a)

∂tEy + σxEy = −∂xHz, (25b)

∂tEx = ∂yHz, (25c)

∂tE
∗
y + σxE

∗
y = Ey. (25d)

Let us show that the energy is consistent with (22). We test the first equation above with Hz, to obtain

(∂tHz, Hz) + (∂xEy − σx∂xE∗y , Hz)− (∂yEx, Hz) = 0. (26)
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The second term in the above

(∂xEy − σx∂xE∗y , Hz) = −(Ey − σxE∗y , ∂xHz)

(25b)
= (Ey − σxE∗y , ∂tEy + σxEy) = (Ey − σxE∗y , ∂t(Ey − σxE∗y) + σx∂tE

∗
y + σxEy)

(25d)
=

1

2

d

dt
‖Ey − σxE∗y‖2 + (Ey − σxE∗y , σx∂tE∗y + σx(∂tE

∗
y + σxE

∗
y))

= (Ey − σxE∗y , 2σx∂tE∗y) + (Ey − σxE∗y , σ2
xE
∗
y).

Applying (25d) to each of the two terms above yields

(Ey − σxE∗y , 2σx∂tE∗y) = 2σx‖Ey − σxE∗y‖2, (Ey − σxE∗y , σ2
xE
∗
y) = (∂tE

∗
y , σ

2
xE
∗
y) =

σ2
x

2

d

dt
‖E∗y‖2.

Finally, combining (26) and the latter expressions, we obtain:

d

dt
E = −2σx‖Ey − σxE∗y‖2, E = ‖Hz‖2 + ‖Ex‖2 + ‖Ey − σxE∗y‖2 + ‖σxE∗y‖2.

As expected, the above corresponds to (22), with all the unknowns substituted by their primitives in time.

2.3.3. Remarks on the Connection Between the Formulation (25a-25d) and the Bérenger’s Split Formulation

Recall the Bérenger’s split formulation for the 2D Maxwell’s equations:

Hz = Hzx +Hzy, (27a)

∂tEy + σxEy = −∂xHz, (27b)

∂tEx = ∂yEx, (27c)

∂tHzx + σxHzx = −∂xEy, (27d)

∂tHzy = ∂yEx. (27e)

To see how from (25a-25d) one can obtain the above system, we apply ∂x to (25d), and use σx = const,

∂t∂xE
∗
y + σx∂xE

∗
y = ∂xEy.

Then we rewrite (25a) as

∂tHz = −∂xEy + σx∂xE
∗
y + ∂yEx = −∂t∂xE∗y + ∂yEx.

Finally, we can introduce the additional unknown Hzy as in (27e). Thus, (25a-25d) can be rewritten as

∂tHz = −∂t∂xE∗y + ∂tHzy,

∂tEy + σxEy = −∂xHz,

∂tEx = ∂yHz,

∂t∂xE
∗
y + σx∂xE

∗
y = ∂xEy,

∂tHzy = ∂yEx.

Then, choosing the initial conditions ∂xE
∗
y

∣∣
t=0

= − Hzx|t=0, and Hz|t=0 = Hzx|t=0 + Hzy|t=0, we can ensure

that the solution of the above system coincides with the solution of (27a-27e), and, in particular, ∂xE
∗
y = −Hzx.
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2.4. Stability of the PML of Theorem 2.7, with ψx = ε−1
y , ψy = ε−1

x

In this section we extend the ideas of the construction of the PML systems of Section 2.3 to the PMLs for
problems with the Lorentz dispersion (3).

2.4.1. Construction of a PML System Corresponding to Theorem 2.7, with ψx = ε−1y , ψy = ε−1x

Let us write a PML system corresponding to (5a-5g) with the PML change of variables of Theorem 2.7.
We perform the PML change of variables in both directions, however, assume that σx, σy ≥ 0. Setting in the
resulting system σy = 0 and discarding the auxiliary unknowns associated with the PML in the direction y, we
will get the PML system in the direction x (similarly we can obtain the PML system in the direction y). Let us
start with the first equation (5a), which in the Laplace domain with the PML change of variables of Theorem

2.7 and with the use of the constitutive relation sD̂x = sεxÊx reads

sD̂x = sεxÊx =

(
1 +

σy
sεx

)−1
∂yĤz.

In the time-domain this is equivalent to ∂tDx + σyEx = ∂yHz.

Remark 2.9. When deriving the PML system, one ignores all the source terms and initial conditions, since
they are necessarily supported outside of the domain where the PML is used.

The equation (5b) can be treated similarly. To deal with (5c), we suggest to employ the splitting idea of

Bérenger [1]. This is motivated by results of Section 2.3.3. Let us introduce split fields Ĥzx and Ĥzy so that
they satisfy in the Laplace domain the following equations:

sεx(s)Ĥzy = ∂yÊx, sεy(s)Ĥzx = −∂xÊy, sB̂z = ∂yÊx − ∂xÊy = sεx(s)Ĥzy + sεy(s)Ĥzx. (28)

Applying the PML change of variables of Theorem 2.7 to the above equations, we obtain the following:

sεxĤzy + σyĤzy = ∂yÊx, sεyĤzx + σxĤzx = −∂xÊy,

sB̂z = sεx(s)Ĥzy + sεy(s)Ĥzx = ∂yÊx − ∂xÊy − σyĤzy − σxĤzx.

Finally, the time-domain expression of the operators sεx(s), sεy(s) is done similarly to the system (5a-5g), via
the introduction of the auxiliary unknowns. After the PML change of variables, (5a-5g) becomes:

∂tDx + σyEx = ∂yHz, (29a)

∂tDy + σxEy = −∂xHz, (29b)

∂tBz + σyHzy + σxHzx = ∂yEx − ∂xEy, (29c)

∂tHzx +

ny∑
`=0

εy`hx` + σxHzx = −∂xEy, (29d)

∂tHzy +

nx∑
`=0

εx`hy` + σyHzy = ∂yEx, (29e)

∂thα` + ω2
β`bα` = Hzα, ∂tbα` = hα`, ` = 0, . . . , nβ , (α, β) ∈ {(x, y), (y, x)}, (29f)

which we equip with the equations (5d − 5g). In the derivation of the above system we did not use the
assumption σx, σy = const, hence it is perfectly matched. However, even in the case σx, σy = const, obtaining
the energy estimates for it directly requires to solve additional difficulties, besides the dispersive behaviour.
We will report how to resolve them elsewhere. To simplify the discussion, we suggest to consider another
formulation, equivalent to (29a-29f) for constant absorption parameters (see Remark 2.10 or Section 2.3.3). It
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differs from (29a-29f) only by treatment of the equation for Bz (5c). More precisely, we introduce Ê∗x, Ê
∗
y , s.t.

Ĥzy = ∂yÊ
∗
x, Ĥzx = −∂xÊ∗y , cf. (28). Then, formally, using σx = const, σy = const,

sεxÊ
∗
x + σyÊ

∗
x = Êx, sεyÊ

∗
y + σxÊ

∗
y = Êy, sB̂z = ∂yÊx − ∂xÊy − σy∂yÊ∗x + σx∂xÊ

∗
y . (30)

The realization of the operators sεx, sεy is done similarly to (5a-5g). We thus obtain the following PML system:

∂tDx + σyEx = ∂yHz, (31a)

∂tDy + σxEy = −∂xHz, (31b)

∂tBz + σy∂yE
∗
x − σx∂xE∗y = ∂yEx − ∂xEy, (31c)

∂tE
∗
x +

nx∑
`=0

εx`λ
∗
x` + σyE

∗
x = Ex, (31d)

∂tE
∗
y +

ny∑
`=0

εy`λ
∗
y` + σxE

∗
y = Ey, (31e)

∂tλ
∗
α` + ω2

α`p
∗
α` = E∗α, ∂tp

∗
α` = λ∗α`, ` = 0, . . . , nα, α ∈ {x, y}, (31f)

∂tDα = ∂tEα +

nα∑
`=0

εα`λα`, (31g)

∂tλα` + ω2
α`pα` = Eα, ∂tpα` = λα`, ` = 0, . . . , nα, α ∈ {x, y}, (31h)

∂tBz = ∂tHz +

nµ∑
`=0

µ`λµ`, (31i)

∂tλµ` + ω2
µ`pµ` = Hz, ∂tpµ` = λµ`, ` = 0, . . . , nµ. (31j)

In the above we introduced new PML unknowns E∗x, (λ∗x`, p
∗
x`), ` = 0, . . . , nx and E∗y , (λ∗y`, p

∗
y`), ` = 0, . . . , ny.

Remark 2.10. The equivalence of (29a-29f) and (31a-31j) for constant σx, σy, i.e. that with properly chosen
initial data, the solution E, D, Bz, Hz of (29a-29f) solves (31a-31j) and vice versa, can be shown as in [8].

Remark 2.11. In the system (31a-31j) the PML in the direction y is realized via the introduction of the
auxiliary unknowns E∗y , λ∗y`, p

∗
y`, ` = 0, . . . , ny. To obtain the PML in the direction x only, one sets σy = 0. In

this case (31e) and (31f) for α = y are decoupled from the rest of the equations and can be discarded.

2.4.2. Stability of the PML System (31a-31j)

The energy non-growth result is summarized in the following theorem.

Theorem 2.12. An energy associated with (31a-31j) defined as

E =
1

2

(
‖Ex − σyE∗x‖2 + ‖σyE∗x‖2 + ‖Ey − σxE∗y‖2 + ‖σxE∗y‖2 + ‖Hz‖2

)
+ E∗x + E∗y + Ez, (32)

E∗x =
1

2

nx∑
`=0

εx`
(
‖λx` − σyλ∗x`‖2 + ω2

x`‖px` − σyp∗x`‖2 + ‖σyλ∗x`‖2 + ω2
x`‖σyp∗x`‖2

)
,

E∗y =
1

2

ny∑
`=0

εy`
(
‖λy` − σxλ∗y`‖2 + ω2

y`‖py` − σxp∗y`‖2 + ‖σxλ∗y`‖2 + ω2
y`‖σxp∗y`‖2

)
,

Ez =
1

2

nµ∑
`=0

µ`
(
‖λµ`‖2 + ω2

µ`‖pµ`‖2
)
,
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does not grow, provided σx, σy ≥ 0:

d

dt
E = −2σy‖Ex − σyE∗x‖2 − 2σx‖Ey − σxE∗y‖2.

Proof. First, we test (31c) with Hz to obtain

(∂tBz, Hz)− (∂yEx − σy∂yE∗x, Hz) + (∂xEy − σx∂xE∗y , Hz) = 0. (33)

Let us consider each term of the above expression separately. The first term is exactly as in (7):

(∂tBz, Hz)
(7)
=

d

dt

(
1

2
‖Hz‖2 + Ez

)
.

The second term, after the integration by parts, becomes

−(∂yEx − σy∂yE∗x, Hz) = (Ex − σyE∗x, ∂yHz)
(31a)
= (Ex − σyE∗x, ∂tDx + σyEx)

= (Ex − σyE∗x, ∂tDx) + σy(Ex − σyE∗x, Ex − σyE∗x + σyE
∗
x)

= (Ex − σyE∗x, ∂tDx) + σy‖Ex − σyE∗x‖2 + σ2
y(Ex − σyE∗x, E∗x)

= T1 + σy‖Ex − σyE∗x‖2 + T2. (34)

Let us first consider

T1 = (Ex − σyE∗x, ∂tDx)
(31g)
=

(
Ex − σyE∗x, ∂tEx +

nx∑
`=0

εx`λx`

)

= (Ex − σyE∗x, ∂t(Ex − σyE∗x) + σy∂tE
∗
x) +

(
Ex − σyE∗x,

nx∑
`=0

εx`λx`

)
(31d)
=

1

2

d

dt
‖Ex − σyE∗x‖2 + σy

(
Ex − σyE∗x, Ex − σyE∗x −

nx∑
`=0

εx`λ
∗
x`

)
+

(
Ex − σyE∗x,

nx∑
`=0

εx`λx`

)

=
1

2

d

dt
‖Ex − σyE∗x‖2 + σy‖Ex − σyE∗x‖2 +

nx∑
`=0

εx` (Ex − σyE∗x, λx` − σyλ∗x`) .

The last term in the above corresponds to a weighted sum of norms of a linear combination of auxiliary unknowns:

nx∑
`=0

εx` (Ex − σyE∗x, λx` − σyλ∗x`)
(31h,31f)

=

nx∑
`=0

εx`
(
∂t(λx` − σyλ∗x`) + ω2

x`(px` − σyp∗x`), λx` − σyλ∗x`
)

(31h,31f)
=

1

2

d

dt

nx∑
`=0

εx`‖λx` − σyλ∗x`‖2 +

nx∑
`=0

εx`ω
2
x` (px` − σyp∗x`, ∂t(px` − σyp∗x`))

=
1

2

d

dt

nx∑
`=0

εx`
(
‖λx` − σyλ∗x`‖2 + ω2

x`‖px` − σyp∗x`‖2
)
. (35)

Summarizing the above,

T1 =
1

2

d

dt
‖Ex − σyE∗x‖2 + σy‖Ex − σyE∗x‖2 +

1

2

d

dt

nx∑
`=0

εx`
(
‖λx` − σyλ∗x`‖2 + ω2

x`‖px` − σyp∗x`‖2
)
.
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It remains to obtain an explicit energy-like expression for the term T2 in (34):

T2 = σ2
y(Ex − σyE∗x, E∗x)

(31d)
= σ2

y

(
∂tE

∗
x +

nx∑
`=0

εx`λ
∗
x`, E

∗
x

)
(31f)

=
σ2
y

2

d

dt

(
‖E∗x‖2 +

nx∑
`=0

εx`
(
‖λ∗x`‖2 + ω2

x`‖p∗x`‖2
))

,

where the derivation of the latter identity is done similarly as e.g. in (7) or (35). Summarizing the above, we
obtain the following expression for the second term in (33):

−(∂yEx − σy∂yE∗x, Hz) =
1

2

d

dt

(
‖Ex − σyE∗x‖2 + ‖σyE∗x‖2

)
+ 2σy‖Ex − σyE∗x‖2 +

d

dt
E∗x .

Repeating almost verbatim the above computations, one can show that the third term in (33) reads:

(∂xEy − σx∂xE∗y , Hz) =
1

2

d

dt

(
‖Ey − σxE∗y‖2 + ‖σxE∗y‖2

)
+ 2σx‖Ey − σxE∗y‖2 +

d

dt
E∗y .

Summing up all the terms of (33) we obtain the desired statement. �

Remark 2.13. The above result can be generalized to the case of Lorentz materials with dissipation, i.e.

εα(s) = 1 +

nα∑
`=0

εα`
s2 + 2να`s+ ω2

α`

, εα` > 0, να` ≥ 0, ωα` ≥ 0, ` = 0, . . . , nα, α ∈ {x, y},

µ(s) = 1 +

nµ∑
`=0

µ`
s2 + 2νµ`s+ ω2

µ`

, µ` > 0, νµ` ≥ 0, ωµ` ≥ 0, ` = 0, . . . , nµ.

In this case the choice of ψx(s) = εy(s)−1, ψy = εx(s)−1 would lead to a stable system.

Remark 2.14. With the help of the Young’s inequality, one can show that the norm of the field E is controlled
with the help of the stability result of Theorem 2.12. E.g. consider the first term in (32):

‖Ex − σyE∗x‖2 + ‖σyE∗x‖2 ≥ ‖Ex‖2 + 2‖σyE∗x‖2 − 2‖Ex‖‖σyE∗x‖ ≥ ‖Ex‖2 + 2‖σyE∗x‖2 −
2

3
‖Ex‖ −

3

2
‖σyE∗x‖

=
1

3
‖Ex‖2 +

1

2
‖σyE∗x‖2.

2.5. Stability of the PML of Theorem 2.8, for General ψx(s), ψy(s)

An exact expression of the corresponding to the PML with the change of variables as in Theorem 2.8 is
slightly more complicated. It is easier to express the energy of this formulation in terms of new, ’effective’
electric and magnetic fields, rather than the original unknowns. However, this requires the reformulation of the
corresponding system without the PML. Similar ideas are used in [14].

2.5.1. A Preliminary Reformulation of the System (5a-5g)

Let us rewrite the Maxwell’s equations in a more convenient form, equivalent to the original Lorentz system
(5a-5g), which, however, would allow to handle easier the energy of the corresponding PML system. In particular,
notice that the PML change of variables of Theorem 2.8 results in a passivity of a special scaled sesquilinear
form. This form can be viewed as a sesquilinear form resulting from the PML of Theorem 2.7 applied to the
problem with (passive) coefficients εey = ψ−1x , εex = εxψ

−1
x ε−1y = ψ−1y and µe = εyψxµ.

Let us consider the solution (E, Hz) of the system (5a-5g) with the initial conditions (E, Hz)|t=0 = (E0, Hz0).
As discussed before the derivation of (5a-5g), we choose D0 = E0, Bz0 = Hz0 and zero initial conditions for the
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rest of unknowns. Then, in the Laplace domain, the system (5a-5g) reads

sεx(s)Êx − Ex0 = ∂yĤz, sεy(s)Êy − Ey0 = −∂xĤz, sµ(s)Ĥz −Hz0 = ∂yÊx − ∂xÊy.

The above can be split into two systems:

sεx(s)Ê(1)
x = ∂yĤ

(1)
z , sεy(s)Ê(1)

y = −∂xĤ(1)
z , sµ(s)Ĥ(1)

z −Hz0 = ∂yÊ
(1)
x − ∂xÊ(1)

y , (36)

and

sεx(s)Ê(2)
x − Ex0 = ∂yĤ

(2)
z , sεy(s)Ê(2)

y − Ey0 = −∂xĤ(2)
z , sµ(s)Ĥ(2)

z = ∂yÊ
(2)
x − ∂xÊ(2)

y . (37)

Due to linearity, E = E(1) + E(2), Hz = H
(1)
z + H

(2)
z . Let us consider the first equation of (36), which we

multiply by ψx(s)−1εy(s)−1, to obtain

sεx(s)ψx(s)−1εy(s)−1Ê(1)
x = ∂yψ

−1
x (s)εy(s)−1Ĥ(1)

z = ∂yĤ
e
z , Ĥe

z = ψ−1x (s)εy(s)−1Ĥ(1)
z .

Here the index ’e’ stands for ’effective’. Setting εex(s) = εx(s)ψx(s)−1εy(s)−1, we rewrite the above as

sεex(s)Ê(1)
x = ∂yĤ

e
z . (38)

Next, we repeat the procedure with the second equation of (36), defining εey = ψx(s)−1:

sεey(s)Ê(1)
y = −∂xĤe

z . (39)

Finally, for the third equation of (36), it suffices to introduce µe(s) = ψx(s)εy(s)µ(s) and rewrite

sµ(s)ψx(s)εy(s)ψx(s)−1εy(s)−1Ĥ(1)
z −Hz0 = sµe(s)Ĥe

z −Hz0 = ∂yÊ
(1)
x − ∂xÊ(1)

y . (40)

Therefore, the system (36) is equivalent to the system of equations (38, 39, 40), provided that the initial
conditions are chosen as He

z (0) = Hz0. Similarly the system (37) can be rewritten:

sεex(s)Êex − Ex0 = ∂yĤ
(2)
z , sεeyÊ

e
y − Ey0 = −∂xĤ(2)

z , sµe(s)Ĥ(2)
z = ∂yÊ

e
x − ∂xÊey,

with Êex = εy(s)ψx(s)Ê
(2)
x , Êey = εy(s)ψx(s)Ê

(2)
y . Since the above two systems have similar structures, from

now on we will concentrated only on one of them, namely (38, 39, 40). Thanks to Theorem 2.8, the quantities
εex, ε

e
y, µ

e are passive. Therefore, they are of the following form, see Theorem 2.2:

εeα(s) = 1 +

neα∑
`=0

εeα`
s2 + (ωeα`)

2 , εeα` > 0, ωeα` ∈ R, ` = 0, . . . , neα, α ∈ {x, y},

µ(s) = 1 +

neµ∑
`=0

µ`
s2 + (ωeµ`)

2
, µe` > 0, ωeµ` ∈ R, ` = 0, . . . , neµ.
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The system without the PML mimics the Lorentz system (5a-5g):

∂tD
e
x = ∂yH

e
z , ∂tD

e
y = −∂xHe

z ,

∂tB
e
z = ∂yE

(1)
x − ∂xE(1)

y ,

∂tD
e
α = ∂tE

(1)
α +

neα∑
`=0

εeα`λ
e
α`,

∂tλ
e
α` + (ωeα`)

2peα` = E(1)
α , ∂tp

e
α` = λeα`, ` = 0, . . . neα, α ∈ {x, y},

∂tB
e
z = ∂tH

e
z +

neµ∑
`=0

µe`λ
e
µ`,

∂tλ
e
µ` + (ωeµ`)

2peµ` = He
z , ∂tp

e
µ` = λeµ`, ` = 0, . . . neµ.

(41)

Then the following result holds true.

Proposition 2.15. Let (E(1), He
z , B

e
z) solve the system (41) with the initial conditions chosen as He

z |t=0 =
Bez |t=0 = Hz0 and as zero for the rest of unknowns. Let E, Hz be the solution to the system (5a-5g) with the

initial conditions chosen as Hz|t=0 = Bz|t=0 = Hz0 and as zero for the rest of unknowns. Then E(1)(t) = E(t)
and Bez(t) = Bz(t) for all t ≥ 0.

To recover H
(1)
z , we can use the identity Bz = Bez , or sµ(s)Ĥ

(1)
z = sµe(s)Ĥe

z , which gives in the time domain:

∂tH
(1)
z +

nµ∑
`=0

µ`λ
(1)
µ` = ∂tH

e
z +

nµ∑
`=0

µ`λ
e
µ`, (42)

∂tλ
(1)
µ` + ω2

µ`p
(1)
µ` = H(1)

z , ∂tp
(1)
µ` = λ

(1)
µ` , ` = 0, . . . nµ. (43)

With the system (41) we can associate a conservation of a certain energy.

Theorem 2.16. An energy E of (41), defined below, satisfies d
dtE = 0. Here

E =
1

2

(
‖E(1)

x ‖2 + ‖E(1)
y ‖2 + ‖He

z‖2
)

+ Ex + Ey + Ez,

Eα =
1

2

nα∑
`=0

εeα`
(
‖λeα`‖2 + (ωeα`)

2‖peα`‖2
)
, α ∈ {x, y}, Ez =

1

2

nµ∑
`=0

µe`
(
‖λeµ`‖2 + (ωeµ`)

2‖peµ`‖2
)
.

As for the field H
(1)
z , we were not able to deduce the conservation of its norm from the equations (42-43).

However, the following stability result which will be of use later.

Proposition 2.17. The following bound holds for the solution of the system (42-43) coupled with (41):

Ẽz(t) :=
1

2

(
‖H(1)

z (t)−He
z (t)‖2 +

nµ∑
`=0

µ`

(
‖λ(1)µ` (t)‖2 + ω2

µ`‖p
(1)
µ` (t)‖2

))
≤ 2Ẽz(0) + CE(0)t2, t ≥ 0,

where E(t) is defined in Theorem 2.16 and C > 0 is constant.

Proof. See Appendix A. �

Remark 2.18. The result of (at most) linear growth of the field H
(1)
z is non-optimal, at least when the initial

conditions are chosen as in Proposition 2.15. This follows from the fact that H
(1)
z solves the original Maxwell

system, and the corresponding energy conservation result extends to H
(1)
z .
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2.5.2. The PML System and Its Stability

The application of the PML of Theorem 2.8 to (41) results in the system that has the same structure as
(31a-31j). Indeed, ψx = (εey)−1 and ψy = (εex)−1. We can immediately write the corresponding PML system:

∂tD
e
x + σyE

(1)
x = ∂yH

e
z , ∂tD

e
y + σxE

(1)
y = −∂xHe

z ,

∂tB
e
z = ∂yE

(1)
x − σy∂yE∗x − ∂xE(1)

y + σx∂xE
∗
y ,

∂tE
∗
x +

nex∑
`=0

εex`λ
∗
x` + σyE

∗
x = E(1)

x , ∂tE
∗
y +

ney∑
`=0

εey`λ
∗
y` + σxE

∗
y = E(1)

y ,

∂tλ
∗
α` + (ωeα`)

2peα` = E(1)
α , ∂tp

∗
α` = λ∗α`, ` = 0, . . . , nα, α ∈ {x, y},

∂tD
e
α = ∂tEα +

neα∑
`=0

εeα`λ
e
α`,

∂tλ
e
α` + (ωeα`)

2peα` = E(1)
α , ∂tp

e
α` = λeα`, ` = 0, . . . neα, α ∈ {x, y},

∂tB
e
z = ∂tH

e
z +

neµ∑
`=0

µe`λ
e
µ`,

∂tλ
e
µ` + (ωeµ`)

2peµ` = He
z , ∂tp

e
µ` = λeµ`, ` = 0, . . . neµ.

(44)

As before, the physical field H
(1)
z can be recovered using (42-43). An energy associated with the above system

can be derived as in Theorem 2.12, and the bound on H
(1)
z as in Proposition 2.17.

Theorem 2.19. An energy associated with (44) defined as

E =
1

2

(
‖E(1)

x − σyE∗x‖2 + ‖σyE∗x‖2 + ‖E(1)
y − σxE∗y‖2 + ‖σxE∗y‖2 + ‖He

z‖2
)

+ Ee,∗x + Ee,∗y + Eez , (45)

Ee,∗x =
1

2

nx∑
`=0

εex`
(
‖λex` − σyλ∗x`‖2 + (ωex`)

2‖pex` − σyp∗x`‖2 + ‖σyλ∗x`‖2 + (ωex`)
2‖σyp∗x`‖2

)
,

Ee,∗y =
1

2

ny∑
`=0

εey`
(
‖λey` − σxλ∗y`‖2 + (ωey`)

2‖pey` − σxp∗y`‖2 + ‖σxλ∗y`‖2 + (ωey`)
2‖σxp∗y`‖2

)
,

Eez =
1

2

nµ∑
`=0

µe`
(
‖λeµ`‖2 + (ωeµ`)

2‖peµ`‖2
)

does not grow, provided σx, σy ≥ 0:

d

dt
E = −2σy‖E(1)

x − σyE∗x‖2 − 2σx‖E(1)
y − σxE∗y‖2.

Moreover, for the solution of (42-43) coupled with (44), it holds

Ẽz(t) :=
1

2

(
‖H(1)

z (t)−He
z (t)‖2 +

nµ∑
`=0

µ`

(
‖λ(1)µ` (t)‖2 + ω2

µ`‖p
(1)
µ` (t)‖2

))
≤ 2Ẽz(0) + CE(0)t2, t ≥ 0,

where C > 0 is constant.
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3. General Passive Materials: Stability with Energy Techniques

In this section we summarize some results on the materials whose dielectric permittivity and magnetic
permeability do not satisfy the conditions of Section 2. One of the examples is given by Warburg’s law, when

the dielectric permittivity ε(s) = 1+ 1+a
√
s

s(1+b
√
s)
, a, b > 0, see e.g. [21,22] for the corresponding numerical method.

The construction of the PML for this types of systems is done as before, via a special change of variables
(9). In this section we will show the stability of the following PML.

Theorem 3.1 ( [5]). Let εx, εy, µ be passive. Then the sesquilinear form (14) with ψx(s) = εy(s)−1 and
ψy(s) = εx(s)−1 is passive for any σx ≥ 0 and σy ≥ 0.

The stability of the corresponding system without the PML was shown in [14] with the help of a Herglotz-
Nevanlinna representation formula. This integral representation allows to write any passive system (even dissi-
pative) in the form (5a-5g), and thus, associate with any system an energy that is conserved (while at the same
time, there may exist another energy that decays). A conservative extension for a general class of dissipative
systems had been constructed, though in a slightly different form, in the seminal work by Figotin and Schenker
in [23]. Such an approximation of an arbitrary material with the help of Lorentz materials will be used to
construct a PML system similar to (31a-31j), see Section 3.2.

3.1. Time-Domain System without PMLs

The results of this section are due to [14], where it is suggested that passive functions corresponding to

the Laplace transform of real-valued in the time domain distributions (i.e., in the Laplace domain, f̂(s) =

f̂(s), s ∈ C+) satisfy the property formulated below. The following lemma is nothing more but a version of the
Herglotz-Nevanlinna representation for such functions.

Lemma 3.2 (Herglotz-Nevanlinna Representation). The function f(s), which satisfies f(s) = f(s), with s ∈
C+, is passive if and only if there exists a non-decreasing function of a bounded variation νf (ξ), for which the

Stiltjes integral
∞∫
−∞

dνf (ξ)
1+ξ2 is finite and f(s) is represented as the following Stiltjes integral:

f(s) = a+

∞∫
−∞

dνf (ξ)

s2 + ξ2
, a ≥ 0. (46)

Here a = lim
sr→+∞

f(sr), and the measure νf satisfies
+∞∫
−∞

dνf (ξ)
1+ξ2 <∞.

Proof. Notice that f(s) is passive if and only if Re (−iωf(−iω)) > 0 for Imω > 0, or Im(ωf(−iω)) > 0 for
Imω > 0. Hence, ωf(−iω) is Herglotz, and one can apply the results of [14, Section 4.1] to f(−iω). �

For instance, to obtain the Lorentz magnetic permeability (3), we can take a sum of δ-measures νµ(ξ) =
nµ∑̀
=0

µ`δ(ξ − ωµ`). Without loss of generality, let us assume that [6, 14]

εx(s)→ 1, εy(s)→ 1, µ(s)→ 1, as Re s→ +∞.

Then Lemma 3.2 yields (where we take into account εx(sr), εy(sr), µ(sr)→ 1 as sr → +∞)

εα(s) = 1 +

+∞∫
−∞

dνα
s2 + ξ2

, α ∈ {x, y}, µ(s) = 1 +

+∞∫
−∞

dνµ
s2 + ξ2

, s ∈ C+.
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These identities generalize the corresponding definitions for the Lorentz materials (3), with the exception that
the weighted sums are substituted by integrals with Borel measures. Our goal is to write the system (1) in the

time domain, using the above representation of ε, µ. Let us recall from [14] how the equation sD̂x = sεx(s)Êx

can be written in the time domain. Let us introduce λ̂x(ξ) and p̂x(ξ), which map ξ ∈ R into a set of analytic
functions from s ∈ C+ into L2(R2), so that they satisfy the following identities:

sλ̂x(ξ) + ξ2p̂x(ξ) = Êx, sp̂x(ξ) = λ̂x(ξ), ξ ∈ R.

Then, in the time domain, we can rewrite (formally) sD̂x = sεÊx as:

∂tDx = ∂tEx +

∞∫
−∞

λx(ξ)dνx(ξ),

∂tλx(ξ) + ξ2px(ξ) = Ex, ∂tpx(ξ) = λx(ξ), ξ ∈ R.

(47)

If the measure νx has a density fνx , we can define the quantities λx(ξ), px(ξ) only for ξ ∈ supp fνx(ξ) (this is
the case for the Lorentz materials, where the density has a discrete support). Thus, extending the above idea
to the rest of the constitutive relations, we write (1) in the form (5a-5g):

∂tDx = ∂yHz, ∂tDy = −∂xHz,

∂tBz = ∂yEx − ∂xEy,

∂tDα = ∂tEα +

∞∫
−∞

λα(ξ)dνα(ξ), ∂tλα + ξ2pα = Eα, ∂tpα = λα, ξ ∈ R, α ∈ {x, y},

∂tBz = ∂tHz +

∞∫
−∞

λµ(ξ)dνµ(ξ), ∂tλµ + ξ2pµ = Eµ, ∂tpµ = λµ, ξ ∈ R.

(48)

Here λα(ξ), pα(ξ), α ∈ {x, y, µ}, are functions from R to C
(
R;L2(R2)

)
. An associated energy is conserved [14].

Proposition 3.3. An energy E associated with (48), defined below, satisfies d
dtE = 0. Here

E =
1

2

(
‖Ex‖2 + ‖Ey‖2 + ‖Hz‖2

)
+ Ex + Ey + Ez,

Eα =
1

2

∞∫
−∞

(
‖λα‖2 + ξ2‖pα‖2

)
dνα(ξ), α ∈ {x, y}, Ez =

1

2

∞∫
−∞

(
‖λµ‖2 + ξ2‖pµ‖2

)
dνµ(ξ).

3.2. The PML System and Its Stability

Let us perform the PML change of variables for the system (48) as per Theorem 3.1. This results in the
following analogue of the system (31a-31j) (where again the difference is that the sums are substituted by
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integrals). The derivation of this system follows the derivation of (31a-31j), combined with the use of (47).

∂tDx + σyEx = ∂yHz, ∂tDy + σxEy = −∂xHz,

∂tBz + σy∂yE
∗
x − σx∂xE∗y = ∂yEx − ∂xEy,

∂tDα = ∂tEα +

∞∫
−∞

λα(ξ)dνα(ξ), ∂tλα + ξ2pα = Eα, ∂tpα = λα, ξ ∈ R, α ∈ {x, y},

∂tE
∗
x +

∞∫
−∞

λ∗x(ξ)dνx(ξ) + σyE
∗
x = Ex, ∂tE

∗
y +

∞∫
−∞

λ∗y(ξ)dνy(ξ) + σxE
∗
y = Ey,

∂tλ
∗
α + ξ2p∗α = E∗α, ∂tp

∗
α = λ∗α, ξ ∈ R, α ∈ {x, y},

∂tBz = ∂tHz +

∞∫
−∞

λµ(ξ)dνµ(ξ), ∂tλµ + ξ2pµ = Eµ, ∂tpµ = λµ, ξ ∈ R.

(49)

We can formulate the following analogue of Theorem 2.12, with the proof almost verbatim the same.

Theorem 3.4. An energy E associated with (49), defined as

E =
1

2

(
‖Ex − σyE∗x‖2 + ‖σyE∗x‖2 + ‖Ey − σxE∗y‖2 + ‖σxE∗y‖2 + ‖Hz‖2

)
+ Ex + Ey + Ez,

Ex =
1

2

 +∞∫
−∞

(
‖λx − σyλ∗x‖2 + ξ2‖px − σyp∗x‖2 + ‖σyλ∗x‖2 + ξ2‖σyp∗x‖2

)
dνx

 ,

Ey =
1

2

 +∞∫
−∞

(
‖λy − σxλ∗y‖2 + ξ2‖py − σxp∗y‖2 + ‖σxλ∗y‖2 + ξ2‖σxp∗y‖2

)
dνy

 ,

Ez =
1

2

+∞∫
−∞

(
‖λµ‖2 + ξ2‖pµ‖2

)
dνµ,

does not grow, provided any σx, σy ≥ 0:

d

dt
E = −2σx‖Ey − σxE∗y‖2 − 2σy‖Ex − σyE∗x‖2.

4. Stability of PMLs for a Non-constant Absorption Parameter for the 1D
Dispersive System

While we have proven the stability of the new PMLs under the assumption σx = const, obtaining the energy
estimates for σx 6= const remains an open question. It seems that showing the stability for varying σx is not
too trivial even for 1D dispersive models (being almost obvious for classical PMLs for a 1D non-dispersive wave
equation). The goal of this section is to prove the stability of the PMLs, that were proposed and analyzed in [5]
and in this work for σx ≡ const, in the case when σx 6= const for a 1D dispersive system of equations.

All over this section, without loss of generality, we will assume that the permittivity and the permeability
are Lorentz (3). Moreover, we will consider only the PMLs suggested in Theorem 2.7. However, all the results
can be extended to more general εx, εy, µ, and other PMLs (e.g. given in Theorem 3.1).



21

The 1D analogue of the dispersive system of equations (5a-5g) in the Laplace domain reads:

sεy(s)Êy = −∂xĤz, sµ(s)Ĥz = −∂xÊy. (50)

The time-domain equivalent of the above is given by the system of equations

∂tDy = −∂xHz, ∂tBz = −∂xEy,

∂tDy = ∂tEy +

ny∑
`=0

εy`λy`, ∂tλy` + ω2
y`py` = Ey, ∂tpy` = λy`, ` = 0, . . . , ny,

∂tBz = ∂tHz +

ny∑
`=0

µ`λµ`, ∂tλµ` + ω2
µ`pµ` = Hz, ∂tpµ` = λµ`, ` = 0, . . . , nµ.

(51)

This section is organized as follows. First, we consider a simplified case εy = µ, for which the derivation of
the energy estimates can be done as for the 1D non-dispersive wave equation. Next, we will concentrate on a
general case εy 6= µ, and show how to deal with it by rewriting the PML system of equations in a different form
and deriving the energy estimates for this new system.

4.1. Stability of PMLs with ψx = ε−1
y for a Special Case εy = µ

Let us assume that εy(s) = µ(s), and apply the PML change of variables (9) with ψx(s) = εy(s)−1 to (50):

sεy(s)Êy = −
(

1 +
σx

sεy(s)

)−1
∂xĤz, sεy(s)Ĥz = −

(
1 +

σx
sεy(s)

)−1
∂xÊy.

This results in the following system:

sεy(s)Êy + σxÊy = −∂xĤz, sεy(s)Ĥz + σxĤz = −∂xÊy, x ∈ R.

In the time domain, the above reads:

∂tDy + σxEy = −∂xHz, ∂tBz + σxHz = −∂xEy, (52a)

∂tDy = ∂tEy +

ny∑
`=0

εy`λy`, ∂tλy` + ω2
y`py` = Ey, ∂tpy` = λy`, (52b)

∂tBz = ∂tHz +

ny∑
`=0

εy`λz`, ∂tλz` + ω2
y`pz` = Hz, ∂tpz` = λz`, ` = 0, . . . , ny. (52c)

The energy nongrowth result follows trivially.

Proposition 4.1. An energy E associated with the system (52a-52c) defined as

E = ‖Ey‖2 + ‖Hz‖2 + Ey + Ez, Ey =

ny∑
`=0

εy`
(
‖λy`‖2 + ω2

y`‖py`‖2
)
, Ez =

ny∑
`=0

εy`
(
‖λz`‖2 + ω2

y`‖pz`‖2
)
,

does not grow, provided any non-negative σx ∈ L∞(R):

d

dt
E = −

+∞∫
0

(
|Ey|2 + |Hz|2

)
σx(x)dx.
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Proof. The energy identity is deduced by testing the first equation of (52a) with Ey, and the second equation
of (52a) with Hz, and summing up the obtained identities. The details are left to the reader. �

4.2. Stability of PMLs with ψx = ε−1
y for a General Case when εy 6= µ

The case εy 6= µ is less trivial. Applying the PML change of variables (9) with ψx = ε−1y to (50), we can
rewrite the corresponding system in the second order formulation, cf. (10),

∂x

(
εy(s)−1

(
1 +

σx(x)

sεy(s)

)−1
∂xĤz

)
− s2µ(s)

(
1 +

σx(x)

sεy(s)

)
Ĥz = 0, x ∈ R,

with σ(x) ≡ 0 for x < 0. Following the ideas of Section 2.3, we will show the coercivity of the corresponding
sesquilinear form for all s ∈ C+, namely

A(Ĥz, v) =

(
εy(s)−1

1 + σx(x)(sεy(s))−1
∂xĤz, ∂xĤz

)
+ s2µ(s)

((
1 + σx(x)(sεy(s))−1

)
Ĥz, v

)
, Ĥz, v ∈ H1(R). (53)

So far, we were able to show only a very special estimate, derived by testing (53) with v = sĤz and using a

proper scaling. Defining the branch cut of the square root as R≤0, we multiply the above with
√

sεy(s)
sµ(s) and test

the result with sĤz. This results in the following:

Re

(√
sεy
sµ

A
(
Ĥz, sĤz

))
= Re

 s̄
√

sεy
sµ ε

−1
y

(
1 + σx(x)(sεy)−1

)
|1 + σ(x)(sεy)−1|2

∂xĤz, ∂xĤz


+ Re

(
s̄

√
sεy
sµ

s2µ

((
1 +

σx(x)

sεy

)
Ĥz, Ĥz

))
.

We use the notation
√

sεy
sµ to underline that the real parts of the numerator and denominator are positive in

C+, and hence
sεy
sµ does not cross the branch cut of the square root when s ∈ C+. In this case we can use the

identity
√
z1z2 =

√
z1
√
z2 for z1, z2 ∈ C+, and rewrite the above as follows:

Re

(√
sεy
sµ

A
(
Ĥz, sĤz

))
= Re

|s|2((sµ)(sεy))−
1
2

∥∥∥∥∥ ∂xĤz

1 + σx(x)(sεy)−1

∥∥∥∥∥
2


+ Re

|εy|−2((sµ)−1(sεy))
1
2

∫
R

σx(x)

∣∣∣∣∣ Ĥz

1 + σx(x)(sεy)−1

∣∣∣∣∣
2

dx


+ Re

|s|2 ((sεy)(sµ))
1
2

∥∥∥Ĥz

∥∥∥2 + |s|2((sεy)−1(sµ))
1
2

∫
R

σx(x)
∣∣∣Ĥz

∣∣∣2 dx
 .

(54)

Thanks to Re
√

(sµ)(sεy) > 0 and Re
√

(sµ)−1(sεy) > 0 for s ∈ C+ we can see that the real part of every term

in the above is positive. This implies the coercivity of the scaled sesquilinear form A(Ĥz, v). Moreover, the
apparatus of the work [5] can be used to show the well-posedness and the stability of the resulting PML system
in the time domain. However, to perform the energy analysis, it is necessary to rewrite the original system of
1D equations in a very special form. This is the subject of the following section.
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4.2.1. A Preliminary Reformulation of the System (51)

For constant σx = const, the estimate (54) would imply the passivity of the scaled sesquilinear form√
sεy
sµ A(Ĥz, v), cf. Theorem 2.8. This suggests that to write the time-domain PML system for which the

energy estimates are derived in an easy manner, it may be first necessary to reformulate the original system
without the PML (51) in an equivalent form, making use of the ideas of Section 2.5.1.

As in Section 2.5.1, we will make use of the linearity, and rewrite the corresponding system in the time
domain, assuming the initial conditions (Ey, Hz)|t=0 = (0, Hz0). The case (Ey0, 0) can be treated similarly.
We thus start with (50) with the initial conditions (0, Hz0), using the same notation as in Section 2.5.1:

sεyÊ
(1)
y = −∂xĤ(1)

z , sµĤ(1)
z −Hz0 = −∂xÊy,

and then define Ĥe
z =

√
(sεy)−1(sµ)Ĥ

(1)
z . Then√

(sµ)(sεy)Ê(1)
y = −∂xĤe

z ,
√

(sµ)(sεy)Ĥe
z −Hz0 = −∂xÊ(1)

y . (55)

Since for µ 6= εy, the function
√

(sµ)(sεy) is not rational, to rewrite the above system in the time domain, we

will make use of the ideas of Section 3. In particular, notice that Re
√

(sεy)(sµ) > 0 for s ∈ C+. Lemma 3.2

applied to s−1
√

(sεy)(sµ), with the use of lim
sr→+∞

(
s−1
√

(sεy)(sµ)
)

= 1, yields

s−1
√

(sεy)(sµ) = 1 +

+∞∫
−∞

dν(ξ)

s2 + ξ2
.

Then the system (55) in the time domain reads

∂tD
e
y = −∂xHe

z , ∂tB
e
z = −∂xE(1)

y ,

∂tD
e
y = ∂tE

(1)
y +

+∞∫
−∞

λey(ξ)dν(ξ), ∂tλ
e
y + ξ2pey = E(1)

y , ∂tp
e
y = λey,

∂tB
e
z = ∂tH

e
z +

+∞∫
−∞

λez(ξ)dν(ξ), ∂tλ
e
z + ξ2pez = He

z , ∂tp
e
z = λez.

(56)

Let us remark that here we set He
z |t=0 = Hz0 and Bez |t=0 = Hz0. As before, to recover H

(1)
z , we can make use

of the identities similar to (42-43), more precisely

∂tH
(1)
z +

nµ∑
`=0

µ`λµ` = ∂tH
e
z +

+∞∫
−∞

λez(ξ)dν(ξ),

∂tλµ` + ω2
µ`pµ` = H(1)

z , ∂tpµ` = λµ`, ` = 0, . . . , nµ.

(57)

The equivalence result of this system to the system (51) mimics the result of Proposition 2.15.

Proposition 4.2. Let (E
(1)
y , He

z ) solve the system (56) with the initial conditions chosen as He
z |t=0 = Bz|t=0 =

Hz0 and as zero for the rest of unknowns. Let Ey, Hz be the solution to the system (51) with the initial

conditions chosen as Hz|t=0 = Bz|t=0 = Hz0 and as zero for the rest of unknowns. Then E
(1)
y (t) = Ey(t) and

Bez(t) = Bz(t) for all t ≥ 0.
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Similarly, the energy conservation is a corollary of Proposition 3.3, since (56) is a particular case of (48).

Proposition 4.3. An energy E associated with (56), defined below, satisfies d
dtE = 0. Here

E =
1

2

(
‖E(1)

y ‖2 + ‖He
z‖2
)

+ Eey + Eez , Eeα =
1

2

∞∫
−∞

(
‖λeα‖2 + ξ2‖peα‖2

)
dν(ξ), α ∈ {x, y}.

4.2.2. The PML System and Its Stability

Let us now apply the PMLs to the time-domain system (56), or, in the Laplace domain (55). Performing the
change of variables (9) with ψx = ε−1y results in the following system (recall that Hz0 is supported outside of
the perfectly matched layer) inside the perfectly matched layer:

√
(sµ)(sεy)Ê(1)

y

(
1 +

σx(x)

sεy

)
= −∂xĤe

z ,
√

(sµ)(sεy)Ĥe
z

(
1 +

σx(x)

sεy

)
= −∂xÊ(1)

y ,

or, alternatively, in the whole domain:

√
(sµ)(sεy)Ê(1)

y + σx(x)
√

(sµ)(sεy)−1Ê(1)
y = −∂xĤe

z ,√
(sµ)(sεy)Ĥe

z + σx(x)
√

(sµ)(sεy)−1Ĥe
z −Hz0 = −∂xÊ(1)

y .
(58)

To write the above in the time domain, we again apply Lemma 3.2 to the passive function s−1
√

(sεy)−1(sµ),

with the use of lim
sr→+∞

s−1
√

(sεy)−1(sµ) = 0. This results in the following representation:

s−1
√

(sεy)−1(sµ) =

+∞∫
−∞

dν∗(ξ)

s2 + ξ2
. (59)

With the help of the above we can write the system (58) in the time domain. We make use of s(s2+ξ2)−1Ê
(1)
y =

λ̂ey and a similar identity for λ̂ez, Ĥ
e
z :

∂tD
e
y + σx(x)

+∞∫
−∞

λey(ξ)dν∗(ξ) = −∂xHe
z , ∂tB

e
z + σx(x)

+∞∫
−∞

λez(ξ)dν
∗(ξ) = −∂xE(1)

y ,

∂tD
e
y = ∂tE

(1)
y +

+∞∫
−∞

λey(ξ)dν(ξ), ∂tλ
e
y + ξ2pey = E(1)

y , ∂tp
e
y = λey,

∂tB
e
z = ∂tH

e
z +

+∞∫
−∞

λez(ξ)dν(ξ), ∂tλ
e
z + ξ2pez = He

z , ∂tp
e
z = λez.

(60)

In order to recover H
(1)
z , we use (57). The following stability result holds for the above system.
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Theorem 4.4. Let σx(x) ∈ L∞(R). An energy of the PML system (60) defined by

E = ‖E(1)
y ‖2 + ‖He

z‖2 + Ey + Ez + E∗y + E∗z ,

Eeα =

+∞∫
−∞

(
‖λeα‖+ ξ2‖peα‖2

)
dν(ξ), E∗α =

+∞∫
−∞

∫
R

(
|λeα|2 + ξ2|peα|2

)
σx(x)dxdν∗(ξ), α ∈ {x, z},

remains constant: d
dtE = 0.

Proof. The result is obtained by testing the first equation of (60) with E
(1)
y , the second equation with He

z and
summing up the two obtained identities. The details are left to the reader. �

First of all, in the above we can clearly see the role of the condition σx(x) ≥ 0: it is required for the stability of
the PML system. Unlike the results of previous sections for σx ≡ const, the above result shows the conservation
of a certain energy, rather than its decay. In practice this may appear non-optimal.

The non-optimality becomes clear when one considers the case µ(s) = εy(s), for which one can obtain a finer
energy decay result in Section 4.1, but for which the results of Theorem 4.4 still remain valid. For instance, in this

case, (59) degenerates to a very special representation of the symbol s−1, namely s−1 = π−1
+∞∫
−∞

dξ
s2+ξ2 , s ∈ C+.

In this case, on one hand
√

(sεy)−1(sµ)Êy = Êy in the time domain corresponds to Ey, and on the other hand

it can be represented as π−1
+∞∫
−∞

λeydξ, see (60).

Nonetheless, the energy conservation result obtained in this section is not surprising, and is a consequence of
the fact that the system (60) can be viewed as a conservative extension of an equivalent PML system, see [14].

As for the original unknown H
(1)
z , the corresponding stability result mimics Proposition 2.17.

Proposition 4.5. For the solution of the system (60) coupled with (57), the following holds true:

Ẽz(t) :=
1

2

(
‖H(1)

z (t)−He
z (t)‖2 +

nµ∑
`=0

µ`

(
‖λ(1)µ` (t)‖2 + ω2

µ`‖p
(1)
µ` (t)‖2

))
≤ 2Ẽz(0) + CE(0)t2,

where E(t) is defined in Theorem 4.4.

Proof. See the proof of Proposition 2.17 in Appendix A. �

The above result indicates a possible linear growth of the field H
(1)
z . At the moment it is not clear whether

this estimate on the behaviour of the field H
(1)
z is optimal, cf. Remark 2.18.

5. Conclusions and Open Questions

In this work we have examined the stability of the PMLs of [5] for dispersive models with the help of the
energy techniques. We exploit the coercivity of the corresponding sesquilinear form in the Laplace domain,
and based on its analysis, we show how a set of auxiliary PML unknowns can be introduced to simplify the
derivation of the energy estimates. This technique allows to obtain the stability result for a constant absorption
parameter in 2D, and can be extended to the analysis of the PML with a non-constant absorption parameter
in 1D.

There are many open questions remaining, among them the derivation of the energy estimates for a non-
constant absorption parameter in two dimensions, even for classical PMLs and non-dispersive case. Another
interesting question is whether the technique of this work can be extended to analyze the stability of classical
PMLs in 3D. To our knowledge, no energy estimates are known in this case even for a constant absorption
parameter. This constitutes a subject of a future research.
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Appendix A. Proof of Proposition 2.17

Proof. Testing (42) with H
(1)
z −He

z , we obtain

(
∂t(H

(1)
z −He

z ), H(1)
z −He

z

)
+

nµ∑
`=0

µ`

(
λ
(1)
µ` , H

(1)
z

)
=

nµ∑
`=0

µ`

(
λ
(1)
µ` , H

e
z

)
+

neµ∑
`=0

µe
(
λeµ`, H

(1)
z −He

z

)
. (61)

The left-hand side of the above is d
dt Ẽz, see also (7). As for the right-hand side, let us consider each term

separately. The first term, with the use of the Cauchy-Schwartz formula, can be bounded∣∣∣∣∣
nµ∑
`=0

µ`

(
λ
(1)
µ` , H

e
z

)∣∣∣∣∣ ≤ ‖He
z‖

nµ∑
`=0

µ`

∥∥∥λ(1)µ` ∥∥∥ ≤ C‖He
z‖

(
nµ∑
`=0

µ`‖λ(1)µ` ‖
2

) 1
2

≤ C0

√
E(0)Ẽz, C0 > 0,

where we used the energy identity of Theorem 2.19 and the definition of Ẽz. Similarly, for some C ′ > 0, the
second term of the right-hand side of (61) satisfies∣∣∣∣∣∣

neµ∑
`=0

µe
(
λeµ`, H

(1)
z −He

z

)∣∣∣∣∣∣ ≤ C ′‖H(1)
z −He

z‖
neµ∑
`=0

µe‖λeµ`‖.

To bound the above, we notice that Theorem 2.19 implies that ‖λeµ`(t)‖ ≤ C∗E(0), with t ≥ 0 and C∗ indepen-
dent of t, see also Remark 2.14. Thus, for some constant C1 > 0,∣∣∣∣∣∣

neµ∑
`=0

µe
(
λeµ`, H

(1)
z −He

z

)∣∣∣∣∣∣ ≤ C1

√
E(0)Ẽz.

Thus we get from (61) the following differential inequality:

d

dt
Ẽz ≤ C2

√
E(0)Ẽz, C2 > 0,

or

1

2

d

dt

√
Ẽz ≤ C2

√
E(0).

From the above we obtain

Ẽz(t) ≤
(

2C2

√
E(0)t+

√
Ẽz(0)

)2

≤ 2
(

4C2
2E(0)t2 + Ẽz(0)

)
.

�

The above result shows that ‖H(1)
z (t)−He

z (t)‖ grows at most linearly, and since ‖He
z (t)‖ is uniformly bounded

in t, the growth of ‖H(1)
z (t)‖ is at most linear.
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