HAL CCSD
Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity
Denis, Vivien
Pelat, Adrien
Touzé, Cyril
Gautier, François
Laboratoire d'Acoustique de l'Université du Mans (LAUM) ; Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D) ; EDF (EDF)-EDF (EDF)
International audience
ISSN: 0020-7462
International Journal of Non-Linear Mechanics
Elsevier
hal-01442428
https://ensta-paris.hal.science/hal-01442428
https://ensta-paris.hal.science/hal-01442428/document
https://ensta-paris.hal.science/hal-01442428/file/TNANL_hal.pdf
https://ensta-paris.hal.science/hal-01442428
International Journal of Non-Linear Mechanics, 2017, A Conspectus of Nonlinear Mechanics: A Tribute to the Oeuvres of Professors G. Rega and F. Vestroni, 94, pp.134-145. ⟨10.1016/j.ijnonlinmec.2016.11.012⟩
DOI: 10.1016/j.ijnonlinmec.2016.11.012
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2016.11.012
en
Acoustic black hole
Wave turbulence
Damping
Flexural vibration
Geometric nonlinearity
Modal coupling
[NLIN]Nonlinear Sciences [physics]
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph]
info:eu-repo/semantics/article
Journal articles
Acoustic Black Hole effect (ABH) is a passive vibration damping technique without added mass based on flexural waves properties in thin structures with variable thickness. A common implementation is a plate edge where the thickness is locally reduced with a power law profile and covered with a viscoelastic layer. The plate displacement in the small thickness region is large and easily exceeds the plate thickness. This is the origin of geometric nonlinearity which can generate couplings between linear eigenmodes of the structure and induce energy transfer between low and high frequency regimes. This phenomenon may be used to increase the efficiency of the ABH treatment in the low frequency regime where it is usually inefficient. An experimental investigation evidenced that usual ABH implementation gives rise to measurable geometric nonlinearity and typical nonlinear phenomena. In particular, strongly nonlinear regime and wave turbulence are reported. The nonlinear ABH beam is then modeled as a von Kármán plate with variable thickness. The model is solved numerically by using a modal method combined with an energy-conserving time integration scheme. The effects of both the thickness profile and the damping layer are then investigated in order to improve the damping properties of an ABH beam. It is found that a compromise between the two effects can lead to an important gain of efficiency in the low frequency range.
http://creativecommons.org/licenses/by/
2017
info:eu-repo/semantics/OpenAccess