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1 Introduction

1.1 Objectives and structure of the paper

In [9] we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general
framework, that is, without the assumption of equiregularity. The present paper is devised as a complement
of this analysis, with both new results and open questions. The first aim is to extend the study to other kinds
of intrinsic measures on sub-Riemannian manifolds, namely Popp’s measure and general (i.e., non spherical)
Hausdorff measures. The second is to explore some consequences of [9] on metric measure spaces based on
sub-Riemannian manifolds.

We choose to give first in this introduction a readable and synthetic presentation in the form of an
informal discussion. We then provide all general definitions in Section 2. We study in Section 3 measured
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Gromov–Hausdorff convergence in sub-Riemannian geometry and we state open questions on the behaviour
of general Hausdorff measures. Finally Section 4 contains the results on Popp’s measure in the presence of
singular points.

1.2 Setting

Let (M,D, g) be a sub-Riemannian manifold: M is a smooth manifold, D a Lie-bracket generating distribu-
tion on M and g a Riemannian metric on D (note that our framework will permit us to consider rank-varying
distributions as well). As in Riemannian geometry, one defines the length of absolutely continuous paths
which are almost everywhere tangent to D by integrating the g-norm of their tangent vectors. Then, the
sub-Riemannian distance d is defined as the infimum of length of paths between two given points. The
Lie-bracket generating assumption implies that, for every point p ∈M there exists r(p) ∈ N such that

{0} = D0
p ⊂ D1

p ⊂ · · · ⊂ Dr(p)p = TpM, (1)

where Dip = {X(p) | X ∈ Di} and Di ⊂ Vec(M) is the submodule defined recursively by D1 = D, Di+1 =

Di + [D,Di]. A point p is regular if for every integer i the dimension dimDiq is locally constant near p.
Otherwise, p is said to be singular. Finally, for p ∈M we set

Q(p) =

r(p)∑
i=1

i(dimDip − dimDi−1p ).

We first discuss properties of Hausdorff measures near regular points; then we give some constructions
and estimates of Popp’s measures in the presence of singular points (i.e. in non equiregular manifolds).

1.3 On Hausdorff measures near regular points

Let us recall some results on the spherical Hausdorff measures in sub-Riemannian geometry (see Theorem 3.1
and Proposition 5.1(iv) in [9]). Let U be a connected component of the set R of regular points (which is an
open subset of M).

(i) The Hausdorff dimension of U is dimH U = Q, where Q is the constant value of Q(p) for p ∈ U .

(ii) The spherical Hausdorff measure SQ is a Radon measure on U .

Assume moreover M to be oriented and consider a smooth volume µ on M , i.e., a measure defined on open
sets by µ(A) =

´
A
ω, where ω ∈ ΛnM is a positively oriented non degenerate n-form.

(iii) SQ and µ are mutually absolutely continuous.

(iv) The Radon–Nikodym derivative dSQ
dµ (p), p ∈ U , coincides with the density limε→0

SQ(B(p,ε))
µ(B(p,ε)) , whose

value is

lim
ε→0

SQ(B(p, ε))

µ(B(p, ε))
=

2Q

µ̂p(B̂p)
, (2)

where B(p, ε) is the sub-Riemannian ball centered at p of radius ε, B̂p is the unit ball of the nilpotent

approximation (TpM, d̂p) at p, and µ̂p is a measure on TpM obtained through a blow-up procedure of
µ at p.

(v) The function p 7→ dSQ
dµ (p) is continuous on U .
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For the usual Hausdorff measure HQ, since HQ ≤ SQ ≤ 2QHQ, properties (ii)-(iv) hold: HQ is a Radon
measure on U , HQ and µ are mutually absolutely continuous, and

dHQ

dµ
(p) = lim

ε→0

HQ(B(p, ε))

µ(B(p, ε))
.

However we have no formula such as (2) for this density. We would like to discuss here the different
interpretations and implications of (2) and its potential extensions to HQ.

Measured Gromov–Hausdorff convergence. Note that 2Q = SQ
d̂p

(B̂p), where SQ
d̂p

is the Q-dimensional

spherical Hausdorff measure of the metric space (TpM, d̂p). Thus (2) writes as

lim
ε→0

SQ(B(p, ε))

µ(B(p, ε))
=
SQ
d̂p

(B̂p)

µ̂p(B̂p)
.

Knowing that (TpM, d̂p) is the metric tangent cone to (M,d) at p, the above formula suggests a kind of

convergence of the measures SQ and µ to SQ
d̂p

and µ̂p respectively through a blow-up procedure. The

appropriate notion is the one of measured Gromov–Hausdorff convergence of pointed metric measure spaces
(see Definition 3.2), and we actually prove in Section 3.2 the following results.

Theorem 1.1.

• For every p ∈ M , (M, 1εd,
1

εQ(p)µ, p) converges to (TpM, d̂p, µ̂
p, 0) in the measured Gromov–Hausdorff

sense as ε→ 0.

• For every regular point p ∈M , (M, 1εd,S
Q
d/ε, p) converges to (TpM, d̂p,SQ

d̂p
, 0) in the measured Gromov–

Hausdorff sense as ε → 0, where Q = Q(p) and SQd/ε denotes the Q-dimensional spherical Hausdorff

measure on M associated with the distance 1
εd.

The key point in the proof of the second result is the fact that the Radon–Nikodym derivative dSQ
dµ (q)

depends continuously on q near a regular point p. This raises a first question:

Question 1. Is the function q 7→ dHQ
dµ (q) continuous near a regular point?

If it is the case, then, when p is a regular point, (M, 1εd,H
Q
d/ε, p) admits a limit for the measured Gromov–

Hausdorff convergence as ε→ 0.

Isodiametric constant. In point (iv) above we obtain the Radon–Nikodym derivative dSQ
dµ (p) through

the usual density limε→0
SQ(B(p,ε))
µ(B(p,ε)) (this is possible since both measures are Radon). We could rather use

Federer densities, which yields the formula (see [7, 2.10.17(2),2.10.18(1)] or [12, Theorem 11]):

dµ

dSQ
(p) = lim

ε→0
sup

{
µ(B)

(diamB)Q
: B closed ball, p ∈ B, 0 < diamB < ε

}
.

Note that for closed balls B = B(q, r), we have

µ(B(q, r))

(diamB(q, r))Q
=
µ(B(q, r))

(2r)Q
→ µ̂q(B̂q)

2Q
as r → 0,

and, by [9, Proposition 5.1(iv)], in the neighbourhood of a regular point the convergence above is uniform
w.r.t. q and the limit is continuous. We recover in this way (2) (actually the proof of the latter formula in
[9] already used these properties of uniform convergence and continuity).
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We can apply the same strategy to the usual Hausdorff measure. Using Federer densities (see [7,
2.10.17(2),2.10.18(1)], or [12, Theorem 10]), we obtain

dµ

dHQ
(p) = lim

ε→0
sup

{
µ(S)

(diamS)Q
: S closed subset of M, p ∈ S, 0 < diamS < ε

}
.

This formula is interesting when applied to µ = SQ. In that case it takes the form

dSQ

dHQ
(p) = lim

ε→0
I (p, ε), with I (p, ε) = sup

{
SQ(S)

(diamS)Q
: S closed subset of M, p ∈ S, 0 < diamS < ε

}
.

When the sub-Riemannian manifold has a structure of a Carnot group, I := I (p, ε) is independent of
p and ε and it is called the isodiametric constant of the group. In particular, at a regular point p, the
nilpotent approximation (TpM, d̂p) has a structure of a Carnot group. We will denote by Ip its isodiametric
constant and it turns out that Ip is the multiplicative factor relating Q-dimensional Hausdorff and spherical

Hausdorff measures in the Carnot group, i.e., there holds SQ
d̂p

= IpHQ
d̂p

(recall that Q = Q(p)). This raises

a second question:

Question 2. Let p be a regular point. Does I (p, ε) converge to Ip as ε→ 0?

When the answer is positive, we obtain a formula similar to (2) for the Q-dimensional Hausdorff measure,
since its Radon–Nikodym derivative w.r.t. a smooth volume µ at a regular point p is given by

dHQ

dµ
(p) =

2Q

Ip µ̂p(B̂p)
.

In that case, Question 1 above amounts to the following problem:

Question 3. Is the isodiametric constant Iq of the nilpotent approximation at q continuous w.r.t. q near
a regular point?

A positive answer to both questions 2 and 3 would imply the convergence in the measured Gromov–Hausdorff
sense of (M, 1εd,H

Q
d/ε, p) to (TpM, d̂p,HQ

d̂p
, 0) when p is a regular point. All these issues are discussed in detail

in Section 3.

1.4 On Popp’s measure in the presence of singular points

Popp’s measure is a smooth volume on sub-Riemannian manifolds defined near regular points that is in-
trinsically associated to the sub-Riemannian structure. It was introduced first in [13] and then used in [3]
to define an intrinsic Laplacian in the sub-Riemannian setting. An explicit formula for Popp’s measure in
terms of adapted frames is given in [4].

Popp’s measure P is the smooth volume associated with a volume form which is built by a suitable
choice of inner product structure on the graded vector space

grp(D) = D1
p ⊕D2

p/D1
p ⊕ · · · ⊕ Dr(p)p /Dr(p)−1p .

This graded vector space depends smoothly on p only near regular points, hence Popp’s measure is defined
only on the open set R of regular points. This raises two questions.

Question 1. How does P behave near singular points?

Question 2. Is it possible to extend the notion of Popp’s measure to the whole manifold, including the set
of singular points?

As for the first question, we prove that Popp’s measure behaves as the spherical Hausdorff measure.
More precisely, assume (M,D, g) is an oriented sub-Riemannian manifold and fix a smooth volume µ on M .
Consider an open connected subset U of R, denote by PU the Popp measure on U and by Q the Hausdorff
dimension of U .
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Theorem 1.2. For any compact subset K ⊂M there exists a constant C > 0 such that, for every q ∈ U∩K,

C−1
dSQ

dµ
(q) ≤ dPU

dµ
(q) ≤ C dS

Q

dµ
(q). (3)

As a consequence, the detailed analysis of the behaviour of dS
Q

dµ (q) provided in [9] also applies to dPU

dµ (q).
We stress that the compact set K in Theorem 1.2 may not be contained in U . We have in particular the
following properties if the boundary ∂U contains a singular point p:

• dPU

dµ (q)→∞ as q → p;

• dPU

dµ (q) may be not µ-integrable near p; in other terms, the measure of balls PU (B(q, r) ∩ U) may

tend to ∞ as q → p (the radius r being fixed), or equivalently, PU , considered as a measure on M by
setting PU = 0 on M \ U , may not be Radon measure on M .

To answer the second question, we recall the notion of equisingular submanifolds, see [9]. These are
submanifolds N of M on which the restricted graded vector space

grNp (D) =

r(p)⊕
i=1

(Dip ∩ TpN)/(Di−1p ∩ TpN)

depends smoothly on p ∈ N . A construction similar to the one of PU gives rise to a smooth volume PN

on N . Note that the Hausdorff dimension of an equisingular submanifold can be computed algebraically as

dimH N = QN =

r(q)∑
i=1

i
(
dim(Diq ∩ TqN)− dim(Di−1q ∩ TqN)

)
for any q ∈ N,

see [9, Theorem 5.3].
Assume now that M is stratified by equisingular submanifolds, that is, M is a countable union ∪iNi

of disjointed equisingular submanifolds Ni. This assumption is not a strong one since it is satisfied by
any analytic sub-Riemannian manifolds and by generic C∞ sub-Riemannian structures. Note that, up to
rearrangement, the regular set R is the union of all the open strata Ni and that the singular set S is of
µ-measure zero. Under this assumption we can construct two kinds of Popp’s measures on M :

• we set
P1 =

∑
i∈J

PNi ,

where J = {i | dimH Ni = dimHM} (as before we consider PN as a measure on M by setting
PN = 0 on M \ N), and we obtain a measure that is absolutely continuous w.r.t. the Hausdorff
measures HdimHM and SdimHM ;

• or we set
P2 = PR =

∑
i∈O

PNi ,

where O = {i | dimNi = dimM}, and we obtain a measure that is absolutely continuous w.r.t. any
smooth volume.
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2 Notations

Hausdorff measures. Let us first recall some basic facts on Hausdorff measures. Let (M,d) be a metric
space. We denote by diamS the diameter of a set S ⊂ M . Let α ≥ 0 be a real number. For every set
E ⊂M , the α-dimensional Hausdorff measure Hα of E is defined as Hα(E) = limε→0+ Hαε (E), where

Hαε (E) = inf

{ ∞∑
i=1

(diamSi)
α

: E ⊂
∞⋃
i=1

Si, Si nonempty set, diamSi ≤ ε

}
,

and the α-dimensional spherical Hausdorff measure is defined as Sα(E) = limε→0+ Sαε (E), where

Sαε (E) = inf

{ ∞∑
i=1

(diamSi)
α

: E ⊂
∞⋃
i=1

Si, Si is a ball, diamSi ≤ ε

}
.

For every set E ⊂M , the non-negative number

D = sup{α ≥ 0 | Hα(E) =∞} = inf{α ≥ 0 | Hα(E) = 0}

is called the Hausdorff dimension of E and it is denoted as dimH E. Notice that HD(E) may be 0, > 0, or
∞. By construction, for every subset S ⊂M ,

Hα(S) ≤ Sα(S) ≤ 2αHα(S), (4)

hence the Hausdorff dimension can be defined equivalently using spherical measures.
Given a metric space (M,d) we denote by Bd(p, ε) the open ball {q ∈M | d(p, q) < ε}.

Sub-Riemannian manifolds. In the literature a sub-Riemannian manifold is usually a triplet (M,D, g),
where M is a smooth (i.e., C∞) manifold, D is a subbundle of TM of rank m < dimM and g is a Riemannian
metric on D. Using g, the length of horizontal curves, i.e., absolutely continuous curves which are almost
everywhere tangent to D, is well-defined. When D is Lie bracket generating, the map d : M ×M → R
defined as the infimum of length of horizontal curves between two given points is a continuous distance
(Rashevsky-Chow Theorem), and it is called sub-Riemannian distance.

In the sequel, we are going to deal with sub-Riemannian manifolds with singularities. Thus we find it
more natural to work in a larger setting, where the map q 7→ Dq itself may have singularities. This leads us
to the following generalized definition, see [2, 5].

Definition 2.1. A sub-Riemannian structure on a manifold M is a triplet (U, 〈·, ·〉, f) where (U, 〈·, ·〉) is a
Euclidean vector bundle over M (i.e., a vector bundle πU : U→M equipped with a smoothly-varying scalar
product q 7→ 〈·, ·〉q on the fibre Uq) and f is a morphism of vector bundles f : U → TM , i.e. a smooth
map linear on fibers and such that, for every u ∈ U, π(f(u)) = πU(u), where π : TM → M is the usual
projection.

Let (U, 〈·, ·〉, f) be a sub-Riemannian structure on M . We define the submodule D ⊂ Vec(M) as

D = {f ◦ σ | σ smooth section of U}, (5)

and for q ∈ M we set Dq = {X(q) | X ∈ D} ⊂ TqM . Clearly Dq = f(Uq). The length of a tangent vector
v ∈ Dq is defined as

gq(v) := inf{〈u, u〉q | f(u) = v, u ∈ Uq}. (6)

An absolutely continuous curve γ : [a, b] → M is horizontal if γ̇(t) ∈ Dγ(t) for almost every t. If D is Lie
bracket generating, that is

∀ q ∈M LieqD = TqM, (7)
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then the map d : M×M → R defined as the infimum of length of horizontal curves between two given points
is a continuous distance as in the classic case. In this paper, all sub-Riemannian manifolds are assumed to
satisfy the Lie bracket generating condition (7).

Let (U, 〈·, ·〉, f) be a sub-Riemannian structure on a manifold M , and D, g the corresponding module and
quadratic form as defined in (5) and (6). In analogy with the constant rank case and to simplify notations,
in the sequel we will refer to the sub-Riemannian manifold as the triplet (M,D, g).

Given i ≥ 1, define recursively the submodule Di ⊂ Vec(M) by

D1 = D, Di+1 = Di + [D,Di].

Fix p ∈M and set Dip = {X(p) | X ∈ Di}. The Lie-bracket generating assumption implies that there exists
an integer r(p) such that

{0} = D0
p ⊂ D1

p ⊂ · · · ⊂ Dr(p)p = TpM. (8)

Set ni(p) = dimDip and

Q(p) =

r(p)∑
i=1

i(ni(p)− ni−1(p)). (9)

To write Q(p) in a different way, we define the weights of the flag (8) at p as the integers w1(p), . . . , wn(p)
such that wi(p) = s if dimDs−1p < i ≤ dimDsp. Then Q(p) =

∑n
i=1 wi(p). We say that a point p is regular if,

for every i, ni(q) is constant as q varies in a neighborhood of p. Otherwise, the point is said to be singular.
A sub-Riemannian manifold with no singular point is said to be equiregular.

We end by introducing a short notation for balls. When it is clear from the context, we will omit the
upscript d for balls B(q, r) in a manifold M endowed with a sub-Riemannian distance. Given p ∈ M we

denote by B̂p the unit ball Bd̂p(0, 1) in the nilpotent approximation at p.
We refer the reader to [2, 5, 13] for a primer in sub-Riemannian geometry.

3 Measured Gromov–Hausdorff convergence in sub-Riemannian
geometry

In this section we prove some facts concerning measured Gromov–Hausdorff convergence of sub-Riemannian
manifolds.

3.1 Measured Gromov–Hausdorff convergence

Recall the notion of Gromov–Hausdorff convergence of pointed metric spaces. Given a metric space (X, d)
and two subsets A,B ⊂ X, the Hausdorff distance between A and B is

dH(A,B) = inf{ε > 0 | A ⊂ Iε(B), B ⊂ Iε(A)},

where Iε(E) = {x ∈ X | dist(x,E) < ε}.

Definition 3.1. Let (Xk, dk), k ∈ N be metric spaces and xk ∈ Xk. We say that the pointed metric spaces
(Xk, dk, xk) converge to (X∞, d∞, x∞) in the Gromov–Hausdorff sense, provided for any R > 0, the quantity

inf { ε > 0 | ∃ (Z, d) compact metric space, ∃ ik : B
dk

(xk, R)→ Z, ∃ i∞ : B
d∞

(x∞, R)→ Z,

isometric embeddings such that dH(ik(B
dk

(xk, R)), i∞(B
d∞

(x∞, R))) < ε
}

converges to zero as k goes to ∞. Any Gromov–Hausdorff limit is unique up to isometry.
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A particular case of Gromov–Hausdorff convergence is the one where the sequence of spaces is constructed
by a blow-up procedure of the distance around a given point. Take a metric space (X, d) and a point x ∈ X.
We say that the pointed metric space (X∞, d∞, x∞) is a metric tangent cone to (X, d) at x if (X, 1εd, x)
converges to (X∞, d∞, x∞) in the Gromov–Hausdorff sense as ε→ 0.

Given a sub-Riemannian manifold (M,D, g) and p ∈M , a metric tangent cone to (M,d) at p exists and

it is equal (up to an isometry) to (TpM, d̂p, 0), where d̂p is the sub-Riemannian distance associated with the
nilpotent approximation at p (see [5] for the proof and the definition of nilpotent approximation).

When a measure is given on a metric space, a natural notion of convergence is that of measured Gromov–
Hausdorff convergence.

Definition 3.2 (see, for instance, [10]). Let (Xk, dk), k ∈ N, be complete and separable metric spaces, mk

be Borel measures on Xk which are finite on bounded sets, and xk ∈ supp(mk). We say that the pointed
metric measure spaces (Xk, dk,mk, xk) converge to (X∞, d∞,m∞, x∞) in the measured Gromov–Hausdorff
sense, provided for any δ,R > 0 there exists N(δ,R) such that for all k ≥ N(δ,R) there exists a Borel map

fR,δk : Bdk(xk, R)→ X∞ such that

a) fR,δk (xk) = x∞,

b) supx,y∈Bdk (xk,R) |dk(x, y)− d∞(fR,δk (x), fR,δk (y))| ≤ δ,

c) the δ-neighborhood of fR,δk (Bdk(xk, R)) contains Bd∞(x∞, R− δ),

d) (fR,δk )](mkxBdk (xk,R)) weakly converges1 to m∞xBd∞ (x∞,R) as k →∞ for almost every R > 0.

It is not hard to see that conditions a), b), c) are equivalent to requiring that the sequence of pointed
metric spaces (Xk, dk, xk) converges to (X∞, d∞, x∞) in the Gromov–Hausdorff sense. The only condition
involving measures is the last one.

One would expect that, when (Xk, dk, xk) converges to some (X∞, d∞, x∞) in the Gromov–Hausdorff
sense and mk is some measure whose construction is intrinsically associated to dk (e.g. mk a Hausdorff
measure), then measured Gromov–Hausdorff convergence (with limit measure the one corresponding to the
same construction in the limit space (X∞, d∞)) should be quite natural to prove. It turns out that this is not
the case and in general one needs additional conditions. For instance, when (Xk, dk) are Alexandrov spaces
having Hausdorff dimension α and converging to some (X∞, d∞, x∞) in the Gromov–Hausdorff sense, a suffi-
cient condition for the measured Gromov–Hausdorff convergence of (Xk, dk,Hαdk , xk) to (X∞, d∞,Hαd∞ , x∞)
is that all metric spaces (Xk, dk) satisfy the same curvature bound (see [6, Theorem 10.10.10]).

In the sequel we are going to show two results concerning measured Gromov–Hausdorff convergence in
sub-Riemannian manifolds.

3.2 Convergence results for smooth volumes and spherical Hausdorff measures

We study first the case of smooth volumes in sub-Riemannian manifolds.
Let (M,D, g) be a sub-Riemannian manifold. At a regular point p ∈M the metric tangent cone (TpM, d̂p)

to (M,d) has a structure of a Carnot group. Assume M is oriented and let µ be a smooth volume on M
associated with a volume form ω. If p is a regular point, then ω induces canonically a left-invariant volume
form ω̂p on TpM . We denote by µ̂p the smooth volume on TpM defined by ω̂p.

1We introduce the following notation. Given two metric spaces (X, dX), (Y, dY ), a measurable map T : X → Y (where we
consider Borel σ-algebras on X and Y ), and a non negative Radon measure µ on X, we define the push-forward measure T#µ
on Y by

T#µ(B) = µ(T−1(B)).

This definition provides the change of variable formulaˆ
Y
ϕdT#µ =

ˆ
X
ϕ ◦ T dµ, (10)

for every bounded or nonnegative measurable map ϕ : Y → R.
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Proposition 3.3. Let (M,D, g) be an oriented sub-Riemannian manifold and let µ be any smooth volume

on M . Then, for every regular point p ∈M , (M, 1εd,
1

εQ(p)µ, p) converges to (TpM, d̂p, µ̂
p, 0) in the measured

Gromov–Hausdorff sense, as ε→ 0.

Proof. Denote by dε the distance d/ε and let R > 0. Note that the metric space (Bdε(p,R), dε), i.e., the set
{q ∈M | 1εd(q, p) < R} endowed with the distance dε, coincides with (Bd(p,Rε), dε). We already know that

(B
d
(p,Rε), dε, p) converges to (B

d̂p
(0, R), d̂p, 0) in the Gromov–Hausdorff sense. To cast this convergence in

the language of Definition 3.2, we fix some privileged coordinates (x1, . . . , xn) centered at p and we define the

function2 fε : Bd(p,Rε)→ Bd̂p(0, R) by fε(x) = δ1/εx, where δλ : Rn → Rn is the nonhomogeneous dilation

δλ(x1, . . . , xn) = (λw1(p)x1, . . . , λ
wn(p)xn). Then condition a) is satisfied by construction and condition b) is

a consequence of the convergence

lim
ε→0

sup
x,x′∈BdRε(p)

∣∣∣∣d(x, x′)

ε
− d̂p(fε(x), fε(x

′))

∣∣∣∣ = 0,

see for instance [5, Theorem 7.32]. Condition c) follows by the fact that, as ε→ 0,

Bd̂p(0, Rε(1− o(1))) ⊂ Bd(p,Rε) ⊂ Bd̂p(0, Rε(1 + o(1))), (11)

see [5, Corollary 7.33].
To prove condition d) we must show that for every continuous function h : TpM → R there holds

lim
ε→0

ˆ
Bd̂p (0,R)

h dµε =

ˆ
Bd̂p (0,R)

h dµ̂p,

where

µε = (fε)]

(
1

εQ
µxBd(p,Rε)

)
,

and we set Q := Q(p). By the change of variable formula (10),
ˆ
Bd̂p (0,R)

h(x) dµε(x) =
1

εQ

ˆ
Bd(p,Rε)

h(δ1/εx) dµ(x).

Thanks to (11),

lim
ε→0

1

εQ

ˆ
Bd(p,Rε)

h(δ1/εx) dµ(x) = lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx) dµ(x),

whenever one among the two limit exists.
Note that in the coordinates x we can express dµ(x) as ω(∂x1 , . . . , ∂xn)|xdL, where dL = dx1 . . . dxn, and

dµ̂p(x) as ω(∂x1 , . . . , ∂xn)|0dL. Now, since the Lebesgue measure L in privileged coordinates is homogeneous
of order Q with respect to dilations δλ, applying the change of variable y = δ1/εx we obtain

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx) dµ(x) =

ˆ
Bd̂p (0,R(1+o(1)))

h(y)ω(∂y1 , . . . , ∂yn)|δεy dL(y).

Since the function h is continuous and the function ω(∂y1 , . . . , ∂yn) is smooth, we deduce

lim
ε→0

ˆ
Bd̂p (0,R(1+o(1)))

h(y)ω(∂y1 , . . . , ∂yn)|δεy dL(y) =

ˆ
Bd̂p (0,R)

h(y) dµ̂p(y), (12)

which concludes the proof.

2With this definition of fε, the image fε(Bd(p,Rε)) may not be entirely contained in Bd̂p (0, R). To be more precise, one

should take as fε(x) the projection of the point δ1/εx in Bd̂p (0, R). For the sake of readability and taking into account (11),
we prefer to avoid introducing the projection.
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Remark 3.4. In the proof above, we use inclusions (11) to infer that the required convergence can be proved
on the nilpotent ball, which is a homogeneous set. Then, the main ingredient to deduce condition d) is
the fact that the Radon–Nikodym derivative of µ with respect to the Lebesgue measure in coordinates is
continuous at 0.

The assumption of regularity of p in Proposition 3.3 can be dropped. Indeed, without this assumption
it is not possible in general to define ω̂p but it is possible to define the measure µ̂p on TpM : choose local
coordinates x near p, which identify TpM to Rn, and set, for a Borel set A ⊂ TpM ,

µ̂p(A) =

ˆ
A

ω(∂x1
, . . . , ∂xn)|0dx1 . . . dxn. (13)

And this expression of µ̂p is the only one that we need in the preceding proof (it is used in (12)).

Corollary 3.5. The statement of Proposition 3.3 holds for at a singular point p.

Remark 3.6. With the definition (13) of µ̂p, we have the following expansion, already known at regular
points (see [1, Corollary 28]),

µ(B(p, ε)) = εQ(p)µ̂p(B̂p) + o(εQ(p)).

We now consider measured Gromov–Hausdorff convergence of spherical Hausdorff measures.

Proposition 3.7. Let (M,D, g) be a sub-Riemannian manifold and p ∈M be a regular point. Set Q := Q(p).

Denote by SQd/ε the Q-dimensional spherical Hausdorff measure on M associated with the distance 1
εd and

by SQ
d̂p

the Q-dimensional spherical Hausdorff measure on TpM associated with d̂p. Then (M, 1εd,S
Q
d/ε, p)

converges to (TpM, d̂p,SQ
d̂p
, 0) in the measured Gromov–Hausdorff sense, as ε→ 0.

The idea of the proof is the same as the one used to deduce Proposition 3.3 and it is based on the fact
that, near a regular point, SQ is absolutely continuous with respect to µ and its Radon–Nikodym derivative
(which is computed explicitly in [1]) is a continuous function.

Proof. Let R > 0. Reasoning as in the proof of Proposition 3.3 it suffices to prove condition d), namely that,
for every continuous function h : TpM → R,

lim
ε→0

ˆ
Bd̂p (0,R)

h dσε =

ˆ
Bd̂p (0,R)

h dSQ
d̂p
,

where
σε = (fε)]

(
SQd/εxBd(p,Rε)

)
,

and fε is defined as in the proof of Proposition 3.3 in a system of privileged coordinates x centered at p.
First of all, notice that by construction of Hausdorff measures, we have the identity SQd/ε = 1

εQ
SQ, where

SQ is the Q-dimensional Hausdorff measure in M associated with d. Hence, using the change of variable
formula (10),

ˆ
Bd̂p (0,R)

h(x) dσε(x) =

ˆ
Bd(p,Rε)

h(δ1/εx) dSQd/ε(x) =
1

εQ

ˆ
Bd(p,Rε)

h(δ1/εx) dSQ(x).

Thanks to (11),

lim
ε→0

1

εQ

ˆ
Bd(p,Rε)

h(δ1/εx) dSQ(x) = lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx) dSQ(x),
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whenever one among the two limit exists. Let µ be a smooth volume onM (or on an orientable neighbourhood
of p). Since p is regular, in a neighbourhood of this point SQ is absolutely continuous with respect to µ, the

Radon–Nikodym derivative dSQ
dµ is given explicitly by (2), i.e.

dSQ

dµ
(x) =

2Q

µ̂x(B̂x)
,

and it is a continuous function. Thus

lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx) dSQ(x) = lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx)
dSQ

dµ
(x) dµ(x)

= lim
ε→0

ˆ
Bd̂p (0,Rε(1+o(1)))

h(y)
dSQ

dµ
(δεy)ω(∂y1 , . . . , ∂yn)|δεy dL(y).

where we apply the change of variable formula (10) and express µ in terms of the Lebesgue measure in the
chosen system of privileged coordinates. By convergence (12), we deduce that

lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx) dSQ(x) =

ˆ
Bd̂p (0,R)

h(y)
dSQ

dµ
(0) dµ̂p(y).

Now, since p is a regular point, TpM has a structure of a Carnot group and µ̂p and SQ
d̂p

are both Haar

measures on this group. As a consequence they are proportional with a coefficient equal to

dSQ
d̂p

dµ̂p
(x) =

2Q

µ̂p(B̂p)
=
dSQ

dµ
(0) ∀x ∈ TpM,

(remind that in privileged coordinates p corresponds to x = 0). Finally,

ˆ
Bd̂p (0,R)

h(y)
dSQ

dµ
(0) dµ̂p(y) =

ˆ
Bd̂p (0,R)

h(y) dSQ
d̂p
,

which ends the proof.

Remark 3.8. The key property in the proof of weak convergence of spherical Hausdorff measure is that it
is absolutely continuous with respect to a smooth volume and with continuous Radon–Nikodym derivative.
To our best understanding, the idea of using a smooth volume to handle spherical Hausdorff measure is the
only way to get convergence (without further assumptions).

3.3 Hausdorff measures

In this section we analyse the problem of measured Gromov–Hausdorff convergence for Hausdorff measures.
We start with a simple fact.

Proposition 3.9. Let (M,D, g) be an oriented sub-Riemannian manifold and µ be any smooth volume on
M . Let U ⊂ M be a connected component of the set of regular points and Q be the constant value of Q(p)
for p ∈ U . Then µ and HQ are mutually absolutely continuous on U and the Radon–Nikodym derivative of
HQ with respect to µ can be computed as a density, i.e.,

dHQ

dµ
(p) = lim

r→0

HQ(B(p, r))

µ(B(p, r))
, ∀ p ∈ U.

Proof. Since SQ is Borel regular and finite on compact sets, so is HQ since HQ ≤ SQ ≤ 2QHQ. Hence
HQ is a Radon measure and we apply [15, Theorem 4.7] to X = M , µ1 = µ and µ2 = HQ to obtain the
conclusions.
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Assume p ∈ M is a regular point. In the spirit of Proposition 3.7, a natural question is to ask if
(M,d/ε,HQd/ε, p) converges to (TpM, d̂p,HQ

d̂p
, 0) in the measured Gromov–Hausdorff sense, as ε→ 0.

As we recall in the proof of Proposition 3.3, conditions a), b) and c) of Definition 3.2 (which do not

involve measures) are verified choosing fε : Bd(p,Rε)→ Bd̂p(0, R) as fε(x) = δ1/εx, where x = (x1, . . . , xn)
is a system of privileged coordinates centered at p. Hence the question reduces to the weak-∗ convergence
of the measures

ηε = (fε)]

(
HQd/εxBd(p,Rε)

)
,

to the measure HQ
d̂p
x
Bd̂p (0,R)

.

Let us proceed as in Proposition 3.7. There holds

lim
ε→0

ˆ
Bd̂p (0,R)

h dηε = lim
ε→0

1

εQ

ˆ
Bd̂p (0,Rε(1+o(1)))

h(δ1/εx)dHQ(x)

= lim
ε→0

ˆ
Bd̂p (0,R(1+o(1)))

h(y)
dHQ

dµ
(δεy)ω(∂y1 , . . . , ∂yn)|δεy dL(y),

whenever one of the limits above exists. At this point, in order to continue one needs to assess the existence
and value of the limit

lim
ε→0

dHQ

dµ
(δεy). (14)

In particular, concluding as in Proposition 3.7 we have the following sufficient conditions for measured
Gromov–Hausdorff convergence.

Proposition 3.10. Under the assumptions of Proposition 3.9, if the function x 7→ dHQ
dµ (x) is continuous,

then ηεxBd̂p (0,R)
weak-∗ converges to dHQ

dµ (0)µ̂px
Bd̂p (0,R)

. If moreover dHQ
dµ (x) =

HQ
d̂x

(B̂x)

µ̂(B̂x)
, then (M,d/ε,HQd/ε, p)

converges to (TpM, d̂p,HQ
d̂p
, 0) in the measured Gromov–Hausdorff sense.

Recall that, for spherical Hausdorff measures, to prove continuity of dS
Q

dµ , the idea is to compute the limit

lim
r→0

SQ(B(x, r))

µ(B(x, r))
, (15)

which turns out to equal
SQ
d̂x

(B̂x)

µ̂x(B̂x)
and show that the latter is continuous as a function of x. The difficulty in

estimating the quotient H
Q(B(x,r))
µ(B(x,r)) is that one needs uniform estimates of HQ at any set of small diameter

covering balls centered at points in a neighborhood of p. This is the main (and hard) problem when one
passes from analysis of SQ to that of HQ: coverings in the construction of SQ are made with balls (i.e. sets
of points having bounded distance from a fixed one), whereas for HQ coverings are much more general and
made with any set.

We do not know whether dHQ
dµ (x) coincides with the ratio

HQ
d̂x

(B̂x)

µ̂x(B̂x)
. Neither do we know that the function

x 7→
HQ
d̂x

(B̂x)

µ̂x(B̂x)
is continuous. Nevertheless, we can relate last continuity to the notion of isodiametric constants

in Carnot groups.
Indeed, we can study the Radon–Nikodym derivative of HQ w.r.t. SQ rather than µ since (2) implies

dHQ

dµ
(p) =

2Q

µ̂p(B̂p)

dHQ

dSQ
(p).
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Using Federer densities (see subsection 1.3), the ratio dSQ
dHQ (p) is given by limε→0 I (p, ε), where

I (p, ε) = sup

{
SQ(S)

(diamS)Q
: S closed subset of M, p ∈ S, 0 < diamS < ε

}
.

When the sub-Riemannian manifold itself has a structure of a Carnot group G, the measures SQ and
HQ on G are proportional as Haar measures and, by [14, Proposition 2.3], they satisfy

SQ = IHQ, (16)

where I is the so called isodiametric constant in the Carnot group defined by

I = sup

{
SQ(A)

(diamA)Q
| 0 < diamA <∞, A ⊂ G

}
, (17)

and the diameter is computed with respect to the sub-Riemannian distance d in G. Hence, for M = G,
I (p, ε) = I and it is independent of p and ε.

At a regular point p, the nilpotent approximation (TpM, d̂p) has a structure of a Carnot group Gp.
Note that the Carnot group may vary (both from an algebraic and metric viewpoint) as p varies in M . Its
isodiametric constant Ip satisfies

Ip =
SQ
d̂p

(B̂p)

HQ
d̂p

(B̂p)
and

HQ
d̂p

(B̂p)

µ̂p(B̂p)
=

2Q

Ipµ̂p(B̂p)
.

We then have the following characterization of the conditions of Proposition 3.10.

Proposition 3.11. Under the assumptions of Proposition 3.9, there holds dHQ
dµ (p) =

HQ
d̂p

(B̂p)

µ̂p(B̂p)
if and only if

I (p, ε) converges to Ip as ε→ 0. Moreover, the function

p 7→
HQ
d̂p

(B̂p)

µ̂p(B̂p)

is continuous if and only if the isodiametric constant p 7→ Ip is continuous.

Unfortunately, very little is known about isodiametric constants in Carnot groups and even less is known
about isodiametric sets, that are sets realizing the supremum in (17).

In this connection let us mention [14], where the author proves that in Carnot groups with sub-Riemannian
distances isodiametric sets exist. Moreover, under some assumption on the sub-Riemannian distance called
condition (C ), it is proved that balls are not isodiametric (see Theorem 3.6 in [14]). By definition, condition
(C ) is satisfied on a Carnot group G with a sub-Riemannian distance if for some (and hence any) point
x ∈ G there exists y ∈ G \ {x} such that one can find a length-minimizing curve γ : [a, b] → G from x to y
which ceases to be length-minimizing after y. In other words, if T > 0 and c : [a, b+T ]→ G is any horizontal
curve such that c|[a,b] = γ then c is not length-minimizing on [a, b+ T ]. Such condition is actually satisfied
by any Carnot group endowed with a sub-Riemannian distance.

Proposition 3.12. Let G be a Carnot group endowed with a sub-Riemannian distance. Then condition (C )
is satisfied. As a consequence, balls are not isodiametric or, equivalently, the isodiametric constant I in G
satisfies I > 1.

Proof. In sub-Riemannian geometry, a general property of the cut locus from a point is that it always
accumulates at the point. For instance, see Theorem 12.17 in [2].

We also cite [11], where the analysis is specified to the Heisenberg group. In this framework, the authors
show that isodiametric sets have Lipschitz boundary and they provide explicit solutions to a constrained
isodiametric problem (obtained by restricting the supremum in (17) to the class of sets satisfying a spherical
symmetry).
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4 Popp’s measure in non equiregular manifolds

In this section we briefly recall the construction of Popp’s measure and its main properties. We then
extend the construction to equisingular submanifolds and provide two new notions of Popp’s measure on
sub-Riemannian manifolds having singular points.

4.1 Popp’s measure on the set of regular points

Let (M,D, g) be an oriented sub-Riemannian manifold and let U ⊂M be a connected component of the set
of regular points. We follow the construction of Popp’s measure given in [13, Section 10.6] which is based
on the two algebraic facts given below.

Lemma 4.1. a) Let E be an inner product space, and let π : E → V be a surjective linear map. Then π
induces an inner product on V such that the associated norm is

|v|V = min{|e|E | π(e) = v}.

b) Let E be a vector space of dimension n with a flag of linear subspaces

{0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ F r = E,

and let
gr(F ) = F 1 ⊕ F 2/F 1 ⊕ · · · ⊕ F r/F r−1,

be the associated graded vector space. Then there is a canonical isomorphism θ : ΛnE∗ → Λngr(F )∗.

Let p ∈ U and let r(p) the first integer such that Dr(p) = TpM . Popp’s measure is the smooth volume
associated with a volume form which is built by a suitable choice of inner product structure on the graded
vector space

grp(D) = D1
p ⊕D2

p/D1
p ⊕ · · · ⊕ Dr(p)p /Dr(p)−1p .

Let us detail the construction. For every i = 1, . . . , r(p) consider the linear map πi : ⊗iDp → Dip/Di−1p

given by
πi(v1 ⊗ · · · ⊗ vi) = [V1, [V2, . . . , [Vi−1, Vi]]](p) mod Di−1p , (18)

where V1, . . . , Vi are smooth sections of D satisfying Vj(p) = vj . Such maps are well defined, i.e., they do
not depend on the choice of V1, . . . , Vi. Moreover, thanks to the Lie bracket generating assumption, πi is
surjective. Apply Lemma 4.1 a) to E = ⊗iDp, V = Dip/Di−1p and π = πi. Then, for every i = 1, . . . r(p), πi
endows Dip/Di−1p with an inner product space structure. As a consequence, the graded vector space grp(D)
becomes an inner product space as well. Taking the wedge product of the elements of an orthonormal dual
basis of grp(D), we obtain an element Vp ∈ Λngrp(D)∗, which is defined up to a sign. Finally consider the
map θp : ΛnT ∗pM → Λngrp(D)∗ obtained by applying Lemma 4.1 b) to E = TpM , F = Dp. The element
$p = θ−1p (Vp) in ΛnT ∗pM is defined canonically up to a sign.

Moreover, near a regular point the graded vector space grp(D) varies smoothly, and so does the inner
product that we defined on grp(D). As a consequence p 7→ $p defines locally a volume form, and then
by a standard gluing argument a volume form $ on the whole (oriented) connected component U . Popp’s
measure is the smooth volume associated with $. We denote it by PU and, with an abuse of notation we
keep the symbol PU for the measure on M which coincides with the former on U and is 0 elsewhere. Finally,
we set PR =

∑
U PU , where U varies among all connected components of R. When M = R is equiregular,

PR is known in literature as Popp’s measure.
By construction, PR is a smooth volume on R. Its Radon-Nikodym derivative with respect to the

top-dimensionnal spherical Hausdorff measure3 may be computed by (2) applied to µ = P,

dPR

dSQ(q)
(q) =

P̂q(B̂q)

2Q(q)
, ∀q ∈ R,

3Recall that q 7→ Q(q) is locally constant on R.
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where P̂q denote the Popp measure in the nilpotent approximation at q.
Using the explicit formula in [4] for Popp’s measure we can provide a weak equivalent of the Radon-

Nikodym derivative of PR with respect to a smooth volume on (any) sub-Riemannian manifold. To do so,
let us introduce first some notations.

We say that a family of vector fields X1, . . . , Xm is a (global) generating family for the sub-Riemannian
structure (D, g) if D is globally generated by X1, . . . , Xm and

gq(v) = inf

{
m∑
i=1

u2i

∣∣∣ v =

m∑
i=1

uiXi(q)

}
for every q ∈M, v ∈ TqM.

The existence of a generating family is a consequence of [2, Corollary 3.16]. Given such a family, for every
integer s > 0 the set of iterated Lie bracket [Xi1 , [Xi2 , [. . . , [Xij−1

, Xij ] . . . ]] of length j ≤ s generates the
module Ds. We say that (Y1, . . . , Yn) is a frame of brackets adapted at p if (Y1(p), . . . , Yn(p)) is a basis of
TpM , every Yi is an iterated Lie bracket of X1, . . . , Xm, and the sum, over all i’s, of the lengths of the
brackets Yi’s equals Q(p) (the latter condition guarantees that the basis is adapted to the flag (1)).

Given a generating family of (D, g) and a smooth volume µ on M associated with a non-degenerate
volume form ω, we define the function q 7→ ν(q) as

ν(q) = max{ωq(Y1(q), . . . , Yn(q)) | (Y1, . . . , Yn) frame of brackets adapted at q}.

Note that ν(q) ≥ 0 since ωq(Y1(q), Y2(q), . . . ) = −ωq(Y2(q), Y1(q), . . . ) and actually ν(q) > 0 since there exist
frames of brackets at any point q. The function ν is continuous at regular points but not at singular ones.
Indeed, if (qk) is a sequence of regular points converging to a singular point q̄, then ν(qk) → 0, whereas
ν(q̄) > 0.

Proposition 4.2. For any compact subset K ⊂ M there exists a constant C > 0 such that, for every
q ∈ R ∩K,

1

Cν(q)
≤ dPR

dµ
(q) ≤ C

ν(q)
. (19)

Proof. Recall first that if p is a regular point, then r(p) < n. Hence only a finite number of families
(Y1, . . . , Yn) of iterated brackets may be frames of brackets adapted at regular points. Fix one of these
families, Y = (Y1, . . . , Yn), and define UY as the set of points p ∈ R such that Y is a frame of brackets
adapted at p and ωp(Y1(p), . . . , Yn(p)) > ν(p)/2 (note that ωp(Y1(p), . . . , Yn(p)) ≤ ν(p) by definition of ν).
This set UY is an open subset of M (possibly empty) and the union of all such UY covers R.

Denoting by dY1, . . . , dYn the frame of T ∗M on UY dual to Y, we write the n-form ω on UY as

ω = ω(Y1, . . . , Yn)dY1 ∧ · · · ∧ dYn.

Let us use now the characterization of Popp’s measure given in [4, Theorem 1]: the volume form defining
Popp’s measure, that we denote also PR, is given on UY by

PR =
1√∏
j detBj

dY1 ∧ · · · ∧ dYn =
ω

ω(Y1, . . . , Yn)
√∏

j detBj
, (20)

for some matrices Bj defined from structure constants associated with (Y1, . . . , Yn). An analysis of these
matrices Bj (given by formula (4) in [4]) in our particular case where Y1, . . . , Yn are iterated brackets shows
that any Bj writes as Bj(q) = I + Dj(q)

TDj(q), where the matrix Dj depends smoothly on q. As a
consequence there exists a continuous nonnegative function b on UY such that

1

1 + b(q)
≤ 1√∏

j detBj
≤ 1.
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Using (20) and the definition of UY, we obtain

1

(1 + b(q))ν(q)
≤ dPR

dµ
(q) ≤ 2

ν(q)
for every q ∈ UY.

The conclusion follows since R is the finite union of the subsets UY, as the family Y varies.

Remark 4.3. Let us compare our estimates in formula (19) with the first equality in formula (20) (see [4,
Theorem 1]. Formula (20) gives a quantitative expression for PR. Even though Proposition 4.2 only provides
a weak equivalent of PR, it allows to estimate directly whether PR(K∩R) is finite or not (see the discussion
below Corollary 4.4 below for µ-integrability of dPR/dµ). The finiteness of Popp’s measure of such sets is
somehow hidden in (20) since it is encoded in the n-form dY1 ∧ · · · ∧ dYn.

Let U ⊂M be a connected component of the regular set. Recall that its Hausdorff dimension equals the
constant value Q of Q(p) for p ∈ U .

Corollary 4.4. For any compact subset K ⊂M there exists a constant C > 0 such that, for every q ∈ U∩K,

1

C
≤ dPU

dSQ
(q) ≤ C.

Let us stress that the estimates in Proposition 4.2 and Corollary 4.4 hold for any compact set in M and,
in particular, also for compact sets having singular points, i.e., not contained in R. This is the main novelty
with respect to known properties of PR for equiregular manifolds.

Indeed, assume K contains singular points. In this case, since ν(q)→ 0 as q tends to any singular point,
the function dPR/dµ blows up and it is not L∞loc(µ) in K ∩ R. Going further in the analysis of regularity of
dPR/dµ, one may ask whether this function is µ-integrable: it turns out that this may fail to be the case.
To see some sufficient conditions we refer the reader to sections 4 and 6 in [9] where we study µ-integrability
of SQxR. Those conditions apply to PR as well, since by Corollary 4.4 PU is commensurable with SQxU ,
for any connected component U ⊂ R of Hausdorff dimension Q.

Corollary 4.5. For any compact subset K ⊂M there exists a constant C > 0 such that

C−1 ≤ P̂q(B̂q) ≤ C, for every q ∈ R ∩K.

Proof. Recall that, if q is a regular point, dP
R

dµ (q) =
P̂q(B̂q)

µ̂q(B̂q)
. The statement follows directly by Proposition 4.2

and by [9, Proposition 5.7] which implies that there is C > 0 such that, if q ∈ K ∩ R,

C−1ν(q) ≤ µ̂q(B̂q) ≤ Cν(q).

Again, the relevance of Corollary 4.5 is that q 7→ P̂q(B̂q) is bounded and bounded away from zero even
when q approaches the singular set.

4.2 Popp’s measure on the singular set

What happens for the construction of Popp’s measure near a singular point p? The element $q = θ−1q (Vq)
in ΛnT ∗qM is still defined canonically (up to a sign) at any point q near p (at least when D is a distribution).
However the function q 7→ $q is not smooth at p since the graded vector space grq(D) does not vary
continuously near the singular point, thus it is not possible to define a volume form $. So Popp’s measure
is a well defined (canonical) smooth volume only on equiregular manifolds.

To our knowledge, a notion in the non equiregular case has never been proposed in literature. We provide
here a way of defining Popp’s measure under a standing assumption on the structure of the set of singular
points. The idea is to generalize Popp’s measure on particular singular sets, the so-called equisingular
submanifolds and assume that the singular set is stratified by those.

Let us recall the notion of equisingular submanifold, see [8, 9].
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Definition 4.6. Let N ⊂M be a smooth connected submanifold and q ∈ N . The flag at q of D restricted
to N is the sequence of subspaces

{0} ⊂ (D1
q ∩ TqN) ⊂ · · · ⊂ (Dr(q)q ∩ TqN) = TqN. (21)

Set

nNi (q) = dim(Diq ∩ TqN) and QN (q) =
∑r(q)
i=1 i(n

N
i (q)− nNi−1(q)). (22)

We say that N is equisingular if, for every i, both dimensions ni(q) = dimDiq and nNi (q) are constant as q
varies in N . In this case, we denote by QN the constant value of QN (q).

Note that an equisingular submanifold is open if and only if it is contained in the regular set. Otherwise,
it is contained in the singular set, which motivates the name.

Example 4.7 (Grushin plane). Let M = R2, D = span{X1, X2} where X1 = ∂x1
and X2 = x1∂x2

, and
g be the metric obtained by declaring {X1, X2} to be orthonormal. For every x = (x1, x2) with x1 6= 0,
n1(x) = 2 and thus R = {(x1, x2) ∈ R2 | x1 6= 0}. The set of singular points coincides with the vertical axis
N = {(0, x2) | x2 ∈ R} and for every x ∈ N n1(x) = 1, n2(x) = 2, nN1 (x) = 0, nN2 (x) = 1. Hence, N is
equisingular and QN = 2.

Example 4.8 (Martinet space). Let M = R3, D = span{X1, X2}, where

X1 = ∂x1
, X2 = ∂x2

+
x21
2
∂x3

,

and g be the metric obtained by declaring {X1, X2} to be orthonormal. For every x ∈ R3 with x1 6= 0,
n1(x) = 2, n2(x) = 3 and R = {x ∈ R3 | x1 6= 0}. The set of singular points is the plane N = {(0, x2, x3) |
(x2, x3) ∈ R2} and, for every x ∈ N , n1(x) = n2(x) = 2, n3(x) = 3, whereas nN1 (x) = nN2 (x) = 1, nN3 (x) = 2.
Thus N is equisingular and QN = 4.

In [9] we studied properties of the spherical measure4 SQNN exploiting the algebraic structure associated
with an equisingular submanifold N as provided below.

Lemma 4.9 (see [9, Proposition 5.1]). Let N ⊂ M be an equisingular submanifold. Then dimH N = QN
and, for every p ∈ N , the graded vector space

grNp (D) :=

r(p)⊕
i=1

(Dip ∩ TpN)/(Di−1p ∩ TpN)

is a nilpotent Lie algebra whose associated Lie group GrNp (D) is diffeomorphic to TpN . Moreover grNp (D)

varies smoothly w.r.t. p on N , i.e. grN (D) defines a vector bundle on N .

Note that the Lie group GrNp (D) is not a Carnot group in general since the graded Lie algebra grNp (D)
may not be generated by its first homogeneous component.

Let N be an oriented equisingular submanifold of dimension k. Thanks to Lemma 4.9, the construction
of Popp’s measure done previously on a connected component U ⊂ R can be extended on N in the following
way. Assume first that D is a distribution on M .

(i) As in the regular case, use the maps πi : ⊗iDp → Dip/Di−1p given by (23) to define an inner product on
grp(D) for every p ∈ N .

(ii) Since grNp (D) can be canonically identified with a linear subspace of grp(D), we obtain by restriction

an inner product on grNp (D) and thus canonically (up to a sign) an element V N
p ∈ ΛkgrNp (D)∗ for every

p ∈ N . Because grN (D) is a vector bundle on N , V N
p depends smoothly on p ∈ N .

4For every α ≥ 0, we denote by SαN the α-dimensional spherical Hausdorff measure in the metric space (N, d|N ), where d is
the sub-Riemannian distance on M .
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(iii) Apply Lemma 4.1 b) to E = TpN and F = Dp ∩ TpN to get a canonical isomorphism θNp : ΛkT ∗pN →
ΛkgrNp (D)∗.

(iv) Set PN as the measure associated with the smooth volume form p 7→ (θNp )−1(V N
p ) on N .

When D is not a distribution, that is when the sub-Riemannian manifold is defined by a sub-Riemannian
structure (U, 〈·, ·〉, f) on M (see Definition 2.1), the maps πi are not well-defined. In this case we have to
replace every πi, i = 1, . . . , r(p), in point (i) by the map π̃i : ⊗iUp → Dip/Di−1p given by

π̃i(v1 ⊗ · · · ⊗ vi) = [f(V1), . . . , [f(Vi−1), f(Vi)]]](p) mod Di−1p , (23)

where V1, . . . , Vi are smooth sections of U satisfying Vj(p) = vj . The rest of the construction is unchanged.

Corollary 4.10. Let N be an oriented equisingular submanifold. Then PN is a smooth volume on N .

Note that when N is an open connected subset U of the regular set, the above construction of PN

coincide with the one of PU given at the beginning of this section.

We have now all the ingredients to define a global measure on M . We make the assumption that the
singular set S = M \ R is stratified by equisingular submanifolds, that is, S is a countable union ∪iSi of
disjointed equisingular submanifolds Si. Note that the regular set R always admits such a stratification as
the union of its connected components R = ∪iRi, every Ri being an open equisingular submanifold, so that
the whole M is stratified by equisingular submanifolds. Since for every i, dimH Si = QSi and dimH Ri = QRi

(which is the constant value of Q(q) on Ri), there holds

dimH R = sup
i
QRi , dimH S = sup

i
QSi , dimHM = sup(dimH R,dimH S).

Definition 4.11. Let (M,D, g) be an oriented sub-Riemannian manifold stratified by equisingular subman-
ifolds M = ∪iNi. We define the measures P1 and P2 on M by

P1xNi=

{
PNi , if QNi = dimHM,

0, otherwise;

P2xR= PR,P2xS= 0.

In other terms, with a little abuse5 of notations,

P1 =
∑
i∈J

PNi and P2 = PR =
∑
i

PRi ,

where J = {i | QNi = dimHM}.

The first measure P1 has two main properties: it is absolutely continuous with respect to the Hausdorff
measure SdimHM and it takes account of the singular set. More precisely it charges all the submanifolds Ni
having the same Hausdorff dimension as M . For instance, in Example 4.7 the singular set S is equisingular
and has Hausdorff dimension 2, as the regular set, so that P1 = PS +PR. The same holds for the Martinet
space, see Example 4.8.

The second measure P2 is obtained by simply charging zero mass to the singular set. Under the stratifi-
cation assumption, the singular set is µ-negligible for every smooth volume µ on M (recall that the singular
set always has an empty interior and so no open equisingular strata). As a consequence, thanks to Propo-
sition 4.2 and Proposition 5.7 in [9], P2 is absolutely continuous with respect to any smooth volume µ on
M .

However neither P1 nor P2 have a L∞ density with respect to a smooth volume µ.

Finally, note that on every equisingular submanifold N we have a weak estimate of PN similar to the
one of Proposition 4.2.

5we keep the notation PNi for the measure obtained by extending PNi so that it vanishes identically outside Ni.
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Proposition 4.12. Let M be an n-dimensional oriented manifold with a volume form ω, and N ⊂ M be
a k-dimensional oriented equisingular submanifold with a volume form ω̄. We denote by µ̄ the associated
smooth volume on N . Finally, let X1, . . . , Xm be a generating family of the sub-Riemannian structure (D, g)
on M .

For any compact subset K ⊂M there exists a constant C > 0 such that, for every q ∈ N ∩K,

C−1

ν̄(q)
≤ dPN

dµ̄
(q) ≤ C

ν̄(q)
,

where ν̄(q) = max{(ω̄ ∧ dYk+1 ∧ · · · ∧ dYn)q (Y1(q), . . . , Yn(q))}, the maximum being taken among all n-
tuples (Y1, . . . , Yn) which are frames of brackets adapted at q maximizing ωq(Y1(q), . . . , Yn(q)) (i.e. so that
ωq(Y1(q), . . . , Yn(q)) = ν(q)).

Using [9, Remark 5.9], we obtain as a corollary that PN is commensurable with the Hausdorff measure
SQN xN on N .

Corollary 4.13. For any compact subset K ⊂ M there exists a constant C > 0 such that, for every
q ∈ N ∩K,

1/C ≤ dPN

dSQN xN
(q) ≤ C.
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