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Value function and optimal trajectories for a maximum

running cost control problem with state constraints. Application to an abort landing problem.

Introduction

Let T > 0 be a finite time horizon and consider the following dynamical system: ẏ(s) = f (s, y(s), u(s)), a.e. s ∈ (t, T ), (1a)

y(t) = y, (1b) 
where f : [0, T ] × R d × U → R d is a Lipschitz continuous function, U is a compact set, and u : [0, T ] → U is a measurable function. Denote y u t,y the absolutely continuous solution of (1) associated to the control function u and with the intial position y at intial time t ∈ [0, T ]. Let K ⊂ R d be a given non-empty closed set and consider the following control problem and its associated value function:

ϑ(t, y) := min u∈L ∞ ((t,T ),U ) max s∈[t,T ]
Φ(s, y u t,y (s)) ϕ(y u t,y (T )) y u t,y (s) ∈ K ∀s ∈ [t, T ] ,

with the convention that inf ∅ = +∞ and where the notation a b stands for max(a, b). The cost functions Φ : [0, T ] × R d → R and ϕ : R d → R are given Lipschitz continuous functions.

Setting and formulation of the problem

Let T > 0 be a fixed time horizon and consider the differential system obeying ẏ(s) := f (s, y(s), u(s)), a.e s ∈ (t, T ), y(t) := y,

where u(•) is a measurable function and the dynamics f satisfies:

(H 1 ) f : [0, T ] × R d × U → R d is continuous.
For any R > 0, ∃L R ≥ 0 such that for every u ∈ U and s ∈ [0, T ]:

|f (s, y 1 , u) -f (s, y 2 , u)| ≤ L R (|y 1 -y 2 |) ∀y 1 , y 2 ∈ R d with |y 1 | ≤ R, |y 2 | ≤ R.
A measurable function u : [0, T ] → R m is said admissible if u(s) ∈ U , where U is a given compact subset of R m . The set of all admissible controls will be denoted by U: U := u : (0, T ) → R m measurable, u(s) ∈ U a.e. .

Under assumption (H 1 ), for any control u ∈ U, the differential equation ( 2) admits a unique absolutely continuous solution in W 1,1 ([t, T ]). The set of all absolutely continuous solutions of (2) on [t, T ], starting from the position y at initial time t and associated to control functions in U, is defined by: S [t,T ] (y) := {y u t,y ∈ W 1,1 ([t, T ]), y u t,y solution of (2) associated to u ∈ U}.

Let K ⊂ R d be a closed subset of R d . For any y ∈ R d and t ∈ [0, T ], a trajectory y ∈ S [t,T ] (y) will be said admissible on [t, T ] if and only if:

∀ s ∈ [t, T ], y(s) ∈ K.

The set of all admissible trajectories on [t, T ] starting from the position y will be denoted by S K [t,T ] (y):

S K [t,T ] (y) := {y ∈ S [t,T ] (y), s.t. ∀ s ∈ [t, T ], y(s) ∈ K}.

This set may be empty if no trajectory can remain in the set K during the time interval [t, T ]. Let us recall (see [START_REF] Aubin | Differential inclusions. set-valued maps and viability theory[END_REF]) that under assumption (H 1 ), the set-valued map y S [t,T ] (y) is locally Lipschitz continuous in the sense that for any R > 0, there exists some L > 0, S [t,T ] (y 1 ) ⊂ S [t,T ] (y 2 ) + L|y 1 -y 2 |B W 1,1 ([0,T ]) for all y 1 , y 2 ∈ R d with |y 1 | ≤ R and |y 2 | ≤ R. This is no longer the case for the set-valued map y S K [t,T ] (y) even for simple sets K and linear dynamics f . Moreover, if we assume that: (H 2 ) for every s ∈ [0, T ] and y ∈ R d , the set f (s, y, U ) = {f (s, y, u), u ∈ U } is a convex set then by Filippov's theorem, for every y ∈ R d , the set of trajectories S [t,T ] (y) is a compact subset of W 1,1 endowed wit the C 0 -topology. In this paper, we are interested in the following control problem with supremum cost: ϑ(t, y) := inf max s∈[t,T ] Φ(s, y u t,y (s)) ϕ(y u t,y (T ))

y u t,y ∈ S K [t,T ] (y) , (3) 
where ϑ : [0, T ] × R d → R is the value function, and with the classical convention that inf{∅} := +∞. The aim of this paper is to use Hamilton-Jacobi-Bellman (HJB) approach in order to describe the value function ϑ and to analyze some algorithms for reconstruction of optimal trajectories. Note that, in general (when K = R d ), the value function ϑ is discontinuous and its caracterization as unique solution of a HJB equation may not be possible without further controllability assumptions, see [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF][START_REF] Soner | Optimal control with state-space constraint i[END_REF][START_REF] Ishii | A new formulation of state constraint problems for first-order pdes[END_REF][START_REF] Rowland | Construction of optimal feedback controls[END_REF][START_REF] Frankowska | Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems[END_REF][START_REF] Bokanowski | Deterministic state-constrained optimal control problems without controllability assumptions[END_REF][START_REF] Hermosilla | Infinite horizon problems on stratifiable state-constraints sets[END_REF]. In the present work, we shall follow an idea introduced in [START_REF] Altarovici | A general hamilton-jacobi framework for non-linear stateconstrained control problems[END_REF] to describe the epigraph of ϑ by using an auxiliary optimal control problem free of constraints whose value function is continuous.

3 Main results: Characterization of ϑ and optimal trajectories 3.1 Auxiliary control problem free of state-constraints

First, consider the following augmented dynamics f for s ∈ [0, T ], u ∈ U and y := (y, z) ∈ R d × R:

f (s, y, u) = f (s, y, u) 0 .
Let y(•) := (y u t,y (•), z u t,y,z (•)) (where z u t,y,z (•) ≡ z) be the associated augmented solution of:

˙ y(s) = f (s, y(s), u(s)), s ∈ (t, T ), (4a) y(t) = (y, z) T . ( 4b 
)
Define the corresponding set of feasible trajectories, for y = (y, z) ∈ R d × R, by:

S [t,T ] ( y) := { y = (y u t,y , z u t,y,z ), y satisfies (4) for some u ∈ U}. (5) 
Remark 3.1. Under the assumptions (H 1 ) and (H 2 ), for every y ∈ R d × R, the set S [0,T ] ( y) is a compact subset of W 1,1 ([0, T ]) for the topology of C([0, T ]; R d+1 ) (see [START_REF] Aubin | Differential inclusions. set-valued maps and viability theory[END_REF]).

Following an idea introduced in [START_REF] Altarovici | A general hamilton-jacobi framework for non-linear stateconstrained control problems[END_REF], we define an auxiliary optimal control problem without state constraints whose value function can help to compute ϑ in an efficient manner. For this, we consider g : R d → R a Lipschitz continuous function characterizing the constraints set K as follows:

∀y ∈ R d , g(y) ≤ 0 ⇔ y ∈ K. (6) 
In the sequel, we denote by L g > 0 the Lipschitz constant of g. Note that a Lipschitz function g satisfying (6) always exists since K is a closed set (for instance the signed distance d K (•) to K is a Lipschitz function that satisfies the condition (6)). Therefore, for u ∈ U, the following equivalence holds:

y u t,y (s) ∈ K, ∀s ∈ [t, T ] ⇔ max s∈[t,T ] g(y u t,y (s)) ≤ 0. (7) 
Now, consider the auxiliary control problem and its value function w:

w(t, y, z) := inf max s∈[t,T ] Ψ(s, y(s), z(s)) ϕ(y(T )) -z(T ) y = (y, z) ∈ S [t,T ] ((y, z)) (8) 
where for (y, z) ∈ R d × R, we define the function Ψ as:

Ψ(s, y, z) := (Φ(s, y) -z) g(y). (9) 
By definition, the function Ψ is Lipschitz continuous under assumption (H 3 ). In the sequel, we shall denote by L Ψ a bound of the Lipschitz constant for Ψ. The following proposition shows that the level sets of this new value function w characterize the epigraph of ϑ.

Proposition 3.2. Assume (H 1 ), (H 2 ) and (H 3 ). The value function w is related to ϑ by the following relations: for every (t, y, z)

∈ [0, T ] × R d × R. (i) ϑ(t, y) -z ≤ 0 ⇔ w(t, y, z) ≤ 0, (ii) ϑ(t, y) = min z ∈ R , w(t, y, z) ≤ 0 .
Proof. (i) Assume ϑ(t, y) ≤ z. This implies first that S K [t,T ] (y) is not empty and, by (H 1 )-(H 2 ), it is a compact subset of W 1,1 (0, T ) (endowed with C 0 -topology). Thus there exists an admissible trajectory y ∈ S K [0,T ] (y) such that,

max t≤s≤T Φ(s, y(s)) -z ϕ(y(T )) -z = ϑ(t, y) -z ≤ 0.
By using [START_REF] Barron | The bellman equation for minimizing the maximum cost[END_REF], we obtain:

w(t, y, z) ≤ max t≤s≤T Φ(s, y(s)) -z max t≤s≤T g(y(s)) ϕ(y(T )) -z ≤ 0.
Conversely, assume w(t, y, z) ≤ 0. By remark 3.1, there exists a trajectory y = (y, z) ∈ S [t,T ] (y, z) starting from y = (y, z) such that

0 ≥ w(t, y, z) = max t≤s≤T Ψ(s, y(s), z) (ϕ(y(T ))) ,
which gives:

max t≤s≤T Φ(s, y(s)) ϕ(y(T )) ≤ z, and max t≤s≤T g(y(s)) ≤ 0.
It follows that y is admissible on [t, T ] and ϑ(t, y) ≤ z. This ends the proof of (i). Assertion (ii) follows directly from (i).

Remark 3.3. Note that the value function ϑ(t, .) is l.s.c. and then its epigraph is a closed set. Moreover, from proposition 3.2, for every t ∈ [0, T ]:

Epi ϑ(t, .) = (y, z) ∈ K × R | w(t, y, z) ≤ 0 .
The value function w enjoys more regularity properties. It is then more interesting to caracterize first w and then to recover the values of ϑ from those of w.

Proposition 3.4. Assume (H 1 ) and (H 3 ) hold.

(i) The value function w is locally Lipschitz continuous on [0, T ] × R d × R. (ii) For any t ∈ [0, T ], h ≥ 0, such that t + h ≤ T , w(t, y, z) = inf y:=(y,z)∈ S [t,t+h] (y,z) w(t + h, y(t + h), z) max s∈[t,t+h]
Ψ(s, y(s), z) .

(iii) Furthermore, the function w is the unique continuous viscosity solution of the following HJ equation:

min -∂ t w(t, y, z) + H(t, y, ∇ y w) , w(t, y, z) -Ψ(t, y, z) = 0 in [0, T [×R d × R, (10a) w(T, y, z) = Ψ(T, y, z) ϕ(y) -z in R d × R, (10b) 
where the Hamiltonian H is defined, for y, p ∈ R d and t ∈ [0, T ] by:

H(t, y, p) := sup u∈U -f (t, y, u) • p , (11) 
and the notations ∂ t w and ∇ y w stand for the partial derivatives of w with respect to the variable t and y, respectively.

Proof. The proof of the local Lipschitz continuity can be obtained as in [START_REF] Altarovici | A general hamilton-jacobi framework for non-linear stateconstrained control problems[END_REF]Proposition 3.3].

The dynamic programming principle (stated in (ii)) is a classical result and its proof can be found in [START_REF] Barron | The bellman equation for minimizing the maximum cost[END_REF][START_REF] Altarovici | A general hamilton-jacobi framework for non-linear stateconstrained control problems[END_REF] where a HJB equation is also derived for the value function associated to a control problem with maximum cost. Besides, the uniqueness result is shown in [1, Appendix A].

Finally, note that the characterization of the function w does not require assumption (H 2 ) to be satisfied. If (H 2 ) happens to be fulfilled, then S [t,t+h] (y, z) is a compact subset of W 1,1 ([t, t + h]) and therefore the minimum in the dynamic Programming principle, stated in Proposition 3.4(ii), is achieved.

A particular choice of g

The main feature of the auxiliary control problem consists on that it is free of state constraints. However, the new control problem involves one more state component, and the HJB equation that characterizes w is defined on R d × R. To restrict the domain of interest for w to a neighbourhood of K × R, it is possible to define w with a more specific function g so that the auxiliary value function w keeps a constant value outside a neighbourhood of K × R.

Indeed, in all the sequel, let η > 0 be a fixed parameter and define a neighbourhood K η of K by:

K η := K + ηB R d . (12) 
Consider a Lipschitz continuous function g η satisfying, for y ∈ R d :

g η (y) ≤ 0 ⇔ y ∈ K, g η (y) ≤ η ∀y ∈ R d and g η (y) = η ∀y / ∈ K η . (13) 
Such a Lipschitz function always exists since K is a closed set. For instance, g η can be defined as: g η (y) := d K (y) η for any y ∈ R d . Now, we consider also a truncation of Ψ given by Ψ η (s, y, z) = (Φ(s, y) -z) η g η (y).

Note that with this definition and with (9), we have:

Ψ η (s, y, z) = Ψ(s, y, z) η.
Furthermore, introduce a truncated final cost ϕ η by:

ϕ η (y, z) = ϕ(y) -z η. (15) 
Finally, we define the value function w η , for y = (y, z) ∈ R d × R, as:

w η (t, y, z) := inf (y,z)∈ S [t,T ] ( y) max s∈[t,T ] Ψ η (s, y(s), z(s)) ϕ η (y(T ), z(T )) . ( 16 
)
Note that with the above definitions, the new value function w η satisfies:

w η (t, y, z) = w(t, y, z) η, ∀(t, y, z) ∈ [0, T ] × R d × R.
The epigraph of ϑ can be also characterized by the function w η , and under assumptions (H 1 ), (H 2 ) and (H 3 ), all statements of proposition 3.2 are still valid with w η defined as in [START_REF] Falcone | Numerical solution of dynamic programming equations[END_REF]. Now, let us emphasize that the function w η has been defined in such a way it takes a constant value outside K η . This information can be used as a Dirichlet boundary condition in the HJB equation satisfied by w. Theorem 3.5. Assume (H 1 ), (H 3 ) hold. Let g η , Ψ η and w defined as in [START_REF] Cardaliaguet | Optimal times for constrained nonlinear control problems without local controllability[END_REF], [START_REF] Cardaliaguet | Numerical schemes for discontinuous value functions of optimal control[END_REF] and [START_REF] Falcone | Numerical solution of dynamic programming equations[END_REF].

The value function w η is the unique continuous viscosity solution of the following Hamilton Jacobi equation:

min -∂ t w η (t, y, z) + H(t, y, ∇ y w η ) , w η (t, y, z) -Ψ η (t, y, z) = 0, in [0, T [× • Kη ×R, (17a) w η (T, y, z) = Ψ η (T, y, z) ϕ η (y, z), in • Kη ×R, (17b) 
w η (t, y, z) = η, for all t ∈ [0, T ], y / ∈ • Kη and z ∈ R. (17c) 
Proof. Equations (17a)-(17b) are obtained as in proposition 10-(iii). Let us prove assertion (17c). First , notice that:

η ≥ w η (t, y, z) ≥ Ψ η (t, y, z) ≥ g η (y) ∀t ∈ [0, T ], y ∈ R d , z ∈ R.
Moreover, by definition of g η , for any y / ∈

• Kη, we have g η (y) = η. It follows that

w η (t, y, z) = η ∀y / ∈ • Kη .
This concludes the proof.

Remark 3.6. If the cost function Φ is bounded and satisfies:

Φ(y) ∈ [m, M ], ∀y ∈ K η ,
then, it suffices to consider the variable z in the interval [m, M ]. Indeed, in this case, we still have the relation:

ϑ(t, y) = inf z ∈ [m, M ] | w η (t, y, z) ≤ 0
In addition, the function w η is the unique continuous viscosity solution of the following HJ equation:

min -∂ t w η (t, y, z) + H(t, y, ∇ y w η ), w η (t, y, z) -Ψ η (t, y, z) = 0 in [0, T [× • Kη ×[m, M ], (18a) 
w η (T, y, z) = Ψ η (T, y, z) ϕ η (y, z) in

• Kη ×[m, M ], (18b) 
w η (t, y, z) = η for all t ∈ [0, T ], y / ∈ • Kη and z ∈ [m, M ]. (18c) 
Let us point on that there is no need for any boundary condition on the z-axis because the dynamics is zero ż(t) = 0.

Remark 3.7. The function w η depends on the choice of the parameter η. However, the region of interest ({w η ≤ 0}) is always the same, for any η > 0, and the characterization of the original value ϑ(t, x) = min{z, w η (t, x, z) ≤ 0} holds for any η > 0. In the sequel, we will denote by w any auxiliary value function corresponding to an adequate function g (or g η ).

Case of autonomous control problems: link with the reachability time function

The aim of this subsection is to make a link between the control problem discussed in the previous subsection and an optimal reachability time that we will define correctly in the following. This link can be established in a general case, however it turns out to be of a particular interest when the control problem is autonomous. This interest will be clarified throughout this section. Here, we consider that all the functions involved in the control problem (3) are time independent (i.e., f (t, x, u) = f (x, u) and Φ(t, x) = Φ(x)), and introduce the sets:

D := y = (y, z) ∈ R d+1 y ∈ K and y ∈ Epi(Φ) = Epi(Φ) ∩ (K × R), C := Epi(ϕ).
Let us define also the reachability time function T : R d+1 → [0, T ], which associates to each initial position y = (y, z) ∈ R d+1 , the first time t ∈ [0, T ] such that there exists an admissible trajectory y ∈ S [t,T ] ( y) remaining in Epi(Φ) K and that reaches Epi(ϕ) at time T :

T (y, z) := inf t ∈ [0, T ] ∃ y ∈ S [t,T ] ( y) s.t. y(s) ∈ D, ∀s ∈ [t, T ], and y(T ) ∈ C . ( 19 
)
Remark 3.8. Let us point out that, from the definition of D, one can easily check that the two following assertions are equivalent.

(a) there exists y = (y, z) ∈ S [t,T ] ( y) such that: y(s) ∈ D for every s ∈ [t, T ] and y(T ) ∈ C;

(b) there exists y = (y, z) ∈ S [t,T ] ( y) such that: max s∈[t,T ] Φ(s, y(s)) ϕ(y(T )) ≤ z and y(s) ∈ K ∀s ∈ [t, T ].
The following theorem gives a link between the value functions w, ϑ and the reachability time function T .

Theorem 3.9. Assume (H 1 ), (H 2 ) and (H 3 ) hold. Then we have:

(i) T (y, z) = inf t ∈ [0, T ] w(t, y, z) ≤ 0 , (ii) T (y, z) = t ⇒ w(t, y, z) = 0, (iii) ϑ(t, y) = inf z T (y, z) ≤ t . Proof. Let y = (y, z) be in R d × R. Let t ∈ [0, T ] such that w(t, y, z) ≤ 0. Then there exists y = (y, z) ∈ S [t,T ] ( y) such that: max s∈[t,T ]
Φ(y(s)) ≤ z and y(s) ∈ K for every s ∈ [t, T ]. This implies that there exists

y = (y, z) ∈ S [t,T ] ( y) such that: y(s) ∈ D, ∀s ∈ [t, T ],
which proves that T (y, z) ≤ t. Therefore, T (y, z) ≤ inf t ∈ [0, T ] w(t, y, z) ≤ 0 . Now, let t := T (y, z) and assume that t < ∞. By definition of T and remark 3.8, there exists an admissible trajectory y y = (y, z) ∈ S [t,T ] ( y) such that

max s∈[t,T ] Φ(y(s)) -z ≤ 0, ϕ(y(T )) -z ≤ 0, and max s∈[t,T ] g(y(s)) ≤ 0.
This implies that w(t, y, z) ≤ 0, and then the proof of (i) is completed. Furthermore, for any τ < t we have w(τ, y, z) > 0 (since otherwise we would have t = T (x, z) ≤ τ ). Then by continuity of w, we conclude that w(t, y, z) = 0.

It remains to prove claim (iii). For this, note that in the autonomous case the value function w(•, y, z) is decreasing in time. This property along with assertion (i) yield to:

T (y, z) ≤ t ⇐⇒ w(t, y, z) ≤ 0. (20) 
Thus, statement (iii) follows from the fact that:

ϑ(t, y) = inf z w(t, y, z) ≤ 0 .
Remark 3.10. Statement (iii) of Theorem 3.9 is no more valid if the problem is non-autonomous. Actually, in this case the equivalence (20) wouldn't be true and only the implication:

w(t, y, z) ≤ 0 =⇒ T (y, z) ≤ t (21) 
is fulfilled. Indeed, the reverse implication of (21) may fail to be true in the non-autonomous case since the function w(•, y, z) can change signs several times over the time interval (while in the autonomous case the function w(•, y, z) can only change sign from positive to negative once during the time interval [0, T ]).

Remark 3.11. For numerical purposes, the function T presents a major feature as it allows to recover the values of the original function ϑ. There is no need to store the function w on a grid of d + 2 dimensions (d for the state components y + variable z and the time variable). Indeed, it is sufficient to store the values of the reachability time function on a grid of d + 1 dimensions.

In the following, a link is established between an optimal trajectory associated with the original state-constrained control problem, an optimal trajectory for the auxiliary control problem, and an optimal trajectory of the optimal reachability time function.

Proposition 3.12. Assume (H 1 ), (H 2 ) and (H 3 ) hold. Let y ∈ K and t ∈ [0, T ] such that ϑ(t, y) < ∞. Define z := ϑ(t, y).

(i) Let y * = (y * , z * ) be an optimal trajectory for the auxiliary control problem ( 8) on [t, T ] associated with the initial point (y, z). Then, z * (s) ≡ z on [t, T ], and the trajectory y * is optimal for the control problem (3) on [t, T ] associated to the initial position y.

(ii) Assume that t = T (y, z). Let y * = (y * , z * ) be an optimal trajectory for the reachability problem ( 19) associated with the initial point (y, z) ∈ K × R. Then, y * is also optimal for the auxiliary control problem [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF].

Proof. Let (y, z) ∈ K × R such that ϑ(t, y) = z. (i) Let y * = (y * , z *
) be an optimal trajectory for the auxiliary control problem (8) associated with the initial point (y, z) ∈ K × R. Using proposition 3.2, we have that

ϑ(t, y) = z ⇒ w(t, y, z) ≤ 0. It follows that w(t, y, z) = max s∈[t,T ] Ψ(y * (s), z) (ϕ(y * (T ) -z) ≤ 0.
Using the definition of Ψ, we get, By definition of ϑ one can conclude that

ϑ(t, x) = max s∈[t,T ] Φ(y * (s)) ϕ(y * (T )) and y * (s) ∈ K, ∀s ∈ [t, T ].
Therefore, y * is an optimal trajectory for (3) with the initial position y and the proof of assertion (i) is achieved.

(ii) Assume that t = T (y, z) and let y * = (y * , z * ) be an optimal trajectory for problem [START_REF] Hermosilla | Infinite horizon problems on stratifiable state-constraints sets[END_REF] We conclude that y * is an optimal trajectory for (3) on the time interval [t, T ] with the initial position y.

Remark 3.13. For sake of clarity, we have chosen to state proposition 3.12 under the assumption that the value of ϑ(t, y) is known. By proposition 3.2 and theorem 3.8, we know that this value can be also obtained from the auxiliary function w and the reachability time function T . Assertion (i) of proposition 3.12 states that each optimal trajectory for the auxiliary control problem corresponds to an optimal solution of the original problem. The converse is also true. More precisely, let y * is an optimal trajectory for the control problem (3) on [t, T ] associated to the initial position y. Then by setting z * (s) ≡ z on [t, T ], the augmented trajectory y * = (y * , z * ) is an optimal trajectory for the auxiliary control problem [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF], on the time interval [t, T ], with the initial point (y, z).

Reconstruction procedure based on the value function

In the case of Bolza or Mayer optimal control problems, reconstruction algorithms were proposed for instance in [5, Appendix A] or in [START_REF] Rowland | Construction of optimal feedback controls[END_REF]. In our setting, the control problem involves a maximum cost function, we shall discuss a reconstruction procedure based on the knowledge of the auxiliary value function w or an approximation of it. For simplicity, we consider the trajectory reconstruction on the time interval [0, T ]. However, all the results remain valid for a reconstruction on any subinterval [t, T ].

Consider a numerical approximation f h of the dynamics f such that, for every R > 0, we have:

|f h (t, x, u) -f (t, x, u)| ≤ C R h, ∀t ∈ [0, T ], |x| ≤ R, u ∈ U, (22) 
where the constant C R is independent of h ∈ [0, 1]. Hence, an approximation scheme for the differential equation ẏ(t) = f (t, y(t), u) (for a constant control u, discrete times s k and time step h k = s k+1 -s k ) can be written

y k+1 = y k + h k f h k (s k , y k , u), k ≥ 0. (23) 
The case of the Euler forward scheme corresponds to the choice

f h := f.
Higher order Runge Kutta schemes can also be written as [START_REF] Osher | High essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF] and with a function f h satisfying [START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF]. For instance, the Heun scheme corresponds to the choice

f h (t, y, u) := 1 2 (f (t, y, u) + f (t + h, y + hf (t, y, u), u)).
Now, consider also, for each h > 0, a function w h being an approximation of the value function w, and define E h be a uniform bound on the error:

|w h (t, y, z) -w(t, y, z)| ≤ E h , ∀t ∈ [0, T ], |y| ≤ R, |z| ≤ R,
with R > 0 large enough. The function w h could be a numerical approximation obtained by solving a discretized form of the HJB equation.

Algorithm 1.

Fix y ∈ R d and z ∈ R. For h > 0 we consider an integer n ∈ N, a partition

s 0 = 0 < s 1 < • • • < s n = T of [0, T ], denote h k := s k+1 -s k and assume that max k h k ≤ h.
We define the positions (y h k ) k=0,...,n , and control values (u h k ) k=0,...,n-1 , by recursion as follows. First we set y h 0 := y. Then for k = 0, . . . , n -1, knowing the state y h k we define

(i) an optimal control value u h k ∈ U such that u h k ∈ argmin u∈U w h s k , y h k + h k f h (s k , y h k , u), z Ψ(s k , y h k , z) (24) 
(ii) a new state position y h k+1

y h k+1 := y h k + h k f h (s k , y h k , u h k ). (25) 
Note that in [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF] the value of u h k can also be defined as a minimizer of u → w h s k , y h k + h k f h (s k , y h k , u), z , since this will imply in turn to be a minimizer of [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF].

We also associate to this sequence of controls a piecewise constant control u h (s) := u h k on s ∈ [s k , s k+1 [, and an approximate trajectory y h such that

ẏh (s) = f h (s k , y h k , u h k ) a.e s ∈ (s k , s k+1 ), (26a) y h (s k ) = y h k . (26b) 
In particular the value of y h (s k+1 ) obtained by (26a)-(26b) does correspond to y h k+1 as defined in [START_REF] Rowland | Construction of optimal feedback controls[END_REF] (Notice that in general y u h = y h ).

We shall show that any cluster point ȳ of (y h ) h>0 is an optimal trajectory that realizes a minimum in the definition of w(0, x, z). This claim is based on some arguments introduced in [START_REF] Rowland | Construction of optimal feedback controls[END_REF]. The precise statement and proof are given in Theorem 3.14 below.

Theorem 3.14. Assume (H 1 ), (H 2 ) and (H 3 ) hold true. Assume also that the approximation ( 22) is valid and the error estimate E h := w -w h satisfies:

E h /h → 0 as h → 0. (27) 
Let (y, z) be in R d × R and let (y h k ) be the sequence generated by Algorithm 1. (i) The approximate trajectories (y h k ) k=0,...,n are minimizing sequences in the following sense:

w(0, y, z) = lim h→0 max 0≤k≤n h Ψ(s k , y h k , z) ϕ(y h k , z). (28) 
(ii) Moreover, the family (y h ) h>0 admits cluster points, for the L ∞ norm, when h → 0. For any such cluster point ȳ, we have ȳ ∈ S [0,T ] (y) and (ȳ, z) is an optimal trajectory for w(0, y, z).

Proof of Theorem 3.14. First, by using similar arguments as in [START_REF] Rowland | Construction of optimal feedback controls[END_REF], one can prove that assertion (ii) is a consequence of (i). So, we shall focus on assertion (i) whose proof will be splitted in several steps.

For simplicity of the presentation, we shall consider only the case of uniform time partition s 0 = 0 ≤ s 1 ≤ • • • ≤ T , with step size h = T n (for n ≥ 1). Let (y, z) be in R d × R and consider, for every h > 0, the discrete trajectory

y h = (y h 0 , • • • , y h n ) and discrete control input u h := (u h 0 , • • • , u h n-1 )
given by Algorithm 1. In the sequel of the proof, and for simplicity of notations, we shall denote y k (resp. u k ) instead of y h k (resp. y k ). Assumption (H1) and [START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF] imply that there exists R > 0 such that for any h > 0 and any k ≤ n, we have |y h k | ≤ R. This constant R can be chosen large enough such that every trajectory on a time interval I ⊂ [0, T ], starting from an initial position y h k would still remain in a ball of R d centred at 0 and with radius R. We set

M R > 0 a constant such that |f (s, y, u)| ≤ M R for every t ∈ [0, T ], y ∈ B R and u ∈ U.
Step 1. Let us first establish that there exists ε h > 0 such that lim h→0 ε h = 0, and w(s 0 , y 0 , z) ≥ w(s 1 , y 0 + hf h (s 0 , y 0 , u 0 ), z) Ψ(s 0 , y 0 , z)

+ hε h -2E h . ( 29 
)
The dynamic programming principle for w gives (recall that s 0 = 0 and y 0 = y):

w(s 0 , y 0 , z) = min u∈U w(s 1 , y u s0,y0 (s 1 ), z) max θ∈(s0,s1)

Ψ(θ, y u s0,y0 (θ), z) ≥ min u∈U w(s 1 , y u s0,y0 (s 1 ), z) Ψ(s 0 , y 0 , z). (30) 
Consider u * 0 ∈ U a minimizer of the term (30). By using the convexity of the set f (s 0 , y 0 , U ) (assumption (H2)), there exists u * 0 ∈ U such that s1 s0 f (s 0 , y 0 , u * 0 (s))ds = hf (s 0 , y 0 , u * 0 ), and therefore

y 0 + s1 s0
f (s 0 , y 0 , u * 0 (s))ds = y 0 + hf (s 0 , y 0 , u * 0 ).

Consider the trajectory y u * 0 s0,y0 solution of (2) corresponding to the control u * 0 and starting at time s 0 from y 0 . Hence, |y

u * 0 s0,y0 -y 0 | ≤ M R h, for s ∈ [s 0 , s 1 ],
and

|y u * 0 s0,y0 (s 1 ) -y 0 + hf (s 0 , y 0 , u * 0 )| ≤ s1 s0 |f (s, y u * 0 s0,y0 (s), u * 0 (s)) -f (s, y 0 , u * 0 (s))|ds.
On the other hand, by (H1), there exists δ(h) > 0 the modulus of continuity of f defined as:

δ(h) := max{|f (s, ξ, u) -f (s , ξ, u)|, for ξ ∈ B R , u ∈ U and s, s ∈ [0, T ] with |s -s | ≤ h}.
We get (L f being the Lipschitz constant of f as in (H1)):

|y u * 0 s0,y0 (s 1 ) -y 0 + hf (s 0 , y 0 , u * 0 )| ≤ s1 s0 hδ(h) + L f |y u * 0 s0,y0 -y 0 |ds ≤ hδ(h) + L f M R h 2 .
By using assumption [START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF], it also holds:

|y u * 0 s0,y0 (s 1 ) -y 0 + hf h (s 0 , y 0 , u * 0 )| ≤ s1 s0 hδ(h) + L f |y u * 0 s0,y0 -y 0 |ds ≤ hδ(h) + (L f M R + C R )h 2 .
This estimate along with (30), and by using the Lipschitz continuity of w, yield to:

w(0, y, z) ≥ w(s 1 , y u * 0 s0,y0 (s 1 ), z) Ψ(s 0 , y 0 , z) ≥ w(s 1 , y 0 + hf h (s 0 , y 0 , u * 0 ), z) Ψ(s 0 , y 0 , z) -hL w δ(h) + (L f M R + C R )h . (31)
Then, by the definition of the minimizer u 0 we finally obtain w(s 0 , y 0 , z) ≥ w(s 1 , y 0 + hf h (s 0 , y 0 , u 0 ), z) Ψ(s 0 , y 0 , z) -hε h ,

where

ε h := L w δ(h) + (L f M R + C R )h .
Knowing that y 1 = y 0 + hf h (s 0 , y 0 , u 0 ) and that w -w h ≤ E h , we finally get the desired result:

w h (s 0 , y 0 , z) ≥ w h (s 1 , y 1 , z) Ψ(s 0 , y 0 , z) -hε h -2E h .
With exactly the same arguments, for all k = 0, . . . , n -1, we obtain:

w h (s k , y k , z) ≥ w(s k+1 , y k+1 , z) Ψ(s k , y k , z) -hε h -2E h . (33) 
Step 2. From (33), we get:

w h (0, y, z) = w h (s 0 , y 0 , z) ≥ w h (s 1 , y 1 , z) Ψ(s 0 , y 0 , z) -hε h -2E h ≥ w h (s 2 , y 2 , z) Ψ(s 1 , y 1 , z) -hε h -2E h Ψ(s 0 , y 0 , z) -hε h -2E h . Now, notice that (a -c) ∨ b ≥ a ∨ b -c. Therefore: w h (0, y, z) ≥ w h (s 2 , y 2 , z) Ψ(s 0 , y 0 , z) Ψ(s 1 , y 1 , z) -2hε h -4E h .
By induction, we finally get:

w h (0, y, z) ≥ w h (s n , y n , z) Ψ(s 0 , y 0 , z) • • • Ψ(s n-1 , y n-1 , z) -nhε h -2nE h . (34) 
Step 3. Since s n = T and w(T, y n , z) = Ψ(T, y n , z) (ϕ(y n ) -z), we deduce from (34) that:

w h (0, y, z) ≥ (w(s n , y n , z) -E h ) n-1 k=0 Ψ(y k , z) -nhε h -2nE h ≥ n k=0 Ψ(s k y k , z) ϕ(y n , z) -T ε h -( 2T h + 1)E h .
By passing to the limit when h → 0, and using ( 27) it follows that:

w(0, y, z) ≥ lim sup h→0 n k=0 Ψ(s k , y k , z) ϕ(y n , z). (35) 
Step 4. Let y u h (s) denote the trajectory obtained with piecewise constant controls u 0 , . . . , u n-1 (i.e., u h (s) := u k for all s ∈ [s k , s k+1 [) and solution of y u h (0) = x and ẏu h (s) = f (s, y(s), u h (s)) a.e. s ≥ 0. Consider also y h (.) be the approximate trajectory, satisfying y(0) = x and ẏ(s) = f h (s k , y k , u k ) for all s ∈ [s k , s k+1 [. By using same arguments as in Step 1, we obtain the following estimate:

max θ∈[0,T ] |y u h (θ) -y h (θ)| ≤ δ(h) + (L f M R + C R )h. (36) 
Step 5. Now, we claim that the following bound holds:

n-1 k=0 Ψ(s k , y k , z) -max θ∈[0,T ] Ψ(s k , y u (θ), z) ≤ O(max(δ(h), h)). (37) 
In order to prove this claim, let us first remark that, by using the Lipschitz regularity of t → y u h (t), there exists M R > 0 such that:

max θ∈[s k ,s k+1 ] |y u h (θ) -y u h (s k )| ≤ M R h. (38) 
Then, by straightforward calculations, we obtain:

n-1 k=0 Ψ(s k , y k , z) -max θ∈[0,T ] Ψ(θ, y u h (θ), z) = n-1 k=0 Ψ(s k , y k , z) - n-1 k=0 max θ∈[s k ,s k+1 ] Ψ(θ, y u (θ), z) ≤ n-1 k=0 Ψ(s k , y k , z) - n-1 k=0 Ψ(s k , y u h (s k ), z) + n-1 k=0 Ψ(s k , y u h (s k ), z) - n-1 k=0 max θ∈[s k ,s k+1 ] Ψ(θ, y u h (θ), z) ≤ max k=0,..,n-1 |Ψ(s k , y k , z) -Ψ(s k , y u h (s k ), z)| + max k=0,..,n-1 |Ψ(s k , y u h (s k ), z) -max θ∈[s k ,s k+1 ] Ψ(θ, y u h (θ), z)| ≤ max k=0,..,n-1 L Ψ |y k -y u h (s k )| + max k=0,..,n-1 L Ψ max θ∈[s k ,s k+1 ] |y u h (s k ) -y u h (θ)| ≤ L Ψ δ(h) + L Ψ (L f M R + C R + M R )h,
which proves (37). In the same way, we have also:

n k=0 Ψ(s k , y k , z) (ϕ(y n ) -z) -max θ∈[0,T ] Ψ(θ, y u (θ), z) (ϕ(y u h (T )) -z) ≤ O(max(δ(h), h)). ( 39 
)
Step 6. Combining the previous estimates ( 35) and (39), we obtain w(0, y, z) ≥ lim sup

h→0 max θ∈[0,T ] Ψ(θ, y u h (θ), z) (ϕ(y u h (T )) -z). (40) 
On the other hand, by definition of w the following reverse inequality holds :

w(0, y, z) ≤ lim inf h→0 max θ∈[0,T ] Ψ(θ, y u h (θ), z) (ϕ(y u h (T )) -z). (41) 
Hence the right-hand side term has a limit and

w(0, y, z) = lim h→0 max θ∈[0,T ] Ψ(θ, y u h (θ), z) (ϕ(y u h (T )) -z). (42) 
Also the discrete constructed trajectory reaches the same value:

w(0, y, z) = lim h→0 n k=0 Ψ(s k , y k , z) (ϕ(y n ) -z)). ( 43 
)
This concludes to the desired result.

In a second algorithm we consider a trajectory reconstruction procedure with a perturbation term in the definition of the optimal control value. This perturbation takes the form of a penalization term on the variation of the control with respect to the previously computed control values. To this end, for every k ≥ 1, we introduce a function q k : R × R k → R + that represents a penalization term for the control value. For instance, if U k := (u 0 , ..., u k-1 ) is a vector in R k , we may choose

q k (u, U k ) := u -u k-1 , or q k (u, U k ) := u - 1 p p i=1 u k-i for some p ≥ 1. (44) 
Let (λ h ) h>0 be a family of positive constants.

Algorithm 2. Let y ∈ R d and z ∈ R. For h ∈]0, 1], we consider an integer n ∈ N, and a partition

s 0 = 0 < s 1 < • • • < s n = T of [0, T ] as in Algorithm 1.
We define positions (y h k ) k=0,...,n and controls (u h k ) k=0,...,n-1 by recursion as follows. First we set y h 0 := y. For k = 0, we compute u h 0 and y h 0 as in Algorithm 1. Then, for k ≥ 1 we define U k := (u h 0 , • • • , u h k-1 ) and compute:

(i) an optimal control value u h k ∈ U such that u h k ∈ argmin u∈U w h s k , y h k + h k f h (s k , y h k , u), z h Ψ(s k , y h k , z h ) + λ h q k (u, U k ) ; (45) 
(ii) a new state position y h k+1 as follows

y h k+1 := y h k + h k f h (s k , y h k , u h k ).
We shall prove that this second algorithm provides also a minimizing sequence (y h , u h , z h ) h>0 as soon as λ h decreases sufficiently fast as h → 0.

In the reconstruction process (Algorithm 1), the formula [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF] suggests that the control input is a value that

minimizes the function u -→ w h s k , y h k + h k f h (s k , y h k , u), z h Ψ(s k , y h k , z h
) . Such a function may admit several minimizers and the reconstruction procedure does not give any further information on which minimizer to choose. Adding the term λ h q k (u, U k ) can be seen as a penalization term. For example, by choosing q k (u, U k ) := u k-1 , we force the value u k to stay as close as possible to u k-1 . Here we address the convergence result of Algorithm 2 with a penalization term q k . However, the choice of a relevant function q k is not a trivial task and depends on the control problem under study. Theorem 3.15. Assume (H 1 ), (H 2 ) and (H 3 ) hold true, and ( 22) and ( 27) are fulfilled. Let (y h k ) be the family generated by Algorithm 2. Assume furthermore that the penalization term is bounded: there exists M q > 0 such that |q k (u, U)| ≤ M q for every u ∈ U and every U ∈ U k , and

λ h /h → 0.
(i) The approximate trajectories (y h k ) k=0,...,n are minimizing sequences in the following sense:

w(0, y, z) = lim h→0 max 0≤k≤n Ψ(s k , y h k , z) ϕ(y n k , z). ( 46 
)
(ii) There exist cluster points for the sequence (y h ) h>0 as h → 0, for the L ∞ norm. Moreover, any such cluster point ȳ is an admissible trajectory belonging to S [0,T ] (y) and ȳ is an optimal trajectory for w(0, y, z).

Proof of Theorem 3.15. The arguments of the proof are similar to the ones used in the proof of Theorem 3.14. The only change is in the estimate derived in Step 1, where instead of (47), we get now:

w h (s k , y k , z) ≥ w(s k+1 , y k+1 , z) Ψ(s k , y k , z) -hε h -2E h -M q λ h . ( 47 
)
The rest of the proof remains unchanged. Before we end this section, we introduce a third algorithm that will be tested in the numerical section. This algorithm uses the reachability time function as defined in section 3.3. We assume that the control problem is autonomous (all the involved functions in the control problem do not depend in the time variable). We assume that an approximation T h of the reachability time function is computed. The reconstruction algorithm reads as follows.

Algorithm 3.

Fix y ∈ R d and z ∈ R. For h > 0 we consider an integer n ∈ N, a partition

s 0 = 0 < s 1 < • • • < s n = T of [0, T ], denote h k := s k+1 -s k and assume that max k h k ≤ h.
We define the positions (y h k ) k=0,...,n , and control values (u h k ) k=0,...,n-1 , by recursion as follows. First we set y h 0 := y. Then for k = 0, . . . , n -1, knowing the state y h k we define

(i) an optimal control value u h k ∈ U such that u h k ∈ argmin u∈U T h y h k + h k f h (y h k , u), z (48) 
(ii) a new state position y h k+1

y h k+1 := y h k + h k f h (y h k , u h k ). ( 49 
)
Without further assumption on the control problem, the reachability time function may be discontinuous and we do not have any convergence proof for Algorithm 3. However, there is an obvious numerical advantage of using Algorithm 3 rather than Algorithm 1 or 2. Indeed, while the two first algorithms require the auxiliary function w h to be stored on a grid of dimension d + 1, at every time s k , the third algorithm requires T h to be stored only once on a grid of dimension d + 1.

be the velocity vector of the aircraft relative to the atmosphere. In order to obtain the equations of motion, the following system of coordinates is considered:

(i) the ground axes system Ex e y e z e , fixed to the surface of earth at mean sea level.

(ii) the wind axes system denoted by Ox w y w z w moving with the aircraft and the x w axis coincides with the velocity vector.

The path angle γ defines the wing axes orientation with respect to the ground horizon axes. Let G be the center of the gravity.

We write Newton's law as F = m dV G dt , where where V G = V + w is the resultant velocity of the aircraft relative to the ground axis system, and w denotes the velocity of the atmosphere relative to the ground axis system. The different forces are the following:

• the thrust force F T is directed along the aircraft. The modulus of the thrust force is of the form F T (t, v) := β(t)F T (v) where v = |V| is the modulus of the velocity and β(t) ∈ [0, 1] is the power setting of the engine.

In the present study

F T (v) := A 0 + A 1 v + A 2 v 2 .
• the lift and drag forces F L , F D . The norm of these forces are supposed to satisfy the following relations:

F L (v, α) = 1 2 ρSv 2 c (α), F D (v, α) = 1 2 ρSv 2 c d (α), (50) 
where ρ is the air density on altitude, S is the wing area. The coefficients c d (α) and c (α) depend on the angle of attack α and the nature of the aircraft. As in [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy[END_REF] we consider here:

c d (α) = B 0 + B 1 α + B 2 α 2 (51) c (α) 
= C 0 + C 1 α α ≤ α * , C 0 + C 1 α + C 2 (α -α * ) 2 α * ≤ α,
(The coefficient c depends linearly on the coefficient α until a swiching point α * where the dependency becomes polynomial.)

• the weight force F P : its modulus satisfies |F P | = mg where m is the aircraft mass and g the gravitational constant.

The constants ρ, S, α * ,

(A i ) i=0,1,2 , (B i ) i=0,1,2 , (C i ) i=0,1,2
, m, g are given in Table 4 of Appendix A.

By using Newton's law, the equation of motion are [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF]:

ẋ = v cos γ + w x (52a) ḣ = v sin γ + w h (52b) v = βF T (v) m cos(α + δ) - F D m -g sin γ -ẇx cos γ -ẇh sin γ (52c) γ = 1 v βF T (v) m sin(α + δ) + F L m -g cos γ + ẇx sin γ -ẇh cos γ (52d) α = u
where δ > 0 is also a parameter of the model, given in Table 4, and where w x and w h are respectively the horizontal and the vertical components of the wind velocity vector w, and The precise model is of the form w x ≡ w x (x), w h ≡ w h (x, h), as shown in Figure 1, and is provided in appendix A.

ẇx := ∂w x ∂x (v cos γ + w x ) + ∂w x ∂h (v sin γ + w h ). ẇh := ∂w h ∂x (v cos γ + w x ) + ∂w h ∂h (v sin γ + w h ).
In the more general setting, one can consider the variables u and β as controls of the dynamical system associated with the motion equations (52). In this work different scenarios of the dynamical system are be considered, in accordance with the role that plays the power factor β. They are described in detail in the following section.

In the sequel, the state variables are represented by a vector of R 5 :

y(•) = (x(•), h(•), v(•), γ(•), α(•)) T .
Therefore the differential system (52) will be also denoted as follows:

ẏ(t) = f (y(t), u(t)) (53) 
where the dynamics f stands for the right-hand-side of (52), and the control is u = (u, β).

The state is subject to the constraints y(t) ∈ K with

K := x min , x max × h min , h max × v min , v max × γ min , γ max × α min , α max , (54) 
where h min defines the lower altitude below which the abort landing is very difficult, h max is a reference altitude (the cruise altitude for instance), v max is given by the aircraft constructor, v min > 0 is the desired minimum velocity value,

[γ min , γ max ] ⊂ [-π 2 , π 2 ].
All the numerical values for the boundary constraints are given in Table 1 in section 5.2.

The constraints on the control u is of the type u min ≤ u ≤ u max with constants u min , u max as in Table 1. Moreover, the control β(t) ∈ [0, 1] will be also subject to different type of restrictions as made precise in each test of section 5.3.

Optimality criterion

In the case of windshear, the Airport Traffic Control Tower has to choose between two options. The first one is to penetrate inside the windshear area and try to make a successful landing. If the altitude is high enough, it is safer to choose another option : the abort landing, in order avoid any unexpected instability of the aircraft. In this article we focus on this second option.

Starting from an initial point y ∈ R d , the optimal control problem is to maximize the lower altitude over a given time interval, that is, maximize min

θ∈[0,T ] h(θ)
where h(θ) is the altitude at time θ corresponding to the second component of the vector y u y (θ) solution of (53) at time θ and such that y u y (0) = y. For commodity, the problem is recasted into a minimization problem as follows. Let H r > 0 be a given reference altitude, and set

Φ(y) := H r -h, (55) 
where h is the second component of the vector y.

The state constrained control problem with a maximum running cost associated to Φ, denoted (P ∞ ), is the following:

inf y∈S K [0,T ] max θ∈[0,T ] Φ(y u y (θ)). (P ∞ ) 5 
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The finite difference scheme

It is well known, since the work of Crandall and Lions [START_REF] Crandall | Two approximations of solutions of hamilton-jacobi equations[END_REF], that the Hamilton Jacobi equation ( 10) can be approximated by using finite difference (FD) schemes. In our case we consider a slightly more precise scheme; namely an Essentially Non Oscillatory (ENO) scheme of second order, see [START_REF] Osher | High essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF]. Such a scheme has been numerically observed to be efficient. Notice that we could have also considered other discretization methods such as Semi-Lagrangian methods (see [START_REF] Falcone | Numerical solution of dynamic programming equations[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]). For the present application we prefer to use the ENO scheme because there is no need of a control discretization in the definition of the numerical Hamiltonian function (see H below).

For given non-negative mesh steps h, ∆y = (dy i ) 1≤i≤d , and ∆z, for a given multi-index i = (i 1 , . . . , i d ), let y i := y min + i∆y ≡ (y k,min + i k ∆y k ) 1≤k≤d , z j := z min + j∆z and t n = nh. Let us define the following grid of K η × [z min , z max ]:

G := (y i , z j ), i ∈ Z d , j ∈ Z, (y i , z j ) ∈ K η × [z min , z max ] .
Let us furthermore denote ψ i,j := Ψ(y i , z j ). In the following, w n i,j will denote an approximation of the solution w(t n , y i , z j ).

Given a numerical Hamiltonian H: R d × R d × R d → R (see Remarks 5.1-5.2 below) the following "explicit" scheme is considered, as in [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF]: First, it is inialized with

w N i,j = ψ i,j , (y i , z j ) ∈ G. (56a) 
Then, for n ∈ {N -1, N -2, . . . , 1, 0} we compute recursively

w n i,j = max w n+1 i,j -∆t H(y i , D -w n+1 i,j , D + w n+1 i,j ), ψ i,j , (y i , z j ) ∈ G (56b) 
(where H is made precise later on).

A monotone (first order) finite difference approximation is obtained using

D ± w n i,j = (D ± k w n i,j ) 1≤k≤d with D ± k w n i,j := ± w n i±e k ,j -w n i,j ∆y k ,
and where {e k } k=1,...,d is the canonical basis of R d ((e k ) k = 1 and (e k ) j = 0 if j = k). In this paper, we use a second order ENO scheme in order to estimate more precisely the terms D ± k w n i k ,j , see [START_REF] Osher | High essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF]:

D ± k w n i,j := ± w n i±e k ,j -w n i,j ∆y k ∓ 1 2 ∆y k m D 2 k,0 w n i,j , D 2 k,±1 w n i,j
with D 2 k,ε w n i,j := (-w n i+(-1+ε)e k ,j + 2w n i+εe k ,j -w n i+(1+ε)e k ,j )/(∆y k ) 2 -Let y 0 ∈ K be a given initial state of the dynamical system (52). Following Proposition 3.2, an approximation of the minimum value of (P ∞ ) can be then defined as:

z * h := min{z ∈ [0, 550f t] | w h (0, y 0 , z) ≤ 0}.
-By using Algorithm 1 or 2 on a time partition 0 = s 0 ≤ s 1 ≤ • • • s n h = T , we get a suboptimal trajectory for w h (0, y 0 , z * h ) that we shall denote as y h,w . -In the sequel, we shall also use Algorithm 3 to reconstruct a trajectory y h,T corresponding to the initial condition (y 0 , z * h ), by using the reachability time function (here we don't have any theoretical basis to guarantee that y h,T is a approximation of an optimal trajectory, but numerical experiments will show that y h,T is as good approximation as y h,w ).

-Then, we will define

J h,w := max 0≤k≤n h Φ(y h,w (s k )) , (58) 
J h,T := max

0≤k≤n h Φ(y h,T (s k )) . (59) 
By combining Proposition 3.12 and Theorem 3.14, we know that a subsequence of (y h,w ) h>0 converges to an optimal trajectory of (P ∞ ), when h goes to 0. Moreover, lim h→0 J h,w = ϑ(0, y 0 ).

Test 1: Running cost problem. Comparison of different methods for computing the optimal value

In this first test, we assume that the power thrust is maximal, i.e., β(t) ≡ 1 which implies that the corresponding dynamical system is autonomous, controlled only by the function u(.). The initial state used is chosen as in [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF]- [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy[END_REF]: y 0 := (0.0, 600.0, 239.7, -2.249 deg, 7.373 deg).

First, we choose a uniform grid on K η (for the variable y) with 40 × 20 × 16 × 8 × 24 nodes. The auxiliary variable interval (for variable z) is fixed to [0, H r -h min ] = [0, 550 ft]. The aim is to test the convergence of the approximation of the optimal value z * h when the computational grid of the variable z is refined. Recall that the dynamics of the z variable is zero. Therefore, in order to keep a reasonable number of grid points, we will rather fix the number of grid points to 5 in the z variable, and refine the z interval by a dichotomy approach. Therefore, the whole computation grid contains 40 × 20 × 16 × 8 × 24 × 5.

Remark 5.3. The computation grid is defined in such a way the mesh size in each direction give similar CFL ratios, i.e., when the values of µ i := ∆t ∆yi f i ∞ are approximately equal for i = 1, . . . , 5. The numerical results are shown in Table 2, using 4 successive reductions of the z interval, giving in particular the estimated optimal z * h in the second column. The values of J h,w and J h,T are reported respectively in the third and fourth columns. In a next step, we fix the last interval for the auxiliary z variable (i.e., z ∈ [481. [START_REF] Rowland | Construction of optimal feedback controls[END_REF]550]) and refine the space grid in the y variable. Table 3 shows the numerical results obtained when the number of grid points is increased by a factor of 1.5 5 and then by 2 5 . By this calculation, we notice that the values of z * h , J h,w and J h,T become closer and closer as the grid size is refined. In figure 2, we compare the reconstructed trajectories y h,w and y h,T . We notice that these trajectories are very similar and their performances (J h,w and J h,T ) are close enough. Several remarks should be made here. First, the reconstruction by the reachability time function is less CPU time consumming because it requires to store the function T only on a six-dimensional grid, whereas the reconstruction by using the auxiliary value function requires to store w on a six-dimensional grid for each time step. Secondly, the trajectories in Figure 2 are very similar on the time interval [0, 30], and then they differ on the time interval [30,40]. This can be explained by the fact that the minimum running cost is reached at a time less than t = 30. The rest of the trajectory after that time is not relevant anymore for the running cost.

z interval z * h J h,w J h,T [0,
It is worth to mention that once the value function w h is computed, it is possible to obtain more information on the original control problem than simply the reconstruction of an optimal trajectory corresponding to a single initial position. Indeed, from the function w h one can obtain an approximation of the whole feasibility set, i.e., the set of initial conditions of the system for which there exists at least one trajectory satisfying all state constraints until the given time horizon T . For the landing abort problem that means to know all initial flight configurations for which it is possible to abort the landing without danger, when the local dominant wind profile is known. Indeed, from the definition of the value function w (see also [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF]), the feasibility set is given by: Ω := {y ∈ R 5 , ∃z ∈ [0, 550], w(0, y, z) ≤ 0}.

Therefore, an approximation of the feasibility set is given by: Ω h = {y ∈ R 5 , ∃z ∈ [0, 550], w h (0, y, z) ≤ 0}.

As an illustration, Figure 3 [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy[END_REF] considers that at the at the initial time, when the aircraft begins its landing maneuver, the power factor is equal to a value β 0 < 1, then the pilot may increase the power until its maximum value, with a constant variation rate, β 1 , and then keep it at the maximum level until the end of the maneuver.

In this section the following cases are studied and compared (the second case will correspond to the one of [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy[END_REF]):

• Case 1. The factor β is fixed to the maximum level : β(t) = 1. In this case the system is controlled by ω, the angular velocity of the trust force orientation angle α :

u(t) := u(t) ∈ U ≡ [u min , u max ] ⊂ R. (61) 
• Case 2. This is the same setting as in Pesch at al [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy[END_REF], where the factor β(t) is a known function of time:

β(t) := β 0 + β d t if t ∈ [0, t 0 ] 1 otherwise ( 62 
)
where β 0 = 0.3825, β d = 0.2 and t 0 = (1 -β 0 )/β d . In this case the system is again controlled by u(•) = u(•) as in (61).

• Case 3. The factor power β(t) is considered as a control input. In this case, we have:

u(t) := (u(t), β(t)) ∈ U ≡ [u min , u max ] × [β min , β max ] ⊂ R 2 . ( 63 
)
(with β min = 0 and β max = 1, u min and u max defined in table 1).

Let us point out that in cases 1&3, the dynamical system (52) is autonomous. However, in case 2 where the dynamics depends on a given time-dependent function β (which is not considered as a control input any more), the control problem becomes non-autonomous. In this case, the link between the reachability time function and the value function doesn't hold and the reconstruction of optimal trajectories can be performed only by using Algorithm 1 or 2. 5 shows the optimal trajectories obtained for the three different cases. From this test, it appears that the strategy of case 2 is not the optimal choice. Optimizing the control β as in case 3 leads to a higher minimal value of h(.).

Test 3: penalisation and post-processing procedures for optimal trajectory reconstruction

We compare different reconstruction procedures here using the exit time function. The aim is to reduce the shattering of the control law. The computational grid used is 60 × 30 × 24 × 12 × 36 × 5 and the same initial point y 0 as in (60)

In Figure 6 we show the results (trajectory and control u(.)) obtained with different reconstruction procedures. The figures on the top correspond to algorithm 1 (no penalisation term). The middle figures are given by algorithm 2 , with different penalization parameter λ (we have proceeded in the same way for the penalization of the minimal time function as for the penalization of the value function). In particular we observe a strong enough penalization can completely suppress the chattering, without too much impact on the optimality of the computed trajectory.

Finally, in the bottom of Figure 6 we have also tested a filtering process: we replace the optimal numerical control found, u n , by an average over a small symmetric window in time ūn := 1 2p + 1 j=-p,...,p u n+j .

We numerically observe a smoothing effect on the control while the trajectory is almost unchanged with respect to the unfiltered solution (p = 0).

A Numerical data

The data corresponding to a Boeing B 727 aircraft is considered. The wind velocity components relative to the winshear model are satisfying the following relations: (65)

The constants appearing in the above relations and for the forces and the wind are given in Table 4. 

  Now, consider cost functionsΦ : [0, T ] × R d → R and ϕ : R d → R satisfying: (H 3 ) Φ is Lipshitz continuous function on [0, T ] × R d and ϕ is Lipschitz continuous on R d : ∃L Φ ≥ 0, |Φ(s, y) -Φ(s , y )| ≤ L Φ (|s -s | + |y -y |) ∀s, s ∈ [0, T ], ∀y, y ∈ R d ; ∃L ϕ ≥ 0, |ϕ(y) -ϕ(y )| ≤ L ϕ |y -y | ∀y, y ∈ R d .

  max s∈[t,T ] Φ(y * (s)) ≤ z, ϕ(y * (T )) ≤ z and max s∈[t,T ] g(y * (s)) ≤ 0. Since ϑ(t, y) = z, it follows that: max s∈[t,T ] Φ(y * (s)) ϕ(y * (T )) ≤ ϑ(t, x) and y * (s) ∈ K, ∀s ∈ [t, T ].

  associated with the initial point (y, z). It follows from the definition of T that, y * (s) := (y * (s), z * (s)) ∈ D, ∀s ∈ [t, T ], and y * (T ) ∈ C. Then, we have, max s∈[t,T ] Φ(y * (s)) ϕ(y * (T )) ≤ z, and max s∈[t,T ] g(y * (s)) ≤ 0. Since ϑ(t, y) = z and by definition of g, we obtain that max s∈[t,T ] Φ(y * (s)) ϕ(y * (T )) ≤ ϑ(t, x) and y * (s) ∈ K, ∀s ∈ [t, T ].

Figure 1 :

 1 Figure 1: Wind components w x (x) and w h (x, h) as functions of x (h = 1000 ft)

  , and where m(a, b) := a if ab > 0 and |a| ≤ |b|, m(a, b) = b if ab > 0 and |a| > |b|, and m(a, b) = 0 if ab ≤ 0.

  grid z * J h,w J h,T 40 × 20 × 16 × 8 × 24 × 5 518.98 481.95 473.18 60 × 30 × 24 × 12 × 36 × 5 487.72 482.94 480.45 80 × 40 × 32 × 16 × 48 × 5 485.30 487.77 490.13Table 3: (Test 1) Convergence with space grid refinements for the y variable only.

Figure 2 :

 2 Figure 2: (Test 1) Optimal trajectories obtained using value function (read line) and the exit time (black line).

  shows two slices of the feasibility set. The left figure shows the feasible slice obtained in the (v, h) plane, with fixed value x = 0 ft, α = 7.373 deg and γ = -2.249 deg; the right figure shows the feasible slice obtained in the (v, γ) plane with fixed value x = 0 ft, α = 7.373 deg and h = 600 ft. Both slices where extracted from the value function w h computed with the finest grid 80 × 40 × 32 × 16 × 48 × 5.

Figure 3 :Figure 4

 34 Figure 3: (Test 1) Two slices of the negative level set of the value function w

Figure 4 :

 4 Figure 4: (Test 1) Optimal trajectories for different initial conditions

Figure 5 :

 5 Figure 5: (Test 2) Optimal trajectories for different control strategies

Figure

  Figure5shows the optimal trajectories obtained for the three different cases. From this test, it appears that the strategy of case 2 is not the optimal choice. Optimizing the control β as in case 3 leads to a higher minimal value of h(.).

Figure 6 :+ ax 3 +dx 3 +

 633 Figure 6: (Test 3) Optimal trajectories (left) and corresponding control u (right), obtained using different reconstruction procedures.

Table 2 :

 2 (Test 1) Dichotomy on the interval of z variable.

	550]	542.30 506.16 500.03
	[275, 550]	525.65 487.60 482.41
	[412.5, 550] 519.72 482.22 476.14
	[481.25, 550] 518.98 481.95 473.18

Table 4 :

 4 Boeing 727 aircraft model and wind data.

		value	unit		value	unit
	ρ	2.203 × 10 -3 Ib s 2 ft -4	C 0	0.7125	
	S	1.56 × 10 3	ft 2	C 1	6.0877	rad -1
	g	32.172	ft s -2	C 2	-9.0277	rad -2
	mg	1.5 × 10 5	Ib	α *	0.2094	rad
	δ	3.49 × 10 -2	rad	k	∈ [0, 1]	
	A 0	4.456 × 10 4	Ib	h *	1000	ft
	A 1	-23.98	Ib s ft -1	a	6 × 10 -8	s -1 ft -2
	A 2	1.42 × 10 -2	Ib s 2 ft -2	b	-4 × 10 -11	s -1 ft -3
	B 0 B 1	0.1552 0.1237	rad -1	c d	-ln( 25 30.6 ) × 10 -12 -8.02881 × 10 -8	ft -4 sec -1 ft -2
	B 2	2.4203	rad -2	e	6.28083 × 10 -11	sec -1 ft -3

The aircraft landing abort problem : model4.1 The flight aerodynamicConsider the flight of an aircraft in a vertical plane over a flat earth where the thrust force, the aerodynamic force and the weight force act on the center of gravity G of the aircraft and lie in the same plane of symmetry. Let V
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Remark 5.1. If the numerical Hamiltonian H is Lipschitz continuous on all its arguments, consistent with H (H(y, p, p) = H(y, p)) and monotone (i.e ∂H ∂p - k (y, p -, p + ) ≥ 0, ∂H ∂p + k (y, p -, p + ) ≤ 0) together with the following Courant-Friedrich-Levy (CFL) condition

then the scheme w n ij converges to the desired solution (see [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF] for more details).

Remark 5.2. Since the control variable u enters linearly and only in the 5th component of the dynamics f in (53), the Hamiltonian H(y, p) takes the following simple analytic form (here in the case of u max = -u min ≥ 0):

where (p i ) 1≤i≤d are the components of p and (f 1 (y), . . . , f 4 (y)) are the first four components of f . For this particular situation we will use the following numerical hamiltonian:

It satisfies all the required conditions of Remark 5.1 for a sufficiently small time step h satisfying the CFL condition (57), which can be written here :

Computational domain, control constraints

To solve the control problem (P ∞ ), we will use the HJB approach as introduced in section 3. Let us mention other recent works [START_REF] Botkin | Dynamic programming approach to aircraft control in a windshear[END_REF][START_REF] Assellaou | A hamilton-jacobi-bellman approach for the optimal control of an abort landing problem[END_REF] where an approximated control problem of (P ∞ ), involving a 4-dimensional model, is also considered by using HJB approach. In all our computations, the boundary of the domain K is defined as in Table 1. The computational domain is sligthly extended in all directions K η := K + ηB ∞ , where B ∞ := [-1, 1] d is the unit ball centered in the origin for the ∞ norm. The parameter η is fixed to a stricly positive, small value (η = 0.05 in our computations).

State variable

Numerical experiments and analysis

In this section, we will perform different tests to investigate numerical aspects for computing an approximation of the optimal value ϑ(0, y 0 ) of (P ∞ ) through the use of the auxiliary value function w. The computations are performed as follows:

-We first consider a grid G h on K η (the grid's size will be made precise for each test). Then solve numerically the HJB equation [START_REF] Frankowska | Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems[END_REF] and get an approximation w h of the auxiliary value function corresponding to (P ∞ ).