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BSDEs with no driving martingale, Markov
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Abstract. Let (P*%) zc[0,71x £ be a family of probability measures, where
E is a Polish space, defined on the canonical probability space D([0,T], E)
of F-valued cadlag functions. We suppose that a martingale problem with
respect to a time-inhomogeneous generator a is well-posed. We consider also an
associated semilinear Pseudo-PDE for which we introduce a notion of so called
decoupled mild solution and study the equivalence with the notion of martingale
solution introduced in a companion paper. We also investigate well-posedness
for decoupled mild solutions and their relations with a special class of BSDEs
without driving martingale. The notion of decoupled mild solution is a good
candidate to replace the notion of viscosity solution which is not always suitable
when the map a is not a PDE operator.

MSC 2020 Classification. 60H30; 60H10; 35505; 60J35; 60J60; 60J99.

KEY WORDS AND PHRASES. Martingale problem; pseudo-PDE;
Markov processes; backward stochastic differential equation; decoupled mild
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1 Introduction

The framework of this paper is the canonical space Q = D([0,T], E) of cadlag
functions defined on the interval [0, 7] with values in a Polish space E. This
space will be equipped with a family (P*%), z)e[0,77x £ of probability measures
indexed by an initial time s € [0,7T] and a starting point © € E. For each
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(s,x) € [0,T] x E, P57 corresponds to the law of an underlying forward Markov
process with time index [0, T], taking values in the Polish state space E which
is characterized as the solution of a well-posed martingale problem related to
a certain operator (D(a),a). In the companion paper [6] we have introduced a
semilinear equation generated by (D(a),a), called Pseudo-PDE of the type

{ a(u) + f (.7.7%1—‘(1&)1%)) = 0 onl0,T]xE (1.1)
uldL, - = 9,

where I'(u) = a(u?) — 2ua(u) is a potential theory operator called the carré du
champs operator. A classical solution of (1.1) is defined as an element of D(a)
verifying (1.1). In [6] we have also defined the notion of martingale solution of
(1.1), see Definition 2.22. A function u is a martingale solution if (1.1) holds
replacing the map a (resp. I') with an extended operator a (resp. ®) which is
introduced in Definition 2.14 (resp. 2.17). The martingale solution extends the
(analytical) notion of classical solution, however it is a probabilistic concept.
The objectives of the present paper are essentially three.

1. To introduce an alternative notion of (this time analytical) solution, that
we call decoupled mild, since it makes use of the time-dependent transition
kernel associated with a. This new type of solution will be shown to be
essentially equivalent to the martingale one.

2. To show existence and uniqueness of decoupled mild solutions.

3. To emphasize the link with solutions of forward BSDEs (FBSDEs) with-
out driving martingale introduced in [6].

The aforementioned FBSDEs are of the form

T
s,z s.x dMS’IT s,z 8,x
Y zg(XT)-i-/ f(T,XmYT’, A, o ) )dr—(MT’ - M), (1.2)
t

in a stochastic basis (2, 7**, (F;"")ie[0, 17, P**") which depends on (s,z). Under
suitable conditions, for fixed (s,z), the solution of this FBSDE is a couple
(Y% M%) of cadlag stochastic processes where M*®* is a martingale. This
was introduced and studied in a more general setting in [6], see [31] for a similar
formulation.

We refer to the introduction and reference list of previous paper for an ex-
tensive description of contributions to non-Brownian type BSDEs. The classical
forward BSDE, which is driven by a Brownian motion is of the form

X" = a+ [T, Xp%)dr + [ o(r, X3")dB, (13)
ths,m _ g(X;,m) + ftT f (’f‘, Xﬁ7m7§/;s,;€, Zﬁ,m) dr — LT Zﬁ’der, .

where B is a Brownian motion. Existence and uniqueness for (1.3) was estab-
lished first supposing mainly Lipschitz conditions on f with respect to the third



and fourth variable. p and o were also assumed to be Lipschitz (with respect to
x) and to have linear growth. In the sequel those conditions were considerably
relaxed, see [35] and references therein. This is a particular case of a more gen-
eral (non-Markovian) Brownian BSDE introduced in 1990 by E. Pardoux and
S. Peng in [33], after an early work of J.M. Bismut in 1973 in [8].

Equation (1.3) is a probabilistic representation of a semilinear partial differ-
ential equation of parabolic type with terminal condition:

{ du+3 > (UUT)i)jagﬂju + Y pi0p,u+ f(, - u,0Vu) =0 on [0, T[xR?
i,5<d i<d
u(T,")=g.
(1.4)

Given, for every (s,z), a solution (Y*% Z%%) of the FBSDE (1.3), under
some continuity assumptions on the coefficients, see e.g. [34], it was proved that
the function u(s, z) := Y is a viscosity solution of (1.4), see also [36, 34, 36,
14], for related work.

We prolong this idea in a general case where the FBSDE is (1.2) with solution
(Y** M*®). In that case u(s,z) := Y will be the decoupled mild solution
of (1.1), see Theorem 3.15; in that general context the decoupled mild solution
replaces the one of viscosity, for reasons that we will explain below. One cele-
brated problem in the case of Brownian FBSDEs is the characterization of Z%®
through a deterministic function v. This is what we will call the identification
problem. In general the link between v and u is not always analytically estab-
lished, excepted when u has some suitable differentiability property, see e.g. [5]:
in that case v is closely related to the gradient of u. In our case, the notion of
decoupled mild solution allows to identify (u,v) as the analytical solution of a
deterministic problem. In the literature, the notion of mild solution of PDEs
was used in finite dimension in [3], where the authors tackled diffusion operators
generating symmetric Dirichlet forms and associated Markov processes thanks
to the theory of Fukushima Dirichlet forms, see e.g. [20]. A partial extension to
the case of non-symmetric Dirichlet forms is performed in [30]. Infinite dimen-
sional setups were considered for example in [19] where an infinite dimensional
BSDE could produce the mild solution of a PDE on a Hilbert space.

Let B be a functional Banach space (B, || - ||) of real Borel functions defined
on E and A be an unbounded operator on (B, | -||). In the theory of evolution
equations one often considers systems of the type

Ou+Au = lon[0,T] x R?
- 9

where [ : [0,7] x R — R and g : R — R are such that I(¢,-) and g belong to

B for every t € [0,T]. The idea of mild solutions consists to consider A (when
possible) as the infinitesimal generator of a semigroup of operators (P;);>¢ on
(B,]| - |I), in the following sense. There is D(A) C B, a dense subset on which
Af = tlin3+%(Ptf — f). In particular one may think of (P;);>¢ as the heat kernel

semi-group and A as %A which is the infinitesimal generator of the Brownian



motion. The approach of mild solutions is also very popular in the framework
of stochastic PDEs see e. g. [9]. When A is a local operator, one solution (in
the sense of distributions, or in the sense of evaluation against test functions) to
the linear evolution problem with terminal condition (1.5) is the so called mild
solution

T
u(s,-) = Pr_s[g] — / P._4[l(r,)]dr. (1.6)

If [ is explicitly a function of u then (1.6) becomes itself an equation and a mild
solution would cousist in finding a fixed point of (1.6). Let us now suppose the
existence of a map S : D(S) C B — B, typically S being the gradient, when
(P;) is the heat kernel semigroup. The natural question is what would be a
natural replacement for a mild solution for

{ 8tu + Au —f(S, 5 U, SU’) o1 [O’T] X Rd (17)

uw(T,) = g.

If the domain of S is B, then it is not difficult to extend the notion of mild
solution to this case. One novelty of our approach consists is considering the
case of solutions u : [0,7] x R? — R for which Su(t,) is not defined.

1. Suppose one expects a solution not to be classical, i.e. such that u(r,-)
should not belong to the domain of D(A) but to be in the domain of
S. In the case of usual PDEs, one thinks of possible solutions which are
not C™? but admitting a gradient, typically viscosity solutions which are
differentiable in z. In that case the usual idea of mild solutions theory
applies to equations of type (1.7). In this setup, inspired by (1.6) a mild
solution of the equation is naturally defined as a solution of the integral
equation

u(s,-)zPT_S[g]—l—/ Po_J[f(rs e u(r, ), Su(r, Dldr.  (1.8)

2. However, there may be reasons for which the candidate solution u is such
that u(t,-) does not even belong to D(S). In the case of PDEs it is often
the case for viscosity solutions of PDEs which do not admit a gradient.
In that case the idea is to replace (1.8) with

T
u(s,) = Prodlal+ [ Pedlfur) o)l (19)
and to add a second equality which expresses in a mild form the equality
v(r,-) = Su(r,-).

We will work out previous methodology for the Pseudo — PDE(f,g). In that
case S will be given by the mapping u — I‘(u)%. If A= %A for instance one
would have T'(u)2 = ||Vu|. For pedagogical purposes, one can first consider



an operator a of type 0 + A when A is the generator of a Markovian (time-
homogeneous) semigroup. In this case,

I'(w) = 0:(u?) + A(u?) — 2udu — 2uAu
A(u?) — 2uAu.
Equation
Ot Au+ f (- u,T(w)?) =0, (1.10)

could therefore be decoupled into the system

Btu—l—Au—i—f(,,u,v):O (1 11)
v? = 0y(u?) + A(u?) — 2u(dpu + Au), ’
which furthermore can be expressed as
Ou+Au = —f(-,,u,v) (1.12)
Oy(u?) + A(?) = 0% =2uf(-,-,u,v). ’

Taking into account the existing notions of mild solution (1.6) (resp. (1.8)), for
corresponding equations (1.5) (resp. (1.7)), one is naturally tempted to define
a decoupled mild solution of (1.1) as a function u for which there exist v > 0
such that

U(S, ) - PT—S[Q] + fsT PT—S[f(Tv E u(r, ')7 U(T‘, -))]d?‘
u2(57 ) = PT—S[92] - fsT PT—S[U2(T7 ) - 2u(r, ) (Tv ) u(r, ')7 U(T‘, -))]d?‘.
(1.13)
As we mentioned before, our approach is alternative to a possible notion of
viscosity solution for the Pseudo — PDE(f,g). That notion will be the object
of a subsequent paper, at least in the case when the driver do not depend on
the last variable. In the general case the notion of viscosity solution does not fit
well because of lack of suitable comparison theorems. On the other hand, even
in the recent literature (see [4]) in order to show existence of viscosity solutions
specific conditions exist on the driver. In our opinion our approach of decoupled
mild solutions for Pseudo — PDE(f,g) constitutes an interesting novelty even
in the case of semilinear parabolic PDEs.

The main contributions of the paper are essentially the following. In Sec-
tion 3.1, Definition 3.4 introduces our notion of decoupled mild solution of (1.1)
in the general setup. In section Section 3.2, Proposition 3.7 states that under
a square integrability type condition, every martingale solution is a decoupled
mild solution of (1.1). Conversely, Proposition 3.8 shows that every decoupled
mild solution is a martingale solution. In Theorem 3.9 we prove existence and
uniqueness of a decoupled mild solution for (1.1). In Section 3.3, we show how
the unique decoupled mild solution of (1.1) can be represented via the FBSDEs
(1.2). In Section 4 we develop examples of Markov processes and corresponding
operators a falling into our abstract setup. In Section 4.1, we work in the setup
of [41], the Markov process is a diffusion with jumps and the corresponding op-
erator is of diffusion type with an additional non-local operator. In Section 4.2



we consider Markov processes associated to pseudo-differential operators (typi-
cally the fractional Laplacian) as in [26]. In Section 4.3 we study a semilinear
parabolic PDE with distributional drift, and the corresponding process is the so-
lution an SDE with distributional drift as defined in [17]. Finally in Section 4.4
are interested with diffusions on differential manifolds and associated diffusion
operators, an example being the Brownian motion in a Riemannian manifold
associated to the Laplace-Beltrami operator.

2 Preliminaries

In this section we will recall the notations, notions and results of the companion
paper [6], which will be used here.

Notation 2.1. In the whole paper, concerning functional spaces we will use the
following notations.

A topological space E will always be considered as a measurable space with
its Borel o-field which shall be denoted B(E). Given two topological spaces,
E,F, then C(E, F) (respectively B(E, F)) will denote the set of functions from
E to F which are continuous (respectively Borel) and if F is a metric space,
Co(E,F) (respectively By(E, F)) will denote the set of functions from E to F
which are bounded continuous (respectively bounded Borel). For any p € [1,00],
d € N*, (LP(R%), || - ||,) will denote the usual Lebesque space equipped with its
usual norm. On a fixed probability space (2, F,P), for any p € N*, LP(P)
will denote the set of random variables (defined up to a.s equality) with finite
p-th moment. A probability space equipped with a right-continuous filtration
(L F, (Fi)eeT,P) (where T is equal to Ry or to [0,T] for some T € R ) will
be called a stochastic basis and will be said to fulfill the usual conditions
if the probability space is complete and if Fy contains all the P-negligible sets.
When a stochastic basis is fized, Pro denotes the progressive o-field on T x ().

On a fized stochastic basis (Q, F, (Fi)ieT, P), we will use the following no-
tations and vocabulary, concerning spaces of stochastic processes, most of them
being taken or adapted from [27] or [28]. M will be the space of cadlag mar-
tingales. For any p € [1,00] HP will denote the subset of M of elements M
such that supT|Mt| € LP(P) and in this set we identify indistinguishable ele-

te

ments. It is a Banach space for the norm ||M||3» = E[|su%Mt|p]%, and HY
te

will denote the Banach subspace of HP containing the elements starting at zero.
If T =1[0,T] for some T € R, a stopping time will be considered as a ran-
dom variable with values in [0,T] U {+oco}. We define a localizing sequence
of stopping times as an increasing sequence of stopping times (Tn)n>0 such
that there exists N € N for which Tv = +o00. Let Y be a process and T a
stopping time, we denote Y7 the process t — Yinr which we call stopped pro-
cess. If C is a set of processes, we define its localized class Cj,. as the set
of processes Y such that there exist a localizing sequence (Tp)n>0 such that for
every n, the stopped process Y™ belongs to C. For any M € My,., we denote



[M] its quadratic variation and if moreover M € HE ., (M) will denote its
(predictable) angular bracket. HE will be equipped with scalar product defined
by (M, N)y2 = E[MpNp] = E[(M, N)r| which makes it a Hilbert space. Two
local martingales M, N will be said to be strongly orthogonal if MN is a
local martingale starting in 0 at time 0. In H(2J,loc this notion is equivalent to

(M,N) = 0.

As in previous paper [6] we will be interested in a Markov process which is
the solution of a martingale problem which we now recall below. For definitions
and results concerning Markov processes, the reader may refer to Appendix
A. In particular, let E be a Polish space and T' € R be a finite horizon we
now consider (Q,}', (Xt)eepo, 17> (]:t)te[O,T]) the canonical space which was in-
troduced in Notation A.1, and a Markov (canonical) class measurable in time
(P*®)(s,2)e[0,7]x E> see Definitions A.5 and A.4. We will also consider the com-
pleted stochastic basis (€2, 757, (F;"")ieo,77, P**), see Definition A.7.

We now recall what the notion of martingale problem associated to an op-
erator introduced in Section 4 of [6].

Definition 2.2. Given a linear algebra D(a) C B([0,T] x E,R), and a linear
operator a mapping D(a) into B([0,T] x E,R), we say that a set of probability
measures (P*7) (s )01 £ defined on (2, F) solves the Martingale Problem
associated to (D(a),a) if, for any (s,z) € [0,T] X E, P** verifies

(a) P>*(Vt € [0,s], Xy =x) = 1;

(b) for every ¢ € D(a), the process ¢(-, X.) — [, a(¢)(r, X, )dr, t € [s,T] is
a cadlag (P*%, (F¢)eels,r))-local martingale.

We say that the Martingale Problem is well-posed if for any (s, x) € [0,T]x
E, P57 s the only probability measure satisfying the properties (a) and (b).

As for [6], in the sequel of the paper we will assume the following.

Hypothesis 2.3. The Markov canonical class (P**) s z)e(0,1)x E s0lves a well-
posed Martingale Problem associated to some (D(a),a) in the sense of Definition
2.2.

Notation 2.4. For every (s,z) € [0,T] x E and ¢ € D(a), the process
£ Loy () (qs(t, Xp) — é(s,x) — [* a(e)(r, Xr)dr> will be denoted M[¢]**.

M[g]** is a cadlag (P**, (F¢)¢ejo,r7)-local martingale equal to 0 on [0, s],
and by Proposition A.8, it is also a (P**, (F;"*),c[0,7])-local martingale.

The bilinear operator below was introduced (in the case of time-homogeneous
operators) by J.P. Roth in potential analysis (see Chapter III in [37]), and
popularized by P.A. Meyer and others in the study of homogeneous Markov
processes (see for example Exposé II: L’opérateur carré du champs in [32] or
13.46 in [27]).



Definition 2.5. We introduce the bilinear operator

D(a) x D(a) — B([0,T]x E)
(6, ¢) = al¢y) — ¢a(v) — Ya(9).
The operator T" is called the carré du champs operator.

(¢, ¢) will more simply be denoted T'(¢), and when this mapping takes pos-
itive values, F(d))% will denote its point-wise square root.

I: (2.1)

The angular bracket of the martingales introduced in Notation 2.4 are ex-
pressed via the operator I'. Proposition 4.8 of [6], tells the following.

Proposition 2.6. For any ¢ € D(a) and (s,z) € [0,T] x E, M[¢]>* is in
HG 1o- Moreover, for any (¢,1) € D(a) x D(a) and (s,x) € [0,T] x E we have
in (0, F>* (F " )iep,r), P*") and on the interval [s, T|

(M[g]*, M) = / (6, 6)(r X, )dr. (2.2)

S

We introduce the space of square integrable martingales with absolutely
continuous angle bracket.

Notation 2.7. HZ := {M € H2|d(M); < dt}. We will also denote L>(dt ®
dP) the set of (up to indistinguishability) progressively measurable processes ¢

such that E[fOT P2dr] < oo.

We remark H2** corresponds in [6] (Section 3.) to Hg'”. In this paper we
have set V; = t. Proposition 4.11 of [6] says the following.

Proposition 2.8. If Hypothesis 2.3 is verified then under any P**,
H% _ Hg,abs.

In the sequel, several functional equations will hold up to a zero potential
set that we recall below.

Definition 2.9. For any (s,z) € [0,T] x E we define the potential measure
U(s,z,-) on B([0,T] x E) by U(s,z, A) := E>* UST ]l{(t,Xt)eA}df]-

A Borel set A € B([0,T] x E) will be said to be of zero potential if, for any
(s,x) €[0,T] x E we have U(s,z,A) =0.

Notation 2.10. Let p > 0, we define

Lo, = {f € B([0,T] x E,R) : E®

T
/ e, X»dr] < oo} ,

on which we introduce the usual semi-norm ||| p.s.z : f (ES*I UST |f(r, XT)|pdr})
We also denote L9, := {f € B([0,T] x E,R) : fST |f1(r, X )dr < co P57 a.s. } .

1
P



For any p > 0, we then define an intersection of these spaces, i.e.

Ly = N LE .. Finally, let N the linear subspace of B([0,T] x E,R)
(s,2)€[0,T|xE

containing all functions which are equal to 0 U(s,x,+) a.e. for every (s,x). For

any p € N, we define the quotient space L% := L5 /N. If p > 1, LK can be

equipped with the topology generated by the family of semi-norms (|| - | p75,$)(5)1)6[07T] B

which makes it into a separable locally convex topological vector space.

The statement below was stated in Proposition 4.14 of [6].

Proposition 2.11. Let f and g be in B([0,T] x E,R) such that the processes
[, f(r, X)dr and [ g(r, X,)dr are finite P>* a.s. for any (s,x) € [0,T] x E.
Then f and g are equal up a zero potential set if and only if fs flr, X,)dr and
[, g9(r, X, )dr are indistinguishable under P> for any (s,z) € [0,T] x E.

We recall that if two functions f,g differ only on a zero potential set then
they represent the same element of LS. We recall our notion of extended
generator.

Definition 2.12. We first define the extended domain D(a) as the set func-
tions ¢ € B([0,T] x E,R) for which there exists 1» € B([0,T] x E,R) such that

under any P5% the process

L <¢(-,X.> - olsa) = [ win X»dr) , (2.3)

(which is not necessarily cadl‘ag) has a cadlag modification in HE.
Proposition 4.16 in [6] states the following.

Proposition 2.13. Let ¢ € B([0,T] x E,R). There is at most one (up to zero
potential sets) v € B([0,T] x E,R) such that under any P>*, the process defined
in (2.3) has a modification which belongs to M.

If moreover ¢ € D(a), then a(p) =1 up to zero potential sets. In this case,
according to Notation 2.4, for every (s,x) € [0,T] x E, M[p]*>* is the P*
cadlag modification in HE of L7y (gb(,X) —¢(s,x) — fs P(r, Xr)dr).

Definition 2.14. Let ¢ € D(a) as in Definition 2.12. We denote again by
M(¢]*®, the unique cadlag version of the process (2.3) in HE. Taking Propo-
sitton 2.11 into account, this will not generate any ambiguity with respect to
Notation 2.4. Proposition 2.11, also permits to define without ambiguity the
operator

D(a) — L%

¢ — Y.

a will be called the extended generator.

a:

We also extend the carré du champs operator I'(-, -) to D(a) x D(a). Propo-
sition 4.18 in [6] states the following.



Proposition 2.15. Let ¢ and i) be in D(a), there exists a (unique up to zero-
potential sets) function in B([0,T] x E,R) which we will denote &(¢, 1) such
that under any P>*, (M[¢]%*, M[]5*) = [  &(¢,)(r, X, )dr on [s,T], up to
indistinguishability. If moreover ¢ and ¥ belong to D(a), then T'(¢,v) = &(d, V)

up to zero potential sets.

Notation 2.16. &(¢, ¢) will be denoted &(p) and if that function takes positive
values, ®(¢))% will denotes its point-wise square root.

Definition 2.17. The bilinear operator & : D(a) x D(a) — L% will be called
the extended carré du champs operator.

According to Definition 2.12, we do not have necessarily D(a) C D(a), how-
ever we have the following.

Corollary 2.18. If ¢ € D(a) andT'(¢) € L, then ¢ € D(a) and (a(¢),'(¢)) =
(a(@),B(¢)) up to zero potential sets.

We also recall Lemma 5.12 of [6].

Lemma 2.19. Let (s,2) € [0,T] x E be fized and let ¢, be two measurable
processes. If ¢ and ¢ are P**-modifications of each other, then they are equal
dt @ dP%" a.e.

We now keep in mind the Pseudo-Partial Differential Equation (in short
Pseudo-PDE), with final condition, that we have introduced in [6].
Let us consider the following data.

1. A measurable final condition g € B(E, R);
2. a measurable nonlinear function f € B([0,7] x E x R x R, R).
The equation is
{ a(u) + f (-,-,u,l"(u)%) = 0 onl[0,T]xE (2.4)
uw(T,) = g.
Notation 2.20. Fquation (2.4) will be denoted Pseudo — PDE(f,g).

Definition 2.21. We will say that u is a classical solution of Pseudo —
PDE(f,g) if it belongs to D(a) and verifies (2.4).

Definition 2.22. A function u : [0, T)x E — R will be said to be a martingale
solution of Pseudo — PDE(f,g) if u € D(a) and

a(u) = —f(-,-,u,@(u)%)
s 29

We now fix couple of functions f € B([0,T]x ExRxR,R) and g € B(E,R).
Until the end of these preliminaries, we will assume the following.

10



Hypothesis 2.23.
1. ¥(s,2) € [0,T) x E, g¢(Xr) € L2(P*®);
2. f(a '5070) S ﬁ%{;

3. There exists K¥Y >0, K% > 0 such that for all t,x,y,y’, z, 2/,
|f(t,a:,y,z) - f(tv'rvy/vz/” < KY|y - y/| + KZ|Z - Z/|'

Remark 2.24. If f(-,-,0,0) and g are bounded then properties 1. and 2. above
are satisfied.

We conclude these preliminaries by stating the theorem of existence and
uniqueness of a martingale solution for Pseudo — PDE(f,g). It was the object
of Theorem 5.21 of [6].

Theorem 2.25. Let (P*") (s 2yej0,mxE be a Markov canonical class associated

to a transition function measurable in time (see Definitions A.5 and A.4) which

fulfills Hypothesis 2.3, i.e. it is a solution of a well-posed Martingale Problem

associated with some (D(a),a). Moreover assume that Hypothesis 2.23 holds.
Then Pseudo — PDE(f,g) has a unique martingale solution.

We also had shown (see Proposition 5.19 in [6]) that the unique martingale
solution is the only possible classical solution if there is one, as stated below.

Proposition 2.26. Under the conditions of previous Theorem 2.25, a classical
solution u of Pseudo — PDE(f,g) such that T'(u) € L%, is also a martingale
solution.

Conversely, if u is a martingale solution of Pseudo— PDE(f,g) belonging to
D(a), then u is a classical solution of Pseudo— PDE(f, g) up to a zero-potential
set, meaning that the first equality of (2.4) holds up to a set of zero potential.

3 Decoupled mild solutions of Pseudo-PDEs

All along this section we will consider a Markov canonical class (P**) s »)e[0,71x E
associated to a transition function p measurable in time (see Definitions A.5,
A 4) verifying Hypothesis 2.3 for a certain (D(a), a). We are also given a couple
of functions f € B([0,T]x ExRxR,R) and g € B(E, R) satisfying Hypothesis
2.23.

3.1 Definition

As mentioned in the introduction, in this section we introduce a notion of solu-
tion of our Pseudo— PDE(f, g) that we will denominate decoupled mild, which
is a generalization of the mild solution concept for partial differential equation.
We will show that such solution exists and is unique. Indeed, that function will
be the one appearing in Theorem 3.13.

In what follows, we will be interested in functions (f, g) which satisfy weaker
conditions than Hypothesis 2.23 namely the following ones.
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Hypothesis 3.1. There exists C > 0 such that the following holds.
1. V(s,z) € [0,T] x E, ¢g(Xr) € L3*(P*%);
2. f(-,+,0,0) € L% ;
3.Vt zy,2) s |f(tx,y, 2) < [f(E2,0,0)] + Cly| + [2]).

Notation 3.2. Let s,t in [0,T] with s < t, x € E and ¢ € B(E,R), if the
expectation E>*[|¢(X,)|] is finite, then Py [¢](x) will denote E5*[¢(X,)] .

We recall two important measurability properties.
Remark 3.3. Let ¢ € B(E,R).

o Suppose that for any (s,x,t), E>*[|¢(X,)|] < oo then by Proposition A.11,
(s,z,t) — Py 4[¢](x) is Borel.

e Suppose that for every (s,x), ES””U;T |p(X,)|dr] < oco. Then by Lemma
A.10, (s,x) — fsT P; .[¢](x)dr is Borel.

In our general setup, considering some operator a, the equation
a() + £ (- uT(@)?) =0, (3.1)
can be naturally decoupled into

a(u) = _f('v'vuav)
{ () v (3.2)

Since I'(u) = a(u?) — 2ua(u), this system of equation will be rewritten as

{ a(u) = —f(-,-,u,v) (33)

a(u?) = v*—=2uf(-, -, u,v).

On the other hand our Markov process X is time non-homogeneous, which leads
us to the definition of a decoupled mild solution.

Definition 3.4. Let (f,g) be a couple verifying Hypothesis 3.1.
Let u,v € B([0,T] x E,R) be two Borel functions with v > 0.

1. The couple (u,v) will be called solution of the identification problem
determined by (f,g) or simply solution of IP(f,g) if u and v belong
to L% and if for every (s,x) € [0,T] x E,

{ u(s,z) = Ps,T[g](x)+fsTPs,r[€(T su(r, ), o(r, )] (z)dr

u2(s,x) = PsyT[g2](I) - fsT PSW UQ(Tv ) - 2uf (Tv ~,u(r, ')7U(Ta )) (I)d’l”

]
(3.4)

2. The function u will be called decoupled mild solution of Pseudo —
PDE(f,g) if there is a function v such that the couple (u,v) is a solution
of IP(f,g).
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Lemma 3.5. Let u,v € L%, and let f be a Borel function satisfying Hypothesis
3.1, then f (-,-,u,v) belongs to L% and uf (-,-,u,v) to L.

Proof. Thanks to the growth condition on f in Hypothesis 3.1, there exists a
constant C' > 0 such that for any (s,z) € [0,T] x E,

Es*® UtT F2(r, X, u(r, X)), o(r, XT))dr}

T ) ) (3.5)
< CEs*® [ft (f%(r, X;-,0,0) + v?(r, X;.) + v*(r, X,.))dr

since we have assumed that u?,v? belong to LY, and thanks to Hypothesis
3.1. This means that f? (-, ,u,v) belongs to L. Since 2 |uf (-, -, u,v)|] < u? +
f2(-,-,u,v) then uf (-, -, u,v) also belongs to L%. O

Remark 3.6. Consequently, under the assumptions of Lemma 3.5 all the terms
n (3.4) make sense.

3.2 Existence and uniqueness of a solution

Proposition 3.7. Assume that (f,g) verifies Hypothesis 3.1 and let u € L% be
a martingale solution of Pseudo — PDE(f,g). Then (u,®(u)) is a solution of
IP(f,qg) and in particular, u is a decoupled mild solution of Pseudo—PDE(f, g).

Proof. Let u € L% be a martingale solution of Pseudo — PDE(f,g). We em-
phasize that, taking Definition 2.12 and Proposition 2.15 into account, &(u)
belongs to L%, or equivalently that Gj(u)% belongs to £3%. By Lemma 3.5, it
follows that f ( -,u,é(u)%) € £% and uf ( -,u,es(u)%) €Ll

We fix some (s,z) € [0,T] x E and the corresponding probability P**. We are
going to show that

u(s,z) = Psrlgl(x —I—fT P, {f (r,-, (r,.),ﬁ(u)%(r,.))} (x)dr

<
n
W

8
~—

|

(3.6)
Combining Definitions 2.12, 2.14, 2.22, we know that on [s,T], the process
u(+, X.) has a cadlag modification which we denote U** which is a special semi-
martingale with decomposition

U —us,) = [ (vnu®@h) (nXdr s M, (3)

where M [u]*® € H32. Definition 2.22 also states that u(T,-) = g, implying that
T 1

u(s,z) = g(Xr) +/ f (-, -, U, Qﬁ(u)E) (r, Xy )dr — M[u]7" as. (3.8)

Taking the expectation, by Fubini’s theorem we get

u(s,z) = Er[ (xr)+ [ f -,-,u,(’i(u)%)(r,XT)dr]

= f P, |f (T7~7U(T7-)7®(u)%(r,.)):| (z)dr. (3.9)

13
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By integration by parts, we obtain

AU = =207 (10, O()? ) (6 X)dt + 2057 AMuli + Ml
(3.10)
so integrating from s to T', we get

u?(s, )

A (Xr) +2 [[ U f (w8 ) (r, X )dr = 2 [ U dM[uly® — [M[u**])r

*(Xr) +2 [T uf (w8 ) (r, X )dr = 2 [T UFAM[uly® — [Mu**]r,
(3.11)

where the latter line is a consequence of Lemma 2.19. The next step will consist

in taking the expectation in equation (3.11), but before, we will check that

[, U dM[u]$* is a martingale. Thanks to (3.7) and Jensen’s inequality, there

exists a constant C' > 0 such that

T
sup <Ut”>2sc< [ £ (uo@?) 0. X)dr + sup (M)
tels,T) s tels,T)
(3.12)

Since M[u]*® € HE and f (-, - U, Gj(u)%) € L%, it follows that sup (U;"")?

te(s, T
L'(P**) and Lemma 3.15 in [6] states that [ U”"dM[u]$* is a P**-martingale.
Taking the expectation in (3.11), we now obtain

u?(s,z) = E*® 2(XT)+IST2uf e, 6 (u)? (r, X, )dr — [M[u]®*]
= B |@2(X7) + [ 2uf (4w, &) (r, X, )dr — (M[u]*®) 7
S,T S, T T 5
= B [g?(Xp)] — B [ [ () — 20 (-0, 6(w)}) ) 0 X, )dr |
= Porlg®la) = J] Pur [B()(r,) = 2u(r,)f (v, ulr, ), 63 () )| @),
(3.13)
where the third equality derives from Proposition 2.15 and the fourth from
Fubini’s theorem. This concludes the proof. O

We now show the converse result of Proposition 3.7.

Proposition 3.8. Assume that (f,g) verifies Hypothesis 3.1. Every decoupled
mild solution of Pseudo— PDE(f,g) is a also a martingale solution. Moreover,
if (u,v) solves IP(f,g), then v> = &(u) (up to zero potential sets).

Proof. Let u and v > 0 be a couple of functions in £3% verifying (3.4). We
first note that, the first line of (3.4) with s = T, gives u(T,-) = g. We fix
(s,z) € [0,T] x E and the associated probability P** and on [s,T], we set
U :=u(t, Xy) and Ny := u(t, Xy) —u(s,z) + fst flr, Xe,u(r, X;),v(r, X,.))dr.
Combining the first line of (3.4) applied in (s,x) = (¢, X;) and the Markov
property (A.3), and since f (-, -, u,v) belongs to £% (see Lemma 3.5) we get the
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a.s. equalities

Ut - (t Xt)
= Purlg)(X) + [, P [f (ry e u(r, ), o(r, )] (Xo)dr
= EbX [ (X7) —I—ft (r, Xy, u(r, X;), v(r, 'r‘))d’l":| (3.14)
= B [g(Xr) + S £ X u(r, X,), 0, X))drlF]

from which we deduce that N, = ES* {g(XT) + fST f(ry Xp ulr, X)), v(r, XT))dr|}'t} -

u(s,z) a.s. So N is a P®®-martingale. We can therefore consider on [s,T] and
under P** N %% the cadlag version of N, and the special semi-martingale
U* = wu(s,x)— [, f(r, Xp,u(r, X;.),v(r, X,.))dr+N** which is a cadlag version
of U. By Jensen’s inequality for both expectation and conditional expectation,
we have

Bl = B | (B 000+ A Xl )00 X)) 7 = u(s,2)) |
< 3u?(s, ) + 3ES*[g?(X7)] + 3ES® [fsT 2(r, Xy u(r, X)), v(r, XT))dr}
- (3.15)

where the second term is finite because of Hypothesis 3.1, and the same also
holds for the third one because f (-, -, u,v) belongs to £%, see Lemma 3.5. So
N*% is square integrable. We have therefore shown that under any P*7, the pro-
cess u(-, X.) —u(s,z) + [, f(r, X, u(r,X,),v(r, X;))dr has on [s,T] a modifica-
tion in HZ. Definitions 2.12 and 2.14, justify that u € D(a), a(u) = —f(-, -, u,v)
and that for any (s,z) € [0,T] x E, M[u]®® = N*=.

To conclude that u is a martingale solution of Pseudo— PDE(f,g), there is
left to show that &(u) = v?, up to zero potential sets. By Proposition 2.15, this
is equivalent to show that for every (s,z) € [0,T] x E, (N**) = [ v*(r, X,.)dr,
in the sense of P**-indistinguishability.

We fix again (s,x) € [0,T] x E and the associated probability, and now set
N} = u?(t, X)—u?(s, x)—f;(v2—2uf(-, -, u,v))(r, X, )dr. Combining the second
line of (3.4) applied in (s, x) = (¢, X;) and the Markov property (A.3), and since
v uf (-, -, u,v) belong to L} (see Lemma 3.5) we get the a.s. equalities

u(t, Xy) = Prlg’] ftT Py (( [ () = 2u(r, ) f (ry - ulr, ), v(r, )] (Xe)dr
- Et*Xf[Q — W = 2uf (-, u,0)) (r, X )dr
= Es* [g Xr —ft v2 = 2uf (-, u,v))(r, X, )dr|]-'t],
(3.16)
from which we deduce that for any ¢ € [s, T,
T
N} =E** lg2(XT) —/ (V2 = uf (-, u,v))(r, X, )dr|Fy | — u?(s,z) as.

So N’ is a P®®-martingale. We can therefore consider on [s,T] and under P*7*,
N'$* the cadlag version of N’.

15



The process u®(s,z) + [[(v® — uf(:,-,u,v))(r, X;)dr + N'*% is therefore a
cadlag special semi-martingale which is a P*®-version of u2(-, X) on [s,T]. But
we also had shown that U** = u(s,z) — [ f(r, Xy, u(r, X;.),v(r, X,.))dr + N5%,
is a version of u(-, X), which by integration by parts implies that

u?(s,z) — 2/ U f( - u,v)(r, X, )dr + 2/ UPPdN® + [N57],
is another cadlag semi-martingale which is a P*®-version of (-, X) on [s, T].
[.(w* =2uf(-,-,u,v))(r, X, )dr + N’ is therefore indistinguishable from
=2 [LUSf (-, u,0)(r, Xy )dr + 2 [ UZ"dNS* + [N®*], which can be written
(N*=y =2 [LUS f(-, -, u,0)(r, X, )dr +2 [ U dANS* 4 ([N**] — (N®7)) where
(N**y =2 [JUS* f(-,-,u,v)(r, X, )dr is predictable with bounded variation and
2 [LUANS™® 4+ ([N**] — (N**)) is a local martingale. By uniqueness of the
decomposition of a special semi-martingale, we have

/'(02 —2uf(-, - u,v))(r, X, )dr = (N**) — 2/V U (-, u,v)(r, X, )dr

S S

and by Lemma 2.19,
/ (0 — 2uf (- u,0))(r, X, )dr = (N*F) — 2 / wf (-, 0)(r, X, )dr,

which finally yields (N**) = [ v?(r, X,)dr as desired. O

We recall that (Ps’w)(S,z)e[o,T]xE is a Markov canonical class associated to
a transition function measurable in time (see Definitions A.5 and A.4) which
fulfills Hypothesis 2.3, i.e. it is a solution of a well-posed Martingale Problem
associated with (D(a), a).

Theorem 3.9. Let (f,g) be a couple verifying Hypothesis 2.23. Then Pseudo—
PDE(f,g) has a u