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Abstract

Robots are having an important growing role in human social life, which requires them to be able to behave appropriately to the
context of interaction so as to create a successful long-term human-robot relationship. A major challenge in developing intelligent sys-
tems, which could enhance the interactive abilities of robots, is defining clear metrics and benchmarks for the different aspects of human-
robot interaction, like human and robot skills and performances, which could facilitate comparing between systems and avoid
application-biased evaluations based on particular measures. The point of evaluating robotic systems through metrics and benchmarks,
in addition to some recent frameworks and technologies that could endow robots with advanced cognitive and communicative abilities,
are discussed in this technical report that covers the outcome of our recent workshop on current advances in cognitive robotics: Towards
Intelligent Social Robots - Current Advances in Cognitive Robotics, in conjunction with the 15th IEEE-RAS Humanoids Conference
- Seoul - South Korea - 2015 (https://intelligent-robots-ws.ensta-paristech.fr/). Additionally, a summary of an interactive discussion ses-
sion between the workshop participants and the invited speakers about different issues related to cognitive robotics research is reported.
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1. Introduction and related work in an appropriate manner. The growing collaboration

between different disciplines within cognitive robotics, in

The fast emerging interdisciplinary research area of cog-
nitive robotics focuses on developing intelligent robots that
can perceive the environment, act, and learn from experi-
ence so as to adapt their generated behaviors to interaction
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addition to the accelerating advances in robotics related
technologies, took robots a step closer to fill the gap sepa-
rating theoretical research and real world applications.
This requires defining evident criteria for evaluating
robot-based applications in our life. While several theoret-
ical studies in the related literature focused on setting
groups of metrics and benchmarks in cognitive robotics
so as to correlate between findings and compare between
systems, we present a subjective evaluation for some
common metrics, benchmarks, and frameworks through a
Likert scale questionnaire, in which all questions are
presented on a 7-point scale.



Steinfeld et al. (2006) proposed a set of metrics covering
different task groups, such as: navigation (e.g., mobile
robot navigation in the environment so as to manage path
planning, available resources, avoiding obstacles, etc.),
management (i.e., coordinating the actions of robots and
human users), manipulation (i.e., physical robot interac-
tion with the environment), and social (i.e., social interac-
tion tasks between robots and human users). Similarly,
Olsen and Goodrich (2003) offered a group of metrics for
evaluating human-robot interaction including: task effec-
tiveness (i.e., efficiency of a human-robot team in perform-
ing a task), neglect tolerance (i.e., robot performance drop
when human attention is transfered to other tasks), robot
attention demand (i.e., level of required human attention
for instructing a robot), fan out (i.e., number of robots that
a human user can operate at a time), and interaction effort
(i.e., required time and cognitive potential of a human user
to interact with a robot). Hoffman (2013) designed a group
of subjective and objective metrics for evaluating fluency in
human-robot collaboration. The subjective metrics of flu-
ency include: human trust in robot, robot contribution to
team, and human-robot team performance improvement
over time. Meanwhile, the objective metrics of fluency
include: robot idle time (i.e., robot waiting time for addi-
tional inputs from the human in order to take a decision),
human idle time (i.e., human waiting time for the robot to
complete finishing an assigned task), concurrent activity
(i.e., active time of both the robot and the human), and
functional delay (i.e., time difference between the end of
one agent’s task, whether the human or the robot, and
the beginning of the other agent’s task).

Moreover, Kahn et al. (2007) proposed a group of psy-
chological benchmarks in order to evaluate human-like
robots empirically. These benchmarks consider the basic
characteristics of human behaviors - so as to increase
the naturalness of robot behaviors as much as possible
- including robot autonomy and imitation of people’s
behaviors, in addition to benchmarks focusing on the
moral aspects of robot behaviors and their consequences
on interaction with human users. Similarly, Rentschler,
Cooper, Blasch, and Boninger (2003) and Feil-Seifer,
Skinner, and Mataric (2007) addressed safety (i.e., level
of robot safety for its human users during interaction with
the environment) and scalability (i.e., ability of the robot
system to be used by different user populations) as impor-
tant benchmarks for robot system evaluation in socially
assistive robotics (Fong, Nourbakhsh, & Dautenhahn,
2003). Furthermore, Scholtz (2002) and Kiesler and
Goetz (2002) discussed the evaluation of assistive tools,
and proposed the impact on caregivers (i.e., using robots
for enhancing the work conditions of caregivers) and user
satisfaction with received care from robots, as important
benchmarks to consider in socially assistive robotics.

On the other hand, cognitive robotics has witnessed a
big leap forward in intelligent frameworks and technolo-
gies. These recent frameworks and platforms include:

operating systems (e.g., BrainOS, ROS Quigley et al.,
2009, and Urbi Baillie, 2004), perception (e.g., OpenCV
and PCL library Rusu & Cousins, 2011), simulation (e.g.,
Webots and Gazebo Koenig & Howard, 2004), robot con-
trol interface (e.g., Orocos and Player Gerkey et al., 2001),
and middleware (e.g., YARP Metta, Fitzpatrick, & Natale,
2006). These example frameworks contribute effectively to
the current research of cognitive robotics in order to shape
the future of human-robot interaction by endowing robots
with advanced cognitive functions and better interaction
services.

In this paper, we present a subjective analysis for some
metrics, benchmarks, frameworks, and recent technologies
in cognitive robotics, in addition to a summary of an inter-
active discussion session, with five expert researchers in the
field, in order to draw up general and practical guidelines
for bridging the gap between robotics research and applica-
tions. The rest of the paper is structured as following: Sec-
tion 2 presents a detailed analysis of questionnaire data,
Section 3 discusses the outcome of the study, Section 4 pro-
vides a summary of the panel discussion session, and last
but not least, Section 5 concludes the paper.

2. Analysis and results

We planned to map out the emerging field of “intelligent
social robots”. For this purpose we compiled a question-
naire, which was distributed among the participants during
the workshop “Towards Intelligent Social Robots — Cur-
rent Advances in Cognitive Robotics” on the 3rd of
November 2015 in Seoul, South Korea. In order to obtain
a larger number of responses after the workshop, the URL
for the online version of the same questionnaire was also
passed on to other colleagues in the field. Overall, a total
of 50 participants filled in the questionnaire. The responses
are analyzed below. We must note that we do not claim
that these are necessarily representative of the field as a
whole, but merely indicative of the topics and trends within
that field.

2.1. Countries of origin of the respondents

Although attendance at the larger robotics conferences
usually does not depend on where a conference is held with
respect to where participants are from (Griffiths, Voss, &
Rohrbein, 2014), the majority of respondents for the ques-
tionnaire came from Europe (Czech Republic, Denmark,
France, Germany, Italy, Romania, Spain, Switzerland,
and the United Kingdom) with 60%. The second largest
group are from Asian countries (China, Japan, Kaza-
khstan, South Korea, and Thailand) with 24%, followed
by the Americas (Colombia and USA) with 12% and a
small group of unknown origin (4%). These numbers are
also displayed in Fig. 1. One needs to note that most
respondents are from Europe. Consequently, a slight
“Eurocentric” bias in the answers needs to be suspected.
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Fig. 1. The origin of respondents to the questionnaire according to
continents.

2.2. Respondents and their disciplines

“Intelligent Social Robotics” stands at the intersection
of several disciplines. Thus, one very interesting question
is which disciplines our participants identify with primarily.
Here, we find some variation in granularity, which shows
that one is dealing with an interdisciplinary community
identified with fields such as computer science, cognitive
science neuroscience, and psychology. However, most
responses are on a finer level; whereas some respondents
simply answered robotics, many responses were at the level
of such sub-disciplines as cognitive robotics (Levesque &
Lakemeyer, 2010), social robotics (Breazeal, Takanishi, &
Kobayashi, 2008), or developmental robotics (Cangelosi,
Schlesinger, & Smith, 2015). However, fields such as artifi-
cial intelligence or computer vision are also named repeat-
edly, and these do not necessarily stand directly “under”
robotics in a taxonomy. A majority of participants identify
with human-robot interaction (28%), which can certainly
be seen as a sub-discipline of robotics in its own right.

The results are summarized in Fig. 2. We see the field of
“intelligent social robotics” as allied mainly with cognitive
robotics, which is the second largest distinct group (8%) in
our survey. This was also suggested by the full title of the
workshop. The combination of a variety of methods has
become a common standard in cognitive robotics research
(Rohlfing, Wrede, & Sagerer, 2014). However, we see this
“sub-sub-discipline” of modern robotics as mainly focused
on interaction and artificial sociality.

In the recent ‘“survey of expert opinion” (Miiller &
Bostrom, 2014), one investigated question was about the
research approach that would lead to what the authors call
“high-level machine intelligence” (HLMI). Almost half of
the respondents (47.9%) answered this question with
“cognitive science”. Only 2% of respondents in our survey
saw their field as “cognition” in contrast to this.

Disciplines of Respondents

e

m Artificial Intelligence m Cognition m Cognitive Robotics
m Motion Planning m Neurorobotics m Other
m Developmental Robotics m Human-Robot Interaction
m Social Robotics m Software Engineering

Computer Vision
m Perception

Fig. 2. The disciplines to which the respondents report to belong to.

Gomila and Miiller (2012) define 30 “measures of
progress” with respect to the development of artificial
cognitive systems. One of the areas in which the authors
expect development is “‘social cognitive system”, which also
correspond to our area of interest under investigation.

For secondary affiliation with respect to disciplines the
case is slightly less transparent. Some respondents gave
more than one discipline keyword, but the majority
(58%) decided to only give one discipline with which they
affiliate. 16% of participants listed even more than two
discipline keywords.

The non-primary disciplines again included human-
robot interaction (named by 10% of respondents), control
(4%) artificial intelligence (4%) and cognitive robotics
(4%). Other disciplines were only named once. Most cate-
gories in both primary and non-primary fields of research
named in this question would relate to the technical areas
of robotics and computer science. However, there were also
disciplines such as psychology or science and technology
studies.

2.3. Paradigms for artificial cognitive systems

In line with Vernon (2014) and Frankish and Ramsey
(2014), we offered the options of cognitivist approaches
(also known as symbolic or knowledge based approaches)
(Boden, 2014), connectionist approaches (also known as
neural network modeling) (Sun, 2014), and dynamical sys-
tems (Beer, 2014). We also offered an “other” option. The
results are displayed in Fig. 3.

The results show that the paradigms are almost
balanced. All three possible paradigms used the entire
spectrum with maximum values 7 being given and mini-
mum values at 1. The cognitivist paradigm has a mean of
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Fig. 3. Paradigms in intelligent social robots research.

M =4.78 (SD =1.39), the connectionist paradigm has a
mean of M =4.9 (SD = 1.33) and the dynamical systems
paradigm has a mean of M =4.82 (SD = 1.49). Although,
the mean values are very close together the dynamical sys-
tems paradigm engendered slightly higher variability with
respect to the responses. The median for all three para-
digms was Mdn = 5, which again indicates that the respon-
dents rated all three paradigms with very similar
importance. However, with respect to the mode, the weak-
est measure of central tendency, the cognitivist paradigm
has a mode of 6, while the dynamical systems paradigm
has a mode of 5 and the connectionist paradigm has a
mode of 4. The results show very little variance in the
answers with a slightly more ‘unified’ opinion with regard
to neural network modeling and more high values given
for the cognitivist/symbolic paradigm. Overall, all three
approaches seem to have their place within the field.

2.4. Contributions to future progress in intelligent social
robotics

We were interested in what kinds of recent contributions
to robotics were regarded as important to the scene. We
hence offered the options ROS — the robot operating sys-
tem (Quigley et al., 2009), the semantic web (Berners-Lee,
Hendler, & Lassila, 2001), cloud robotics (Goldberg &
Kehoe, 2013), and the multi-agent systems programming
language (Bordini et al., 2006). These have all been named
as significant new contributions in the literature. We also
offered an ““other” option. The results are displayed in
Fig. 4.

ROS has a mean of M =4.7 (SD = 1.49), the semantic
web has a mean of M =4.3 (SD = 1.42), cloud robotics
has a mean of M =5.2 (SD =1.32), and the multi-agent
systems programming language has a mean of M =4.24
(SD =1.59).

2.5. Benchmarking the social and cognitive skills of robots

As possible performance benchmarks, we offered the
options of the Turing Test (Turing, 1950; Shieber, 1994;
French, 2000; Harnad & Scherzer, 2008), Winograd sche-
mas (Levesque, Davis, & Morgenstern, 2011), RoboCup

Soccer (Kitano, Asada, Noda, & Matsubara, 1998), and
RoboCup@Home (Wisspeintner, Van Der Zant, locchi,
& Schiffer, 2009). We also offered an “other” option. The
results are displayed in Fig. 5.

The Turing test has a mean of M =3.92 (SD =1.61),
the Winograd schema has a mean of M =398
(SD = 1.44), RoboCup Soccer has a mean of M =3.36
(SD=1.4) and RoboCup@Home has a mean of
M =424 (SD =1.59).

These data indicate that the respondents favoured
RoboCup@Home over other benchmarking measures of
intelligence. In line with this, among the “other” responses
one respondent named RoboCup@Home as the single best
measure of progress.

2.6. Frameworks for evaluation

Social and cognitive robotics have recently seen an
expansion with respect to evaluation methods. Many of
these are inspired by psychology, a field which has overall
exerted quite a lot of control over the methodological
framework of cognitive sciences in general in the past dec-
ades (Barsalou, 2010). In order of discriminating between
different methodological frameworks we offered the choices
of questionnaires, neuroscientific methods, behavioral
methods, and system benchmarks. The results are dis-
played in Fig. 6.

Questionnaires have a mean of M =3.84 (SD = 1.58),
neuroscientific methods have a mean of M =4.48
(SD =1.37), behavioral methods have a mean of
M =5.74 (SD = 0.9) and system benchmarks have a mean
of M =448 (SD=1.37). Clearly, behavioral methods
were chosen as the most useful for the kind of research
our respondents are interested in.

2.7. Metrics of human performance

In many tasks for cognitive robots in interaction with
humans one needs to determine how well the human is
doing at the joint task. For this purpose one needs metrics
of performance. The questionnaire offered the choices of
mental models, workload, and situation awareness. The
results are displayed in Fig. 7.
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Fig. 4. Contributions to future progress in intelligent social robots research.
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Fig. 6. Evaluation methods in intelligent social robots research.

Mental models have a mean of M =4.88 (SD =1.22),
workload has a mean of M = 4.54 (SD = 1.42) and situation
awareness has a mean of M = 5.46 (SD = 1.42). The respon-
dents showed a clear preference for situation awareness.

2.8. Metrics of robot performance

In almost all tasks for cognitive robots one needs to
determine how well the robot is doing at a given task.
For this purpose one needs metrics of performance. The
questionnaire offered the choices of self-awareness,
human-awareness, and autonomy. The results are dis-
played in Fig. 8.

Self-awareness has a mean of M =4.92 (SD =1.34),
human-awareness has a mean of M =542 (SD=1.11)
and autonomy has a mean of M =5.54 (SD=1.31).
Autonomy emerged as the favored response while self-
wareness received the lowest average score.

2.9. Human-robot interaction metrics

As a means of measuring the effectiveness of human-
robot interaction the questionnaire offered the options
persuasiveness, engagement, and appropriateness of
interaction. The results are displayed in Fig. 9.

Persuasiveness has a mean of M =4.72 (SD =1.25),
engagement has a mean of M =5.54 (SD=1.11) and
appropriateness of interaction has a mean of M =6.1
(SD =0.86). The clear favorite of the respondents was
appropriateness of interaction.

2.10. How do you evaluate the (current) scientific
cooperation between the AI and HRI communities?

The mean answer to how well the artificial intelligence
and the human-robot interaction communities interact is
M =3.86 (SD =1.21). Respondents did not use the full
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Fig. 9. Metrics for human-robot interaction in intelligent social robots
research.

scale with the maximum value given being 6 with 7 being
the highest possible value and the minimum value being
the lowest possible value 1. The median is Mdn =4 and
the mode is also 4. Thus, although there is room for
improvement, the numbers indicate a rather positive pic-
ture with respect to this question.

What the questionnaire did not ask was whether this
interaction is considered “‘useful” or “desired”. However,
artificial intelligence and robotics have been close since
the beginning. However, cloud robotics (Waibel et al.,
2011; Hunziker, Gajamohan, Waibel, & D’Andrea, 2013;
Kehoe, Patil, Abbeel, & Goldberg, 2015) was also named
repeatedly.

2.11. Major breakthroughs in intelligent social robots in the
past five years

Participants were asked to name breakthroughs in “in-
telligent social robotics” of the past five years. We distin-
guished between breakthroughs in research and
commercial developments. The answers to this question
were open. The respondents showed repeatedly mentioned

deep learning (Coates et al., 2013; Schmidhuber, 2015;
LeCun, Bengio, & Hinton, 2015) as one major break-
through on the research level.

On the commercial level, the most named breakthrough
is “Jibo”?. “Jibo” is a commercial product and the first
social robot to be produced for the consumer market. How-
ever, the answers also included Pepper’®, NAO (Shamsuddin
et al, 2011), and Baxter (Guizzo & Ackerman, 2012).
However, the disembodied agent “Siri” and the speech
recognition skills of personal assistant systems were also
mentioned repeatedly as commercial breakthroughs.

3. Discussion

In the following section, we will discuss the results with
respect to what we learned from the questionnaire. Several
questions allowed an option for “other” where participants
could answer free text. These answers are selectively used
to illustrate some points below.

3.1. Building systems

We tried to gauge an answer as to how to build artificial
social cognitive systems. We proposed several answers with
respect to conventional cognitive architectures. No clear
answer could be found with respect to whether neural net-
works, knowledge-based systems or dynamical systems are
preferred among the community.

Interestingly, however, the answers which were obtained
with respect to “other”, often pointed toward hybrid
approaches or ‘“‘gray box” (Zorzetto, Maciel Filho, &
Wolf-Maciel, 2000) approaches, which roughly mean
hybrid. Further, some respondents pointed toward the task
dependent nature of the solution. Thus, the responses we
obtained suggest that the community at the moment seems
to favor a pragmatic approach, over favoring a certain
paradigm. Instead of a one-size fits all model of cognition,
task-dependent designs or hybrid systems are named as the
favored approaches in the future.

Participants also see the exchange between artificial
intelligence and cognitive robotics as alive and well. Thus,
moving forward we can assume that the current develop-
ments in this field will also influence developments in ““in-
telligent social robots”. The main goal is to build
autonomous systems, which posses the right capabilities
for interaction.

3.2. Evaluating systems

When it comes to evaluating systems, the pool of
respondent again favored an overall pragmatic approach.
The answers tend to stress the need for practical tasks
and behavioral measures.

2 https://www.jibo.com/.
3 https://www.aldebaran.com/en/cool-robots/pepper.



The participants saw RoboCup@home as a valuable
means of benchmarking performance. They preferred
behavioral measures over questionnaires, neuroscientific
methods and even system benchmarks. Also, human per-
formance should best be measured in terms of situation
awareness. Robots in contrast should be judged by their
degree of autonomy. The overall goal in interaction is to
see whether the degree of “appropriateness of interaction”
is satisfied.

3.3. Deploying systems

Among the benchmarking responses one finds sugges-
tions that “long-term interaction” in situ may be the key
to social cognition for robots. Thus, if one can build learn-
ing systems these can ultimately become social over time.
This idea also agrees well with the relative popularity of
the RoboCup@home competition as a benchmark.

For the group of respondent the interaction with robots
in naturalistic scenarios appears to be the natural way for-
ward with respect to ““intelligent social robots”. This also
was clear from answers in the ‘“other” category of to
benchmarking question, which included “daily interaction
with end users” and robots deployed in long-term setting
and in families. It was pointed out repeatedly that the over-
all behavior of a robot would be more important than its
performance at a given isolated task (e.g. conversation).
The community seems to be interested in testing robots
in naturalistic scenarios more than on an abstract level.
This needs to be considered moving forward.

3.4. Building a community

The question of whether the “intelligent social robots”
community is interlinked with a variety of other communi-
ties was also addressed. The respondents in our question-
naire affiliate with various disciplines and sub-disciplines
of robotics, but some are also affiliated with psychology
and other social sciences. Generally, one can see the com-
munity has a strong association with human-robot interac-
tion, but the community is also especially interested in the
cognitive aspects of robotics.

4. Panel discussion summary

In this section, we provide a summary of the panel discus-
sion session with five renowned researchers in cognitive
robotics, whose experiences vary from industry to academia:

e Dr. Amit Kumar Pandey - Aldebaran Robotics - France is
a chief scientist at Aldebaran Robotics in Paris, France,
serving as the scientific coordinator (R&D) of the col-
laborative projects. He holds a bachelor’s degree from
Jaypee Institute of Information Technology and a mas-
ter’s degree from the Indian Institute of Technology
(IIT) in India, and he received a doctorate from
LAAS-CNRS in France. Dr. Pandey’s research interests

include socially intelligent robots and societal applica-
tions, human-robot interaction, and artificial
intelligence-based applications.

Prof. Jun Tani - Korea Advanced Institute of Science and
Technology (KAIST) - South Korea is a full-professor at
the Department of Electrical Engineering and the direc-
tor of the Cognitive Neuro-Robotics Laboratory at the
Korea Advanced Institute of Science and Technology
(KAIST) in Daejeon, South Korea. He received his
bachelor’s degree from Waseda University in Japan, a
master’s degree from the University of Michigan in
USA, and a doctorate from Sophia University in Japan.
He started his career as a senior researcher at the Sony
Computer Science Laboratory in Japan, afterwards he
was appointed as a team leader in the Behavior and
Dynamic Cognition Laboratory at RIKEN Brain
Science Institute in Japan. Prof. Tani’s research interests
focus on understanding the underlying mechanisms of
embodied cognition and mind through conducting an
interdisciplinary research that combines robotics, brain
science, non-linear dynamics, and psychology.

Prof. Sonya Kwak - Ewha Womans University - South
Korea is an industrial design professor at the Ewha
Womans University in Seoul, South Korea. She com-
pleted her undergraduate, master’s, and Ph.D. degrees
at the department of industrial design in the Korea
Advanced Institute of Science and Technology (KAIST)
in South Korea. Prof. Kwak’s research interests include
human-robot interaction based on social psychology, in
addition to designing human-friendly robots (e.g.,
Mung, Haemi, and Hangul-bot robots).

Prof. Yukie Nagai - Osaka University - Japan is a spe-
cially appointed associate professor at the Emergent
Robotics Laboratory of the Graduate School of Engi-
neering at Osaka University in Osaka, Japan. She
received her bachelor’s and master’s degrees from
Aoyama Gakuin University and her doctoral degree
from Osaka University in Japan. Afterwards, she worked
as a postdoctoral researcher at Bielefeld University in
Germany before returning to Osaka University. Prof.
Nagai does research on cognitive developmental robotics
and her research interests include cognitive development
based on predictive learning, infant-directed action, joint
attention, and human-robot interaction.

Prof. Lorenzo Natale - Italian Institute of Technology
(IIT) - Italy is a tenure track researcher at the iCub
Facility Department of the Istituto Italiano di Tecnolo-
gia (IIT) in Genoa, Italy. He received his undergraduate,
master’s, and doctoral degrees from the University of
Genoa in Italy. Thereafter, he was a postdoctoral
research associate at the MIT Computer Science and
Artificial Intelligence Laboratory in USA before return-
ing to IIT Institute as the leader of the Humanoid Sens-
ing and Perception research group. Prof. Natale’s
research interests range from sensorimotor learning
and vision, to software engineering and system integra-
tion in robotics.



In this rich discussion session, the invited panelists
exchanged opinions actively with the workshop attendees
about different robotics-related topics and challenges. In
the following points, we summarize some of the addressed
questions to the panelists and highlight their corresponding
points of view:

1. In the recent European Commission review (European
Robotics Research: Achievements and Challenges) issued
in 2012, the commission stated the need to fill the gap sep-
arating research and innovation. We asked our panelists
about the potential causes and their recommendations
to fill this gap:

e Pandey: A possible way to fill the gap separating
research and innovation is to encourage partnerships
between research and industry. Researchers should
bring the results of their studies forward to industrial
partners, who would evaluate, in turn, any potential
outcome for commercial and innovative products.
Although some research projects produce innovative
ideas and technologies, there might be practical prob-
lems in embedding and employing such technologies
in commercial robots and applications. This could
be related to the cost of the technology, the computa-
tional effort it requires, etc. The considered Techno-
logical Readiness Level (TRL) for H2020 projects

how to combine and integrate the results of cognitive
science research studies in order to build social
robots-based applications that could satisfy the differ-
ent needs of users.

Natale: The new trend taken by the EU Commission
in structuring innovation more than basic science
might have been caused by the apparent inability of
basic science researchers to understand how to trans-
form the findings of their studies into real commercial
products that people can use. For bridging the gap
between research and innovation, I think that
researchers working on basic science should foster
the discussion with people working in the industry
in order to understand the problems they face and
try to come up with solutions to their practical
problems.

Audience: Robotics research should change its per-
spective; rather than focusing on building simple
robot companions for example, it should work on
task oriented platforms and robots that can engage
effectively in short term interactions. A positive
example of such a direction is represented by a robot
like Pepper?, which could be considered as a real
innovative product that can be used in people’s social
life in a wide range of circumstances.

will be, probably, useful to fill the gap separating
research and innovation. Funding research projects
that meet, at least, the minimum level of TRL, would
certainly enhance the chances of having strong results
that could be used for building innovative commer-
cial applications.

Tani: Researchers are not supposed to work on direct
and immediate applications for the industry. Tech-
nology comes out bottom-up, and not because the
governments are expecting a specific outcome or put-
ting constraints on researchers for creating it. For
example, thinking about the recent unexpected break-
through of deep learning, we had the suspicion that
Recurrent Neural Networks (RNNs) were about to
die. However, in the last two years, RNNs are really
running deep learning. Consequently, we should con-
sider the gradual development of technology and
innovation.

Kwak: Researchers should understand the needs of
users so as to propose ideas on how to create technol-
ogy and build products that satisfy these needs. There
is even too much technology that we do not know
where and how to use. Researchers should try to
understand how to deliver the available technology
to objects that people use in daily life.

Nagai: A possible way to fill the gap separating
research and innovation is to foster the discussion
among scientists working on basic and applied
sciences. For example, researchers working on cogni-
tive robotics and researchers working on social
robotics should make a real effort to understand

2. A human cognitive system could be defined in terms of a
group of fundamental cognitive processes, like: knowledge
acquisition, storing, and processing, in addition to learning
from experience, which allow humans to generate adapted
behaviors. We asked our panelists how far we are from
endowing robots with an artificial cognitive system of
a similar functionality:

e Pandey: For building robots with cognitive capabili-
ties, we need to bring them through a developmental
process similar to that of children. We should give
them curiosity to explore the world and the capability
to learn from sensorimotor inputs. However, this
process is so sophisticated and needs a long time.
We can either give robots time to develop (i.e.,
through a bottom-up development), or embed some
developmental blocks through which the robot can
start acquiring more knowledge to learn. Aldebaran
Robotics is currently investigating both approaches
and any possible trade-off.

e Tani: How close are robots to humans? For example,
IBM Watson - the question answering computer sys-
tem - is very good at answering general questions sim-
ilarly to humans. But, Watson can never answer the
questions that require reasoning about sensory infor-
mation (e.g., the smell of objects). At some limited
level of linguistic interaction, Watson could look
close to a real human. Coming back to the question,
it depends on how intelligence is measured; a simple

4 https://www.ald.softbankrobotics.com/en/cool-robots/pepper.



program that can perform a simple task could be con-
sidered intelligent. However, speaking about human
intelligence - with all the associated and sophisticated
cognitive processes - in a general scope, I guess it
would be very difficult to endow robots with a cogni-
tive system of a similar functionality.

e Kwak: Do we really need a human-like technology?
Where are we going to use it? If we make a perfect
human-like robot, how much will people pay for it?
We will need to fit the profit with the cost of materials
so as to make the product at a good price, and a good
example on that is Pepper robot. I hope that our
community thinks about the cost and function of
technology so as to offer affordable products that
normal people can get.

e Nagai: Many researchers today are working on moti-
vation models, not only on learning models. Through
these models, robots can increase their knowledge
and autonomously select what to learn depending
on what they can do, because if the targets are so dif-
ficult, they might not be able to gain any learning
experience similarly to humans. However, if the tar-
gets are close to their existing knowledge, they can
gain new experiences. Therefore, we can design moti-
vation/curiosity models so as to make robots auton-
omously select what to do and what to learn.
Consequently, integrating learning and motivation
models could make robots undergo continuous cog-
nitive development as humans.

e Natale: I believe that we are very far from endowing
robots with a similar artificial cognitive system.
Robots execute some defined tasks through programs
written by humans. Robotics research needs to find
the way to enable robots to do new tasks, and come
up with new behaviors/actions autonomously. Robots
can incrementally improve what they were programed
to do, but still cannot totally behave independently.

3. Theory-of-mind could be defined as the ability to attribute
mental states (i.e., belief, desire, and intention) to other
people/agents so as to understand the others’ beliefs,
desires, and intentions that could be different from one’s
own. We asked our panelists about the possibility of
endowing a robot with a theory-of-mind based cognitive
model so as to predict another human/robot’s actions:
e Pandey: Theory-of-mind between robots and humans
is being covered by research that shows some good
results. However, applying this theory on two robots
would be, indeed, very interesting. In terms of the
implementation and development side, if the imple-
mentation is generic enough to treat an agent either
as a robot or a human in the same way, then we
can have this kind of cognitive capability easily
adopted between two robots.

e Tani: I cooperate with Prof. Murata from Waseda
University on making two robots that learn from
each other using predictive learning. When two

robots become able to predict each other’s behavior,
they start to collaborate. Murata’s model is responsi-
ble for detecting the possible level of prediction. In
case the robot realizes that it cannot predict another
robot’s behavior, it starts doing its own things. On
the contrary, in case the robot realizes that it can pre-
dict another robot, they start collaborating. There-
fore, it is important to be able to understand when
prediction is possible, and when it is not, so that
one makes the robot able to collaborate with another
one.

Nagai: What is the definition of theory-of-mind? My
definition for theory of mind is the ability to use our
internal models to understand the environment or the
world. Based on this definition, humans could apply
theory of mind to understand robots, and robots
could use their internal cognitive models to under-
stand humans. An interesting example are autistic
people, who also have the ability to apply theory-
of-mind to understand others, even though several
researchers argue that they cannot read the internal
states of other persons. The problem is that their
internal models are different from those of typical
persons. That is why they cannot communicate with
typical persons. However, they can communicate very
well with people with ASD (Autism Spectrum Disor-
der), because they share similar internal models. Con-
sequently, if robots can acquire similar internal
models to those of humans, they would be able to
understand what humans are thinking about, and
similarly humans would be able to understand
robots, like understanding why a robot is not
working.

Natale: 1 think that applying a theory-of-mind
between robots is feasible. You can always access
the program of a robot, so that you can predict some
its behaviors, knowing how it is programmed. An
expected problem that would be present in this con-
text is the perception problem, like detecting where
the robot is looking through a perspective-taking;
as you are in a different perspective than that of the
robot. Afterwards, in terms of predicting how the
robot would behave in situations, you do not need
a learning model for that, you can anticipate some
behaviors if you can access the program, so that
you can expect how the robot would behave in
response to stimuli for example. However, in order
to make the robot more autonomous, it should gener-
ate some other random behaviors that would need
complex cognitive models to be predicted.

5. Conclusion

This paper discusses the outcome of our first annual
workshop: Towards Intelligent Social Robots - Current
Advances in Cognitive Robotics, which was held in



conjunction with the 15th IEEE-RAS Humanoids Confer-
ence - Seoul - South Korea - 2015. In this technical report,
we illustrate the findings of a subjective analysis for some
metrics, benchmarks, and frameworks in cognitive robotics.
Additionally, we provide a summary of an interactive dis-
cussion session, with five expert researchers, about different
robotics-related topics, which could help in enriching the
vision of young researchers for the awaiting future chal-
lenges. In the future versions of our workshop, we will con-
tinue analyzing and reporting the different challenges in
cognitive robotics with cutting-edge discussions with expert
researchers in the field.
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