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Introduction

We study finite horizon optimal control problems on multi-domains of R d with interfaces where the dynamics and the cost functions may have discontinuities. In particular, we consider a cellular partition of R d , that is, a disjoint union of subdomains Ω i , i = 1, • • • , m, where the interfaces coincide with crossing hyperplanes separating the subdomains. The goal of our investigation is to identify the junction conditions on the interfaces such that the optimal control problem involving the trajectories switching between the subdomains or staying on the interfaces is well defined and the associated Hamilton-Jacobi-Bellman (HJB) equation has a unique solution.

The discontinuous setting across the interfaces leads us to the study state-discontinuous Hamilton-Jacobi equations. The viscosity notion of solutions to HJ equations was firstly extended in the discontinuous case in [START_REF] Ishii | A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations[END_REF], providing the first vision on this subject. Then, several attention has been given to the type of conditions one has to add in order to establish the comparison principle. In [START_REF] Soravia | Boundary Value Problems for Hamilton-Jacobi Equations with Discontinuous Lagrangian[END_REF], a class of stationary HJ equations with discontinuous Lagrangian has been studied and an uniqueness result is provided using a special structure of the discontinuities. Later, the viscosity notion was extended in [START_REF] Camilli | Hamilton-Jacobi equations with measurable dependence on the state variable[END_REF] to the case where the Hamiltonian is state-measurable, and a comparison principle is obtained under an adequate assumption which avoid complex interactions between the trajectories and the interfaces.

Control problems on multi-domains has become an active field of investigation and several papers have been particularly influential for our work. The first paper on stratified domains investigating the HJB tangential equations on the interfaces has been the work [START_REF] Bressan | Optimal control problems for control systems on stratified domains[END_REF] by Bressan and Hong, where a rather complete analysis of discontinuous deterministic control problems in stratified domains has been carried out. Then, in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF], both the infinite horizon and finite horizon problems on two-domains are studied. In both works, the authors consider different types of strategies for the trajectories to identify the proper HJB equations to provide maximal and minimal solutions and the conditions for uniqueness. The controllability is assumed in the whole space in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF], and then has been weakened to a normal controllability with respect to the interface in [START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF]. Stability results are also provided. Then, following a similar approach and under similar controllability assumptions to [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF], a rather general class of discontinuous deterministic control problems on stratified domains have been studied out in [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Founda. and Appl[END_REF]. The work [START_REF] Barnard | Flow invariance on stratified domains, Set-Valued Variational Anal[END_REF] has particularly attracted our attention by providing a selection principle for the dynamics on the interfaces of stratified domains, called essential dynamics, to obtain invariance properties. By following this selection principle, junctions conditions on the interfaces on multi-domains are provided in [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF], where the characterization result is carried out under a full controllability assumption. The further work [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF] consider an infinite horizon problem in two-domains under a weaker controllability assumption and a convexity assumption for the set of dynamics/costs. Finally, we would like to mention some recent work on networks [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF] Camilli | A comparison among various notions of viscosity solutions for Hamilton-Jacobi equations on networks[END_REF] which share the same kind of difficulty as this subject. A different framework is considered in [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF], where an infinite horizon state constrained control problem with a constraint set having a stratified structure is studied. We refer also to [START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF], where the same approach has been used to study the minimum time problem and the Mayer problem for stratified state constraints. In such situations, the interior of the set may be empty and the classical pointing qualification hypothesis to guarantee the characterization of the continuous value function are not relevant. Then, the discontinuous value function is characterized by means of a system of HJB equations on each stratum that composes the state constraints. This result is obtained under a local controllability assumption which is required only on the strata where some chattering phenomena could occur.

In the present work, we consider first the case of a discontinuous control problem on a stratification of R d with continuous final cost. In this case, the value function is characterized as the unique continuous solution of the set of HJB equations modeling the control problem coupled with the junction conditions on the interfaces. Following the concept of essential dynamics introduced in [START_REF] Barnard | Flow invariance on stratified domains, Set-Valued Variational Anal[END_REF], HJB junction equations on the interfaces are provided, the viscosity notion for the HJB system is introduced and, under some controllability conditions, the comparison result and the existence and uniqueness of a continuous solution are obtained. In this continuous setting, we develop further the ideas introduced in [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF][START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF], but with some significant contribution. In comparison to [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF][START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF], the present work considers a more general structure of multi-domains with crossing hyperplanes involving switching running costs and under weaker controllability and convexity assumptions. Moreover in our framework both the dynamic and the cost can be unbounded, differently from [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF][START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF][START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Founda. and Appl[END_REF]. Another technical issue is the convexity condition for the set of velocities and costs. As in [START_REF] Bressan | Optimal control problems for control systems on stratified domains[END_REF], we assume a weaker convexity hypothesis than the one in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF]. The advantage of this assumption is to include more general cases and to avoid working with the relaxed problems. Finally, we remark that in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Founda. and Appl[END_REF] the comparison result and consequently the continuity of the value function is proven under a normal controllability condition and the results are obtained under mainly PDE techniques combined with some control arguments. In the present work we suppose also a tangential controllability condition only on the interfaces, leading to a Lipschitz regularity of the value function on the interfaces. Also, the techniques used are based mainly on control theory. We provide a stability result, which on the other hand is based directly on the viscosity notion without control arguments. In the second part of our work, we consider the case of a lower semi-continuous terminal cost which, as far as we know, has not been considered previously in the framework of multi-domains control problems. In this setting, the value function is characterized as the unique lower semi-continuous bilateral solution of the set of HJB equations coupled with tangential junction conditions on the interfaces. Our approach is inspired to [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF][START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF], by adapting to our setting the techniques used there in the different framework of a stratified state constraint control problem. As in the continuous case, we consider an finite horizon control problem, whereas in [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF][START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF] respectively the infinite horizon case and the Mayer problem are studied. We assume a controllability assumption which includes the case in which there is no controllability anywhere on the interfaces and in particular allows us to treat the arising of some chattering phenomena. The paper is organized as follows. In Section 1 we set some notations and we state our main results. In Section 2 we recall some main properties of the value function. Section 3 and Section 4 are devoted to the characterization of super and subsolutions through super and sub-optimality principles. In Section 5 we prove are main results, namely existence, uniqueness. Finally, Section 6 is devoted to the stability result.

1 Notations, setting of the problem and main results

Notations

For any M subset of R d , the closure of M is denoted as M. For each x ∈ R d , x denotes the Euclidean norm of x and d(x, M) denotes the distance from x to M, i.e.

d(x, M) = inf{ x -z : z ∈ M}.
In the sequel, for any function w : R p → R, Ep(w) and Hp(w) denote respectively the epigraph and hypograph of w, i.e.

Ep(w)

:= {(x, z) ∈ R p × R : w(x) ≤ z}, Hp(w) := {(x, z) ∈ R p × R : w(x) ≥ z}. If V k is an affine subspace of R d of dimension k, we denote by V ⊥ k the subspace of R d such that the following decomposition holds R d = V k V ⊥ k .

Assumptions

We consider a cellular decomposition of

R d into m-cells {Ω i } i=1,••• ,m , separated by hyperplanes (H j ) j=1,••• ,q , such that for all j 1 , j 2 ∈ {1, • • • , q}, H j1 = H j2 for j 1 = j 2 and either H j1 //H j2 or H j1 ⊥ H j2 . Set Γ := j=1,••• ,q H j .
More specifically, we assume under the above notations:

(H1)      (i) R d = Γ (∪ m i=1 Ω i ) , (ii) Γ ∩ Ω i = ∅ ∀i = 1, • • • , m, (iii) Ω i is open and connected.
Throughout the paper, we use the following notation:

Γ = p k=1 Γ k , (Γ k ) k=1,••• ,p are pairwise disjoint.
Moreover, we denote by (Γ 0 k ) k the subdomains of Γ such that there exist two hyperplanes

H k1 , H k2 , k 1 = k 2 such that Γ 0 k = H k1 ∩ H k2 . Moreover, we will occasionally denote by M k either Ω k either Γ k , so that R d = l+m k=1 M k , where for each k : M k = Ω k or M k = Γ k .
Note that the set of interfaces separating the cells in our partition consists in the two set of parallel hyperplanes. For the rest of the paper, we make the arbitrary choice of choosing a unique direction for the exterior normal vector for each of these two sets. We denote the normal to each H j with this chosen direction by n j .

We are given a control problem on R d with dynamic f : R d ×A → R d and running cost : R d ×A → R, where A is a compact set of R n . For simplicity, throughout the paper we will consider also the following multifunctions notations

F : R d R d , L : R d R d • F (x) := {f (x, a) : a ∈ A )}), L(x) := { (x, a) : a ∈ A }); • for any i = 1, . . . , m, F i = F | Ωi , L i = L| Ωi .
We assume the following standard hypothesis on F and L:

(HF)

     (i) x F (x) has non-empty compact images and is upper semi-continuous 1 ; (ii) ∀i ∈ {1, . . . m} the map x F i (x) is locally Lipschitz continuous w.r.t the Hausdorff distance; (iii) There exists c f > 0 such that max{|p| | p ∈ F (x)} ≤ c f (1 + |x|); (HL)      (i) x L(x)
has non-empty compact images and is upper semi-continuous 1 ; (ii) ∀i ∈ {1, . . . m} the map x L i (x) is locally Lipschitz continuous w.r.t. the Hausdorff distance. (iii) There exists c l > 0 and λ l ≥ 1 such that for any ∈ L(x), 0 ≤ ≤ c l (1 + |x| λ l ); For x ∈ R d and p ∈ R d , we define:

H(x, p) = sup a∈A {-p • f (x, a) -(x, a)}.
Let T > 0 be given final time, we consider for each i = 1, • • • , m the following set of HJB equations:

-∂ t u(t, x) + H(x, Du(t, x)) = 0 for t ∈ (0, T ), x ∈ Ω i , (1.1) 
1 We recall that a multifunction x F (x) is said to be upper-semi continuous at x 0 if for any open set C ⊃ F (x 0 ), there exists an open set ω containing x 0 such that F (ω) ⊂ C. In other terms, F (x) ⊃ lim sup y→x F (y).

combined with the final condition u(T, x) = ϕ(x) for x ∈ Ω i .

The system above implies that on each domain Ω i a classical HJ equation is considered. However, there is no information on the boundaries of the domains which are the junctions between Ω i We then address the question to know what condition should be considered on the boundaries in order to get the existence and uniqueness of solution to all the equations. Here ϕ is called the final cost function and two different assumptions on ϕ are considered in this work:

(Hϕ1) ϕ is a Lipschitz continuous function, (Hϕ2) ϕ is a lower semi-continuous function with λ ϕ -superlinear growth for some λ ϕ ≥ 1.

For the rest of the paper we set λ = max{λ l , λ ϕ }.

(1.2)

We consider the HJB equation (1.1) in each subdomain Ω i and we then address the question to know which are the junction conditions on the interface Γ to get the existence and uniqueness of solution to (1.1).

A technical efficient way to deal with the running cost is to introduce an augmented dynamics. To this end we define b(x, a)

= c l (1 + |x| λ l ) -(x, a) for any x ∈ R d , a ∈ A .
For each x ∈ R d , we define the augmented dynamics G :

R d R d G(x) := {(f (x, a), -(x, a) -r) : a ∈ A , 0 ≤ r ≤ b(x, a)}.
It is not difficult to see by (HF), (HL) that this map has non empty compact images. Moreover, we also suppose the following assumption.

(HG) G(•) has convex images.

Tangential and Essential dynamics. Controllability assumptions

An important type of dynamics is the notion of tangent dynamics considered as the intersection of the convexified dynamics F and the tangent space to each subdomain. We first recall the notion of tangent cone. For any C ⊂ R p with 1 ≤ p ≤ d, the tangent cone T C (x) at x ∈ C is defined by

T C (x) = {v ∈ R p : lim inf t→0 + d C (x + tv) t = 0},
where d C (•) is the distance function to C. Note that T Γj (x) agrees with the tangent space of Γ j at x for j = 1, • • • , l and the dimension of T Γj is strictly smaller than d.

On each M k , the set of tangent dynamics is a multifunction

F M k : M k R d defined as F M k (x) = F (x) ∩ T M k (x), ∀ x ∈ M k .
Here T M k (x) agrees with the tangent space of M k at x with the same dimension of M k , which can be extended up to M k by continuity.

Correspondingly the set of controls A M k related to the tangent dynamics on each M k is set by

A M k (x) = {a ∈ A : f (x, a) ∈ T M k (x)}, ∀ x ∈ M k .
The next notion of dynamics is the essential dynamics F E firstly introduced in [START_REF] Barnard | Flow invariance on stratified domains, Set-Valued Variational Anal[END_REF], and the definition is given as follows.

Definition 1.1. For any x ∈ R d , the multifunction F E : R d R d at x is defined by

F E (x) := {F E M k (x) : x ∈ M k , k ∈ {1, • • • , l + m}},
where

F E M k : M k R d is defined by F E M k (x) = F ext k (x) ∩ T M k (x), for x ∈ M k , where F ext k : M k R d is the extension by continuity of F | M k to M k .
We define also the set of controls corresponding to the essential multifunction:

∀ x ∈ R d , A E M k (x) := {a ∈ A : f (x, a) ∈ F E M k (x)}, A E (x) := ∪ A E M k (x) : x ∈ M k , k ∈ {1, • • • , l + m} .
We define also the essential dynamics for the augmented dynamics as follows.

Definition 1.2. For each x ∈ R d , we define the augmented essential dynamics

G E (x) := {(f (x, a), -(x, a) -r) : 0 ≤ r ≤ b(x, a), a ∈ A E (x)}.
For each M k , , the augmented tangent dynamics is the following

G M k (x) := {(f (x, a), -(x, a) -r) : f (x, a) ∈ T M k (x), 0 ≤ r ≤ b(x, a), a ∈ A }.
To state the main results, we shall need also some controllability assumptions around the interfaces. Since two cases cases will be studied where either (Hϕ1) or (Hϕ2) is satisfied, different hypotheses of controllability are required in each case. Combined with (Hϕ1), the following controllability condition will be assumed.

(H2) There exists r 1 > 0 such that for any x ∈ Γ j B(0, r 1 ) ⊂ F (x).

Under the assumption (Hϕ2), we shall consider the following weaker hypothesis:

(H3) For each j = 0, . . . , l, one of the following properties is satisfied on Γ j .

• Either any x ∈ Γ j , F (x) ∩ T Γj (x) = ∅;

• Or there exists r 2 > 0 such that for any x ∈ Γ j , B(0, r 2 ) ⊂ F (x).

Let us point out that (H3) is a much weaker assumption than (H2). Indeed, consider the simple case of two domains in R with Ω 1 = {x : x < 0}, Ω 2 = {x : x > 0} and Γ = {0}. For any x ∈ R, let

F (x) = {1}.
In this case where F is Lipschitz continuous everywhere, on the interface Γ we have

F (0) ∩ T Γ (0) = ∅.
Thus, (H3) is satisfied while (H2) is not obeyed.

Note that the controllability assumptions (H2) and (H3) imply different properties on the tangential dynamics. Indeed, we have the following results whose proofs are postponed to the Appendix A.

Proposition 1.3. Assume (H1), (HF), (HL), (H2). Then G Γj is locally Lipschitz continuous on Γ j . Proposition 1.4. Assume (H1), (HF), (HL), (H3). Then the following holds.

(i) G Γj is either with empty images or locally Lipschitz continuous on Γ j .

(ii) For each j = 0, . . . , l and x ∈ Γ j with F Γj (x) = ∅, there exists ε j , ∆ j > 0 such that

R(x; t) ∩ Γ j ⊆ s∈[0,∆j t] R j (x; s), ∀ t ∈ [0, ε j ],
where R(x; t) := {y(t) : ẏ(s) ∈ F (y(s)) a.e. s ∈ (0, t), y(0) = x}, R j (x; t) := {y(t) : ẏ(s) ∈ F Γj (y(s)) a.e. s ∈ (0, t), y(0) = x}.

Main results

We define the following Hamiltonians:

H F , H E : R d × R d → R and H Γj : Γ j × R d → R H F (x, p) = sup a∈A {-p • f (x, a) -(x, a)}, H E (x, p) = sup a∈A E (x) {-p • f (x, a) -(x, a)}, and 
H Γj (x, p) = sup a∈AΓ j (x) {-p • f (x, a) -(x, a)}.
We consider the following two kind of junction conditions:

-∂ t u(t, x) + H E (x, Du(t, x)) = 0, for t ∈ (0, T ), x ∈ Γ j , (1.3) 
-∂ t u(t, x) + H F (x, Du(t, x)) ≥ 0, for t ∈ (0, T ), x ∈ Γ j , -∂ t u(t, x) + H Γj (x, Du(t, x)) ≤ 0, for t ∈ (0, T ), x ∈ Γ j . (1.4)
The viscosity sense of the solutions to the above equations/inequalities needs to be clarified. Before giving the definition of solutions, we recall the notion of extended differentials. Let φ : (0, T ) × R d → R be a continuous function, and let M ⊆ R d be an open C 2 embedded manifold in R d . Suppose that φ ∈ C 1 ((0, T ) × M), we define the differential of φ on any (t, x) ∈ (0, T ) × M by

∇ M φ(t, x) := lim xn→x,xn∈M (φ t (t, x n ), Dφ(t, x n )) .
Note that ∇φ is continuous on (0, T ) × M, the differential defined above is actually the extension of ∇φ to the whole M.

The precise viscosity and bilateral viscosity notions are given as follows.

Definition 1.5. (Viscosity supersolution) Let u : (0, T ] × R d → R. We say that u is a supersolution of (1.1)-(1.3) ( (1.1)-(1.4) resp.) if u is lsc and for any (t 0 , x 0 ) ∈ (0, T ) × R d and φ ∈ C 1 ((0, T ) × R d ) such that u -φ attains a local minimum at (t 0 , x 0 ), we have -φ t (t 0 , x 0 ) + H E (x 0 , Dφ(t 0 , x 0 )) ≥ 0 ( -φ t (t 0 , x 0 ) + H F (x 0 , Dφ(t 0 , x 0 )) ≥ 0, resp.).

Definition 1.6. (Viscosity subsolution) The key issues in the framework of multi-domains involve the controllability assumptions on the interfaces and the continuity of the solutions of HJB equations. Our first contribution is the existence and uniqueness result in the class of continuous solutions under the assumption (H2) that the controllability holds everywhere on the interfaces. Similar results in this case can be found in the literature in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF][START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Founda. and Appl[END_REF] with different settings of multi-domains and transmission conditions on the interfaces. The second contribution is the existence and uniqueness result in the class of discontinuous solutions and the controllability condition can be weakened on the interfaces. This is new in the literature and a similar situation is discussed in [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF] in the state constrained case. Finally we mention that Section 6 is devoted to a stability result under the hypothesis (Hϕ1) when approaching ϕ by a sequence of Lipschitz continuous functions.

Let u : (0, T ] × R d → R. 1. u is a subsolution of (1.1)-(1.3) if u is usc and for any (t 0 , x 0 ) ∈ (0, T ) × R d , any k ∈ {0, . . . , m + l} with x 0 ∈ M k and any continuous φ : (0, T ) × R d → R with φ| (0,T )×M k being C 1 such that u -φ attains a local maximum at (t 0 , x 0 ) on (0, T ) × M k , we have -p t + sup a∈A E M k (x0) {-p x • f (x 0 , a) -(x 0 , a)} ≤ 0, with (p t , p x ) = ∇ M k φ(t 0 , x 0 ). 2. u is a subsolution of (1.1)-(1.4) if u is usc and for any (t 0 , x 0 ) ∈ (0, T ) × R d , any k ∈ {0, . . . , m + l} with x 0 ∈ M k and any φ ∈ C 1 ((0, T ) × M k ) such that u| M k -φ attains a local maximum at (t 0 , x 0 ), we have -φ t (t 0 , x 0 ) + H M k (x 0 , Dφ(t 0 , x 0 )) ≤ 0. 3. u is a bilateral subsolution of (1.1)-(1.4) if u is lsc and for any (t 0 , x 0 ) ∈ (0, T ) × R d , any k ∈ {0, . . . , m + l} with x 0 ∈ M k and any φ ∈ C 1 ((0, T ) × M k ) such that u| M k -φ attains a local minimum at (t 0 , x 0 ), we have -φ t (t 0 , x 0 ) + H M k (x 0 , Dφ(t 0 , x 0 )) ≤ 0.

Main properties of the value function

Consider the value function associated to the control problem on R d defined, for any

(t, x) ∈ [0, T ] × R d , as v(t, x) := inf ϕ(y(T )) + T t (y(s), α(s))ds : (y(•), α(•)) satisfies (2.6) , (2.5) 
where α ∈ A := L ∞ (0, T ; A ) and (y, α) satisfy

ẏ(s) = f (y(s), α(s)) a.e. s ∈ (t, T ). y(t) = x. (2.6) 
For any (x, t) ∈ R d × [0, T ], we denote by S T t (x) the set of trajectories y(•) satisfying (2.6). We remark that the optimal control problem (2.5) can be written in terms of the convex augmented dynamic G as follows. For any t ∈ [0, T ], x ∈ R d , consider the differential inclusion:

( ẏ(s), η(s)) ∈ G(y(s)) s ∈ (t, T ), (2.7) 
then the control problem (2.5) is equivalent to:

ϑ(t, x) := inf{ϕ(y(T )) -η(T ) : (y(•), η(•)) satisfies (2.7) with (y(t), η(t)) = (x, 0)}. (2.8)
Note that G is upper semi-continuous with compact and convex images and therefore by standard arguments one can prove that (2.8) admits a solution.

Remark 2.1. Let (y(•), η(•)) satisfy (2.7) with y(t) = x, η(t) = 0. The Gronwall lemma implies |y(s)| ≤ (1 + |x|)e c f (t-s) ∀s ∈ (t, T ) and | ẏ(s)| ≤ c f (1 + |x|)e c f (t-s) ∀s ∈ (t, T ). Moreover, since λ l ≥ 1 l(y(s), α(s)) ≤ c l (1 + |y(s)|) λ l e λ l c f (t-s) ∀s ∈ (t, T ), (2.9) 
and therefore

| η(s)| ≤ c l (1 + |y(s)|) λ l e λ l c f (t-s) ∀s ∈ (t, T ).
We recall the principal properties of the value function.

Proposition 2.2. Assume (HF), (HL). Let λ l ≥ 1 and λ ≥ 1 be defined respectively as in HL and (1.2).

Under the assumption (Hϕ1) (or (Hϕ2) resp.), the value function v(t, •) has λ l (or λ resp.) superlinear growth on R d .

Proof. By (Hϕ1) the final cost ϕ is Lipschitz continuous and then it has linear growth. Then, the proof follows from (2.9) of Remark 2.1 and the linear growth of ϕ. Similarly, under (Hϕ2) we get the λ-superlinear growth of v.

The Dynamic Programming Principle

A well-known and key result is that the value function v satisfies a Dynamical Programming Principle (DPP).

Proposition 2.3. Assume (H1), (HF)(i), (HL)(i). For any (t, x) ∈ [0, T ] × R d , the following holds.

(i) v satisfies the super-optimality, i.e. there exists (ȳ, ᾱ) satisfying (2.6) such that

v(t, x) ≥ v(t + h, ȳ(t + h)) + t+h t (ȳ(s), ᾱ(s))ds, for h ∈ [0, T -t].
(ii) v satisfies the sub-optimality, i.e. for any (y, α) satisfying (2.6)

v(t, x) ≤ v(t + h, y(t + h)) + t+h t (y(s), α(s))ds, for h ∈ [0, T -t].
In the following proposition, we state a backward sub-optimality for the value function. Note that the proof follows by standard arguments as a consequence of Proposition 2.3. In this case we look at the following system. Proposition 2.4. Assume (H1), (HF)(i), (HL)(i). For any

(t, x) ∈ [0, T ] × R d , y(•), α satisfying ẏ(s) = f (y(s), α(s)) a.e. s ∈ (0, t), y(t) = x, (2.10) it holds v(t, x) ≥ v(t -h, y(t -h)) - t t-h (y(s), α(s))ds, ∀ h ∈ [0, t].
Now we recall the properties satisfied by the value function in the two cases studied, precisely the continuity under the assumption (Hϕ1) and the lower semi-continuity under the assumption (Hϕ2).

Lower semicontinuity under (Hϕ2)

Under (Hϕ2) v is lower semi-continuous. In this case we characterize the value function v through the backward sub-optimality, as showed in the following proposition. Proposition 2.5. Assume (Hϕ2), (H1), (HF)(i), (HL)(i), (HG). Then v is lower semi-continuous. Moreover, for any

(t, x) ∈ [0, T ] × R d and y(•) satisfying (2.10), v(t, x) = lim h→0 + v(t -h, y(t -h)).
(2.11)

Proof. The lower semi-continuity essentially follows from the upper semi-continuity, convexity and compactness of the dynamics G and from the lower semi-continuity of ϕ. Since it is a standard result we omit the details of the proof. We prove (2.11). By the lower semi-continuity of v we have

v(t, x) ≤ lim inf h→0 + v(t -h, y(t -h)).
(2.12) By Proposition (2.4), we get

v(t, x) ≥ v(t -h, y(t -h)) + t t-h (y(s), α(s))ds, ∀ h ∈ [0, t],
and then we have v(t, x) ≥ lim sup

h→0 + v(t -h, y(t -h)).
(2.13) By (2.12) and (2.13) we conclude that v(t, x) = lim h→0 + v(t -h, y(t -h)).

Continuity under (Hϕ1)

Under (Hϕ1) and the controllability assumption (H2), we have the continuity of the value function.

Proposition 2.6. Assume (Hϕ1), (H1), (HF), (HL), (HG), (H2). Then v is continuous on

[0, T ] × R d . Moreover, v| [0,T ]×Γ is locally Lipschitz continuous on [0, T ] × Γ.
The proof is divided in three steps. First we prove the local Lipschitz continuity of the space restriction of v on Γ, then the continuity of v on Γ is obtained and finally the continuity of v in R d is concluded. The proof is inspired by the arguments used in [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF] and is given in Appendix A. However, we remark that in [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF] a total controllability is assumed in each subdomains (and not only on the interfaces as in H2), which leads to the Lipschitz continuity of the value function in all the space. Remark 2.7. We remark that our results can be proved under the following weaker controllability assumption, which divides (H2) into the tangential controllability assumption (P1) and the normal one (P2):

(P1) There exists r 1 > 0 such that for any x ∈ Γ j , B(0, r 1 ) ∩ T Γj (x) ⊂ F (x).

(P2) There exists r 2 > 0 such that for any

x ∈ Γ j B(0, r 2 ) ∩ T Γj (x) ⊥ ⊂ F (x).
The normal controllability of (P2) is needed to have the local Lipschitz regularity of the augmented dynamics G Γj (see Proposition 1.3). The tangential controllability stated in (P1) is used to prove the local Lipschitz regularity of the restriction of the value function on [0, T ] × Γ (see Proposition 2.6). However, we mention that (P1) is not necessary in order to have the Lipschitz regularity. Indeed, consider the case of two-domains in R 2 with

Ω 1 = {(x 1 , x 2 ) : x 1 < 0, x 2 ∈ R}, Ω 2 = {(x 1 , x 2 ) : x 1 > 0, x 2 ∈ R}.
and the interface

Γ = {(0, x 2 ) : x 2 ∈ R}.
Suppose that the dynamics is defined as follows:

F (x) =    {(-1, 0)} for x ∈ Ω 1 , {(1, 0)} for x ∈ Ω 2 , {(p, 0) : p ∈ [-1, 1]} for x ∈ Γ.
The cost functions are the following: for

x = (x 1 , x 2 ) ∈ R 2 ϕ(x) = |x 1 |, ≡ 0.
Note that for x ∈ Γ and any r 1 > 0

B(0, r 1 ) ∩ T Γ (x) = {(0, p) : p ∈ [-r 1 , r 1 ]}
which is not included in F (x). Therefore, (P1) is not satisfied in this case. Now we compute the value function, we refer to (2.5) for the definition. We have for

(t, x) ∈ (0, T ) × R 2 y t,x (T )    = (x 1 -T + t, x 2 ) for x ∈ Ω 1 , = (x 1 + T -t, x 2 ) for x ∈ Ω 2 , ∈ {(t -T, x 2 ), (T -t, x 2 )} for x ∈ Γ. It is then deduced that v(t, x) = T -t + |x 1 |, ∀ x = (x 1 , x 2 ) ∈ R 2 ,
which is globally Lipschitz continuous. Therefore, the tangential controllability condition (P1) is not a necessary condition for the local Lipschitz continuity of the restriction of the value function on [0, T ] × Γ.

Supersolutions and super-optimality

This section is devoted to the characterization of the super-optimality via HJB inequalities. The characterization through the tangential dynamic is a classical result since F is upper semi-continuous and G is convex. We give also a more precise characterization through the essential dynamics, which is not standard since in general F E is not usc. The proof is mainly based on the fact that the set of trajectories driven by F and F E are the same. We refer to [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF]Proposition 3.4] for a proof of this result. Finally, we remark that in the following theorem no controllability assumption is needed.

The characterization of the super-optimality is the following. Proof. The implication (iii) ⇒ (i) is customary and well known, in particular see [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF], Proposition 5.1 in the constrained framework and [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Frankowska | Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF], [START_REF] Wolenski | Proximal analysis and the minimal time function[END_REF] for the unconstrained framework. Now we prove that (i)⇒ (ii). Given t ∈ [0, T ] and x ∈ R d , by the super-optimality of u there exists ȳ, ᾱ such that

u(t, x) ≥ u(t + h, ȳ(t + h)) + t+h t (ȳ(s), ᾱ(s))ds, ∀ h ∈ [0, T -t]. We set η(h) := u(t, x) - t+h t (ȳ(s), ᾱ(s))ds. For any φ ∈ C 1 ((0, T ) × R d ) such that u -φ attains a local minimum at (t, x), we have η(h) ≥ u(t + h, ȳ(t + h)) ≥ φ(t + h, ȳ(t + h)) + u(t, x) -φ(t, x), ∀ h ∈ [0, T -t], i.e. φ(t, x) -φ(t + h, ȳ(t + h)) + η(h) -η(0) ≥ 0, ∀ h ∈ [0, T -t].
Up to a subsequence, let h n → 0 + such that there exists p ∈ R d , q ∈ R satisfying

ȳ(t + h n ) -x h n → p, η(h n ) -η(0) h n → q.
It is clear that (p, q) ∈ G(x) since G is usc and convex valued. Moreover, by [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF]Lemma 3.6]

p ∈ co F E (x).
Therefore, by the definition of G E (p, q) ∈ co G E (x).

We then deduce that -φ t (t, x) + sup

(p,q)∈co G E (x) {-p • Dφ(t, x) + q} ≥ 0.
The separation theorem implies that

-φ t (t, x) + sup (p,q)∈G E (x) {-p • Dφ(t, x) + q} ≥ 0.
By the definition of G E (x), for any (p, q) ∈ G E (x), there exists a ∈ A E (x) such that p = f (x, a), q ≤ -(x, a).

Thus, we conclude that

-φ t (t, x) + sup a∈A E (x) {-f (x, a) • Dφ(t, x) -(x, a)} ≥ 0,
which ends the proof. Now we prove that (ii) ⇒ (iii). Let u be a supersolution to (1.1)-(1.3), for any (t, x) ∈ (0, T ) × R d and φ ∈ C 1 ((0, T ) × R d ) such that u -φ attains a local minimum at (t, x), we have

-∂ t φ(t, x) + sup a∈A E (x) {-f (x, a) • Dφ(t, x) -(x, a)} ≥ 0. Note that A E (x) ⊂ A(x), then -∂ t φ(t, x) + sup a∈A(x) {-f (x, a) • Dφ(t, x) -(x, a)} ≥ 0,
which is the desired result.

Subsolutions and sub-optimality

This section is devoted to the characterization of the sub-optimality via the HJB inequalities. In the standard setting where the dynamics are not stratified, the multifunction of dynamics has to be Lipschitz to obtain the characterization of the sub-optimality. This property is not satisfied in our case and no classical arguments can be adapted here. However, we mention that on each subdomain the (augmented) dynamics are locally Lipschitz continuous as indicated in Proposition 1.3. Here is to investigate the desired suboptimality property in each subdomain, and then the properties are glued together to obtain the complete characterization result. This idea was firstly introduced in [START_REF] Barnard | Flow invariance on stratified domains, Set-Valued Variational Anal[END_REF].

The characterization of the sub-optimality is the following. We split it into two theorems depending whether we assume (H2) (Theorem 4.2) or (H3) (Theorem 4.1). Since the proof of Theorem 4.1 follows the strategy used for a stratified state constrained Mayer problem in [START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF], Proposition 3.5, we give it in Appendix B. However, we remark that our setting is different from [START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF], in particular we have discontinuous and unbounded dynamic and cost on each interfaces. Proof. Note that (ii) ⇒ (iii) follows since, for any x ∈ M k with k ∈ {0, . . . , l + m}, every element of A E M k (x) belongs to A E (x) and then H M k (x, •) ≤ H E (x, •). Now we prove that (i)⇒ (ii). First we remark that the significant role of the essential dynamics F E is that any dynamic in F E is used by some trajectories as stated in the following lemma. For the proof we refer to [START_REF] Rao | Hamilton-Jacobi-Bellman equations multi-domains, Control and Optimization with PDE Constraints[END_REF]Lemma 3.9]. Lemma 4.3. Assume (H1), (HF), (HL), (HG). Let k ∈ {0, . . . , m + l}, t ∈ [0, T ) and x ∈ M k . Then for any (p, q) ∈ G E M k (x), ξ ∈ R, there exist τ > t and a C 1 trajectory (y(•), η(•)) satisfying (2.7) in (t, τ ) such that y(t) = x, η(t) = ξ, with ( ẏ(t), η(t)) = (p, q) and y(s

) ∈ M k for s ∈ [t, τ ].
Then Lemma 4.3 implies that, for any k ∈ {0, . . . , m + l}, t ∈ (0, T ),

x ∈ R d and a ∈ A E (x) such that f (x, a) ∈ F E M k (x) where x ∈ M k , there exists τ > t, y, η ∈ C 1 [t, τ ) satisfying (2.7) in (t, τ ) such that y(t) = x, η(t) = u(t, x) with ( ẏ(t), η(t)) = (f (x, a), -(x, a)) and y(s) ∈ M k for s ∈ [t, τ ].
The sub-optimality of u implies that

u(t, x) ≤ u(t + h, y(t + h)) + t+h t (y(s), α(s))ds,
where (y, α) satisfies (2.6). The definition of η implies that

η(t + h) ≤ u(t, x) - t+h t (y(s), α(s))ds, for h ∈ [0, τ -t].
Thus, we have

η(t + h) ≤ u(t + h, y(t + h)). For any φ ∈ C((0, T ) × R d ) satisfying φ ∈ C 1 ((0, T ) × M k ) such that u -φ attains a local maximum at (t, x), we have u(t + h, y(t + h)) -φ(t + h, y(t + h)) ≤ u(t, x) -φ(t, x).
Then we obtain η(t + h) ≤ φ(t + h, y(t + h)) -φ(t, x) + η(t).

Since y(s) ∈ M k for s ∈ [t, t + h], we then deduce that

η(t) ≤ ∂ t φ(t, x) + D M k φ(t, x) • ẏ(t), i.e. -∂ t φ(t, x) -D M k φ(t, x) • f (x, a) -(x, a) ≤ 0.
Now we prove that (iii)⇒(ii). Since the proof is quite long, we divide it into four steps. In Step 1 we treat the trajectories staying in one subdomain (see Proposition 4.4). In Step 2 we deal with trajectories exhibiting a type of "Zeno" effect, i.e crossing the interfaces infinitely during finite time (see Proposition 4.5). In Step 3 we deal with the general case (Proposition 4.6). Finally in Step 4 we conclude the proof of (iii) ⇒ (ii).

Step. 1-Trajectories in one subdomain. Proof. Using the fact that y(s) ∈ M k for s ∈ [a, b], then we deduce that

( ẏ(s), η(s)) ∈ G M k (y(s)), ∀ s ∈ (a, b),
where

G M k is Lipschitz continuous. Let φ ∈ C 0 ((0, T ) × R d ) ∩ C 1 ((0, T ) × M k ) and (t, x) a local maximum point of u -φ on (0, T ) × M k . Since u is subsolution to (1.1), we have on (0, T ) × M k -∂ t φ(t, x) + sup a∈A E M k (x) {-f (x, a) • Dφ(t, x) -(x, a)} ≤ 0,
Then, by the definition of η, we have

-∂ t φ(t, x) + sup (p,q)∈G M k (x) {-p • Dφ(t, x) + q} ≤ 0.
We set ξ := u(a, y(a)) -η(a).

By applying [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]Theorem 4.3.8] for the multifunction

{1} × G M k (•) and Hp(u) ∩ (R × M k × R), since (a, y(a), η(a) + ξ) ∈ Hp(u) ∩ (R × M k × R) we obtain (s, y(s), η(s) + ξ) ∈ Hp(u) ∩ (R × M k × R) ∀ s ∈ [a, b].
By taking s = b we finally get u(b, y(b)) ≥ η(b) + ξ, which ends the proof.

Step. 2-"Zeno" type trajectories. We select a compact set K ⊂ R d containing in its interior the reachable set

R GΓ k (y([a, b]) ∩ Γ k , b) = t∈[a,b] {x ∈ R d | ∃ traj. w of G Γ k with w(a) ∈ y([a, b]) ∩ Γ k , w(t) = x}.
We denote by Γ k an open neighbourhood of Γ k such that y([a, b]) ⊂ Γ k and we introduce the following notations that will appear in the forthcoming estimates.

• L u is the Lipschitz constants of u in (K ∩ Γ k ) × [0, T ]; • M estimates from above the diameter of G Γ k (x) for x ∈ R GΓ k (y[a, b] ∩ Γ k , b); • L G is a Lipschitz constant for G Γ k (suitably extended outside the interfaces, see Corollary A.2 of [25]) in K ∩ Γ k . By (H1), Γ k ∩ D = ∅. Let J := {s ∈ [a, b] : y(s) ∈ Γ k }, then
J is an open set and can be written as the unions of disjoint intervals:

J = ∞ n=1 (a n , b n ).
For a fixed p ∈ N, we set

J p := p n=1 (a n , b n )
as the union of the first p intervals. After reindexing, we assume without loss of generality that

a 1 < b 1 ≤ a 2 < b 2 ≤ • • • ≤ a p < b p .
We set b 0 := a and a p+1 := b, and we choose p sufficiently large such that

meas(J\J p ) < r 2M e LT ,
where r > 0 is given by r := inf{ y(s)

-z : s ∈ [a, b], z ∈ Γ k \Γ k }.
At first, we focus on the part of y(•) restricted on [a n , b n ] for n = 1, . . . , p. Note that for s ∈ (a n , b n ), y(s) ∈ D. Let ε > 0 small enough such that

[a n + ε, b n -ε] ⊂ (a n , b n ),
then by the assumption, it follows that

u(a n + ε, y(a n + ε)) -η(a n + ε) ≤ u(b n -ε, y(b n -ε)) -η(b n -ε).
By the continuity of y(•), η(•) and u(•, •), we obtain by setting ε → 0 

u(a n , y(a n )) -η(a n ) ≤ u(b n , y(b n )) -η(b n ).
ξ n := an+1 bn dist (( ẏ(s), η(s)), G Γ k (y(s))) ds ≤ 2M ε n .
By Proposition 1.3, G Γ k is locally Lipschitz. Then we can apply Filippov's Theorem (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], Theorem 3.1.6 and also [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF], Proposition 3.2 and we get that there exists

(z n , ζ n ) satisfying ( żn (s), ζn (s)) ∈ G Γ k (z n (s)), a.e. s ∈ [b n , a n+1 ] with (z n (b n ), ζ n (b n )) = (y(b n ), η(b n )), and 
(z n (a n+1 ), ζ n (a n+1 )) -(y(a n+1 ), η(a n+1 )) ≤ e L G (an+1-bn) ξ n ≤ 2M e L G (an+1-bn) ε n .
From the above properties of z n and the choice of p, we observe that z n (s) ∈ Γ k for s ∈ [b n , a n+1 ]. Thus, from Proposition 4.4 one obtains

u(b n , z n (b n )) -ζ n (b n ) ≤ u(a n+1 , z n (a n+1 )) -ζ n (a n+1 ).
This implies for p big enough

u(b n , y(b n )) -η(b n ) ≤ u(a n+1 , y(a n+1 )) -η(a n+1 ) + 2M (L u + 1)e L G (an+1-bn) ε n .
Then for n = 0, . . . , p, we deduce that

u(a n , y(a n )) -η(a n ) ≤ u(a n+1 , y(a n+1 )) -η(a n+1 ) + 2M (L u + 1)e L G (an+1-bn) ε n . Finally, u(a, y(a)) -η(a) = u(b 0 , y(b 0 )) -η(b 0 ) ≤ u(a 1 , y(a 1 )) -η(a 1 ) + 2M (L u + 1)e L G (a1-a) ε 0 ≤ u(a 2 , y(a 2 )) -η(a 2 ) + 2M (L u + 1)e L G (a2-a) (ε 0 + ε 1 ) • • • ≤ u(a p+1 , y(a p+1 )) -η(a p+1 ) + 2M (L u + 1)e L G (ap+1-a) p n=0 ε n = u(b, y(b)) -η(b) + 2M (L u + 1)e L G (b-a) meas(J\J p ).
By taking p → +∞, one has meas(J\J p ) → 0 and the desired result is obtained.

Step. 3-General case. Now note that, for all i ∈ {1, • • • , p} there exists some k such that M i = Γ k and M i ⊂ K. Then Proposition 4.5 implies that (4.15) holds true for any (y, η) driven by G with y lying within K ∪ M 1 . We continue applying Proposition 4.5 for K ∪ M 1 and

M 2 until K ∪ M 1 ∪ • • • ∪ M p-1
) and M p , finally it is obtained that (4.15) holds true for any (y, η) driven by G with y lying within

D (= K ∪ M 1 ∪ • • • ∪ M p ).
Case 3: If D is not connected, for any (y, η) driven by G with y lying within D, y lies within one connected component of D since y is continuous. Then the proof follows the same argument as in the above case. And the induction step is complete. Finally, we conclude the proof by taking D = R d with d D being the dimension of Γ 0 .

Step. 4 Finally we conclude the proof of (iii) ⇒ (i). For any (t, x) ∈ [0, T ] × R d , and any (y(•), α(•)) satisfying (2.6), we set η(s) := u(t, x) - 

u(t, x) -η(t) ≤ u(t + h, y(t + h)) -η(t + h), ∀ h ∈ [0, T -t], i.e. 0 ≤ u(t + h, y(t + h)) -u(t, x) + t+h t (y(s), α(s))ds, ∀ h ∈ [0, T -t],
which ends the proof.

Proof of the main results

In this section we prove our main results, that is Theorem 1.8 and Theorem 1.9. First we prove Theorem 1.8.

Proof of Theorem 1.8.

Step. 1 First we prove the following comparison principle. Let u 1 , u 2 : [0, T ] × R d → R be respectively a supersolution and subsolution to (1.1)-(1.3) ((1.1)-(1.4)) with u 1 (T, •) ≤ u 2 (T, •). Assume, in addition, that u 1 is continuous at any point of Γ. Then

u 1 (t, x) ≤ u 2 (t, x), ∀ t ∈ (0, T ), x ∈ R d .
Indeed, by Theorem 3.1, u 2 satisfies the super-optimality, i.e. there exists ȳ, ᾱ such that

u 2 (t, x) ≥ u 2 (T, ȳ(T )) + T t (ȳ(s), ᾱ(s))ds.
By Theorem 4.2, u 1 satisfies the sub-optimality. Then we have

u 1 (t, x) ≤ u 1 (T, ȳ(T )) + T t (ȳ(s), ᾱ(s))ds.
Then we deduce that u 1 (t, x) -u 2 (t, x) ≤ u 1 (T, ȳ(T )) -u 2 (T, ȳ(T )) ≤ 0.

Step Now we prove Theorem 1.9.

Proof of Theorem 1.9. We proceed as in Theorem 1.8 and first we prove the following comparison principle. Let u 1 , u 2 : [0, T ] × R d → R are respectively a supersolution and bilateral subsolution to (1.1)-(1.4) with

u 1 (T, •) ≤ u 2 (T, •). Then u 1 (t, x) ≤ u 2 (t, x), ∀ t ∈ (0, T ), x ∈ R d . (5.16)
We omit the proof of ( 

Stability result

Let (f n ) n∈N and ( n ) n∈N be a sequence of functions defined on R d × A such that

f n → f, n → locally uniformly in R d × A .
For convenience of notation we denote for each n ∈ N

F n (x) = {f n (x, a) | a ∈ A }, L n (x) = { n (x, a) | a ∈ A }
and we suppose that F n , L n satisfies (HF)-(HL) with constants uniform in n.

As in Definition 1.1 and Definition 1.2, we redefine the essential dynamics F E,n , the augmented dynamics G n , G n

M k and the essential control sets A E,n and A E,n

M k for each M k ∈ M . We set H E,n (x, p) := sup a∈A E,n (x) {-f n (x, a) • p -n (x, a)},
and consider the following equation:

-∂ t u n + H E,n (x, Du n ) = 0. (6.17)
We have the following stability result for the supersolutions.

Theorem 6.1. Assume (H1), (HF), (HL), (HG), (H2). If u n is a lsc supersolution to Proof. By Theorem 3.1, it suffices to prove that u is a supersolution to (1.1)-(1.4). For any t ∈ (0, T ),

-∂ t u n + H E,n (x, Du n ) = 0,
x ∈ R d , φ ∈ C 1 ((0, T ) × R d ) such that u -φ attains a local strict minimum at (t, x), then there exists t n ∈ (0, T ), x n ∈ R d such that u n -φ attains a local minimum at (t n , x n ) with t n → t, x n → x. Thus, -∂ t φ(t n , x n ) + sup (p,q)∈Gn(xn) {-p • Dφ(t n , x n ) + q} ≥ 0.
For any ε > 0, since G n → G locally uniformly and G is usc, for n sufficiently large we have

G n (x n ) ⊂ G(x n ) + εB(0, 1) ⊂ G(x) + 2εB(0, 1).
Then there exists C > 0 such that

-∂ t φ(t n , x n ) + sup (p,q)∈G(x) {-p • Dφ(t n , x n ) + q} + Cε ≥ 0.
By taking n → ∞ then ε → 0, we obtain

-∂ t φ(t, x) + sup (p,q)∈G(x) {-p • Dφ(t, x) + q} ≥ 0.
The definition of G then implies that

-∂ t φ(t, x) + sup a∈A {-f (x, a) • Dφ(t, x) -(x, a)} ≥ 0.
Therefore u is a supersolution to (1.1)-(1.4).

The stability result for the subsolutions is the following. Theorem 6.2. Assume (HF), (HL), (HG), (H2). If u n is a usc subsolution to Proof. Note that in (0, T ) × Ω i , i = 1, . . . , m, the proof follows from the standard arguments for stability results on viscosity solutions since H E,n and H E are Lipschitz continuous in

-∂ t u n + H E,n (x, Du n ) = 0, u n | [0,T ]×M k is
Ω i × R d . For any t ∈ (0, T ), x ∈ Γ, φ ∈ C((0, T ) × R d ), φ ∈ C 1 ((0, T ) × M k ) with x ∈ M k such that u -φ attains a local strict maximum at (t, x), then (t, x) → u(t, x) -φ(t, x) -Cd M k (x)
also attains a local strict maximum at (t, x) for any constant C > 0. Since u n → u, there exists t n ∈ (0, T ),

x n ∈ R d such that u n -φ -d M k attains a local maximum at (t n , x n ) with t n → t, x n → x.
We claim that with a big enough C,

x n ∈ M k . If x n ∈ Ω i for some i ∈ {1, . . . , m}, note that d M k (•) is differentiable in Ω i .
Since u n is a subsolution to (6.18), we have by choosing

C = n -∂ t φ(t n , x n ) + sup a∈A -f n i (x n , a) • Dφ(t n , x n ) + n x n -P M k (x n ) |x n -P M k (x n )| -n i (x n , a) ≤ 0.
Because of (H2), the above inequality does not hold true when n is big enough. Then we conclude that x n ∈ Γ. Now for any z ∈ Γ close to x, using the fact that

u n | [0,T ]×M k is locally Lipschitz continuous, u n (t, z) -φ(t, z) -Cd M k (z) ≤ u n (t, P M k (z)) -φ(t, P M k (z)) + (L un + L φ )d M k (z) -Cd M k (z),
where L un , L φ are respectively the local Lipschitz constants of u n and φ. Since L un are uniform in n, we can take C > L un + L φ , then

u n (t, z) -φ(t, z) -Cd M k (z) ≤ u n (t, P M k (z)) -φ(t, P M k (z)),
which implies that x n ∈ M k , and the claim is proved. Since u n is a subsolution to (

-∂ t φ(t n , x n ) + sup a∈A E,n M k (xn) {-f n (x n , a) • D M k φ(t n , x n ) -n (x n , a)} ≤ 0, 1.1)-(1.3), then 
which by the definition of A E,n M k (x n ) and the augmented dynamics is equivalent to

-∂ t φ(t n , x n ) + sup (p,q)∈G n M k (xn)∩ T M k (xn)×R {-p • D M k φ(t n , x n ) + q} ≤ 0, Note that φ ∈ C 1 ((0, T ) × M k ), one has ∂ t φ(t n , x n ) → ∂ t φ(t, x) and D M k φ(t n , x n ) → D M k φ(t, x) when n → ∞.
By the Lipschitz continuity of F n , L n uniformly in n, we deduce that there exists some constant

L > 0 such that G n M k (x) ⊂ G n M k (x n ) + LB(0, |x n -x|). Therefore for any ε > 0, there exists N 1 ∈ N such that for all n ≥ N 1 -∂ t φ(t, x) + sup (p,q)∈G n M k (x)∩ T M k (xn)×R {-p • D M k φ(t, x) + q} ≤ ε.
By the local uniform convergence of

f n and n in R d × A , we obtain G n M k (x) → G M k (x)
with respect to the Hausdorff metric. Thus, for any ε > 0, there exists

N 2 ∈ N such that for all n ≥ N 2 -∂ t φ(t, x) + sup (p,q)∈G M k (x)∩ T M k (xn)×R {-p • D M k φ(t, x) + q} ≤ ε.
Besides, note that x n , x ∈ M k and x n → x, it holds that for n sufficiently large

T M k (x) ⊂ T M k (x n ).
Consequently, for any ε > 0, there exists N 3 ∈ N such that for all n ≥ N 3

-∂ t φ(t, x) + sup (p,q)∈G M k (x)∩ T M k (x)×R {-p • D M k φ(t, x) + q} ≤ ε.
The above inequality holds for arbitrary ε > 0, therefore

-∂ t φ(t, x) + sup (p,q)∈G M k (x)∩ T M k (x)×R {-p • D M k φ(t, x) + q} ≤ 0,
which is equivalent to

-∂ t φ(t n , x n ) + sup a∈A E M k (x) {-f (x, a) • D M k φ(t, x) -(x, a)} ≤ 0.
We then conclude that u is a subsolution to (1.1)-(1.3).

Finally, we provide the stability result with respect to the final cost ϕ.

Theorem 6.3. Assume (Hϕ1) (HF), (HL), (HG), (H2). Let ϕ n : R d × R be a sequence of Lipschitz continuous functions, such that ϕ n → ϕ locally uniformly in R d . Let u n be the solution to

-∂ t u n (t, x) + H E,n (x, Du n (t, x)) = 0 in (0, T ) × R d , u n (T, x) = ϕ n (x) in R d , (6.18) 
such that the restriction of u n to [0, T ] × Γ is locally Lipschitz continuous. If u n converges to a continuous function u locally uniformly in [0, T ] × R d , then u is the solution to (

Proof. By Theorem 6.1 and Theorem 6.2, u is a supersolution and a subsolution of (

. Besides, for any

x ∈ R d , u(T, x) = lim n→∞ u n (T, x) = lim n→∞ ϕ n (T, x) = ϕ(T, x),
i.e. u satisfies the final condition. Thus, u is the solution to (1.1)-(1.3).

A Appendix A

Let us start by the proof of Proposition 1.3.

Proof of Proposition 1.3. For k ∈ {1, • • • , m + l}, consider the subdomain M k , which in the following proof we denote by M for simplicity. We consider the following three cases according to the dimension of M.

Case 1:

M k = Ω i , i ∈ {1, . . . , m}.
The claim simply follows by noting that in this case T M k (x) = R d , and then G M is locally Lipschitz continuous since f (x, a) and (x, a) are locally Lipschitz continuous for each a ∈ A .

Case 2: M ∈ Γ \ (Γ 0 k ) k=1,...q×q . Note that the proof follows the main ideas of [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF], Theorem A.1. Nevertheless, we give the proof for completeness and for a better understanding of Case 3.

We want to show the existence of L > 0 such that for any

K compact of M, x, z ∈ K and (f (x, a), q 1 ) ∈ G M (x), q 1 ≤ -(x, a) there exist a control c and (f (z, c), q 2 ) ∈ G M (z), q 2 ≤ -(z, c) such that |f (x, a) -f (z, c)| + |q 1 -q 2 | ≤ L|x -z|, (A.19) or, equivalently, G M (x) ⊂ G M (z) + LB(0, |x -z|).
It is not restrictive to prove the above inequality for |x -z| small, therefore since there are just a finite number of connected components of K intersecting Γ and such components are at a positive distance apart, we can assume, without lose of generality, that Γ is connected. We denote by n the exterior normal vector to M as defined in subsection (1.2). Then, by the regularity of Γ and since K is connected, n is Lipschitz continuous. To simplify the notations, we denote by L the Lipschitz constant of f, and n in K. By the convexity assumption (HG) for G(z), there exists c ∈ A , q ∈ R such that

(f (z, c), q) = γ β + γ (f (z, a), -(z, a)) + β β + γ (f (z, b), -(z, b)), q ≤ -(z, c). (A.25)
Then, we show that (A. [START_REF] Frankowska | Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints[END_REF]) holds for such c ∈ A . Indeed, by (A.25) and (A.24), we get Moreover by (A.22) and (A.23), we have

|f (z, a) -f (z, c)| ≤ 2M β β + γ ≤ 2M γ β ≤ 2M C γ |x -z|, ( 
f (z, c) • n(z) = γ β + γ f (z, a) • n(z) + β β + γ f (z, b) • n(z) = 0, which implies that f (z, c) ∈ T M (z). Observe that q = - γ β + γ (z, a) - β β + γ (z, b) ≥ - γ β + γ ( (x, a) + L|x -z|) - β β + γ (z, b) ≥ -(x, a) -L|x -z| + β β + γ ( (x, a) -(z, b)) ≥ q 1 -L|x -z| -2M β γ ≥ q 1 -L + 2M C γ |x -z|,
where we used the definition of q x and (A.24). If we set q 2 := q 1 -(L + 2M C/γ)|x -z|, then we have

q 2 ≤ q ≤ -(z, c)
and therefore

(f (z, c), q 2 ) ∈ G M (z), |(f (x, a), q 1 ) -(f (z, c), q 2 )| ≤ (L + 2M C γ )|x -z|.
Then we conclude that

G M (x) ⊂ G M (z) + (L + 2M C γ )B(0, |x -z|).
Case 3: M ∈ (Γ 0 k ) k . Denote for simplicity M = Γ 0 and let H j1 , H j2 be such that M = H j1 ∩ H j2 . The proof essentially follows by noting that T Γ0 (•) = T Hj 1 (•) ∩ T Hj 2 (•) and by applying the same arguments used in Case 2. We just give a sketch of the main steps.

We want to show that, given a compact K and x, z ∈ K, (f (x, a), q 1 ) ∈ G Γ0 (x), q 1 ≤ -(x, a), there exist a control c ∈ A and (f (z, c), q 2 ) ∈ G Γ0 (z),

q 2 ≤ -(z, c) such that |f (x, a) -f (z, c)| + |q 1 -q 2 | ≤ L|x -z|. (A.27) Note that the condition f (z, c) ∈ T Γ0 now reads f (z, c) ∈ T Hj1 (z) ∩ T Hj2 (z), that is f (z, c) • n 1 (z) = 0, f (z, c) • n 2 (z) = 0,
where n 1 (z), n 2 (z) are the normal respectively to H j1 and H j2 as defined in subsection 1.2. By Case 2 we can suppose that f (z, a)•n 1 (z) = 0 without loss of generality. Suppose that f (z, a)•n 2 (z) = -β < 0 as in (A. [START_REF] Ishii | A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations[END_REF]). Then we proceed analogously as in Case 1 using the controllability assumption (H2) on H j2 and we find b

∈ A such that f (z, b) = n 2 (z)γ, γ > 0.
Then, by the convexity of G(z), we find a control c ∈ A such that

f (z, c) = γ β + γ f (z, a) + β β + γ f (z, b)
and then we conclude

f (z, c) • n 2 (z) = 0, f (z, c) • n 1 (z) = 0.
The rest of the proof can be carried out exactly as in Case 1 and we omit the details. Finally, not that the case f (z, a) • n 1 (z) > 0 or f (z, a) • n 1 (z) < 0 can be treated analogously. Now we prove Proposition 1.4.

Proof of Proposition 1.4. We start by proving (i). For each j = 0, . . . , l, if F (x) ∩ T Γj (x) = ∅ for any x ∈ Γ j , then G Γj (x) = ∅ by definition. Otherwise if there exists r 2 > 0 such that for any x ∈ Γ j , B(0, r 2 ) ⊂ F (x), then G Γj is locally Lipschitz continuous on Γ j by Proposition 1.3. Now we proceed to prove (ii). For each j = 0, . . . , l and x ∈ Γ j with F Γj (x) = ∅, G Γj is locally Lipschitz continuous on Γ j by the above arguments. And F Γj is locally Lipschitz continuous on Γ j as well. For any x ∈ R(x; t) ∩ Γ j , there exists y(•) satisfying ẏ(s) ∈ F (y(s)) a.e. s ∈ (0, t), y(0) = x and y(t) = x .

Let r 0 > 0 such that d(y(s), Γ j ) < r 0 for s ∈ [0, t], t ≤ ε j ,
where d(•, Γ j ) is the distance function to Γ j . We set

D := s∈[0,t]
B(y(s), r 0 ).

Then there exists M, L > 0 such that

p ≤ M, ∀ p ∈ F (x), x ∈ D, and 
F Γj (x 1 ) ⊂ F Γj (x 2 ) + L x 1 -x 2 B(0, 1), ∀ x 1 , x 2 ∈ D,
since D is bounded. Here F Γj is extended to the domain D by projection to Γ j . Let ε j be small enough such that Let τ = z(t)-y(t)

r
where r is given in (H3), we define

z(s) = z(s) for s ∈ [0, t], z(t) + y(t)-z(t) τ (s -t) for s ∈ (t, t + τ ].
Then the assumption (H3) implies that ż(s) ∈ F Γj (z(s)) a.e. s ∈ (0, t + τ ), z(0) = x and z(t + τ ) = y(t) = x .

Therefore, x ∈ R j (x; t + τ ) with t ∈ [0, ε j ] and t + τ ≤ t + 2KM t r ≤ 1 + 2KM r t.
Consequently, we conclude the proof by setting ∆ j := 1 + 2KM r . Now we prove Proposition 2.6.

Proof of Proposition 2.6. We split the proof into the following three steps. In Step 1 we prove the local Lipschitz continuity on [0, T ] × Γ, in Step 2 we prove the continuity on [0, T ] × Γ and finally in Step 3 we prove the continuity on [0, T ] × R d .

Step. 1-Local Lipschitz continuity on [0, T ] × Γ.

Proof. For any t ∈ [0, T ], we firstly prove that v| [0,T ]×Γ (t, •) is locally Lipschitz continuous on Γ. Let x, z ∈ Γ and let B be a ball containing x, z. We consider two cases according to the positions of x, z, either x, z belongs to the same hyperplane Case 1, or not Case 2. In Case 1 the proof relies strongly on the controllability assumption (H2) and is quite standard (see [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF], Theorem 4.5 (part 1)). Then, the proof in Case 2 is carried out by relying on the result of Case 1 and using significantly the cellular structure of our decomposition of R d .

Case 1: x, z ∈ H j , for some j ∈ {1, . . . , q}.

The super-optimality implies that for any ε > 0 there exists (ȳ, ᾱ) satisfying (2.6) with

ȳ(t) = z such that v(t, z) ≥ ϕ(ȳ(T )) + T t (ȳ(s), ᾱ(s))ds -ε. (A.28)
We set

h := |x -z| r 1 , ξ(s) := x + r 1 z -x |z -x| (s -t), for s ∈ [t, t + h],
where r 1 > 0 is as in assumption (H2). Note that ξ is the segment joining x with z during the time interval [t, t + h]. Since | ξ| = r 1 and ξ(s) ∈ Γ for any s ∈ [t, t + h], by (H2), there exists α ∈ A such that ξ(s) = f (ξ(s), α(s)), a.e. s ∈ (t, t + h).

We define

ỹ(s) := ξ(s) for s ∈ [t, t + h], ȳ(s -h) for s ∈ [t + h, T ],
Now given x ∈ Γ, we proceed to prove the local Lipschitz continuity of v| [0,T ]×Γ (•, x) on [0, T ]. For any t 1 , t 2 ∈ [0, T ], we assume without loss of generality that t 1 < t 2 . For any α ∈ A, let y α t2,x be the solution of (2.6) with the initial condition y α t2,x (t 2 ) = x. Denote by B a ball containing x and let K be a compact containing the support of y α t2,x respectively in [t 2 , T ]. Let M be an upper-bound for in K. By (H2), let a ∈ A such that f (x, a) = 0. We set

α 1 (s) = a for s ∈ [t 1 , t 2 ), α(s) for s ∈ [t 2 , T ].
Let y α1 t1,x be the solution of (2.6) with the initial data (t 1 , x) and the control α 1 . Then we have

y α1 t1,x = x for s ∈ [t 1 , t 2 ), y α t2,x for s ∈ [t 2 , T ]. Therefore ϕ(y α1 t1,x (T )) + T t1 (y α1 t1,x (s), α 1 (s))ds -ϕ(y α t2,x (T )) - T t2 (y α t2,x (s), α(s))ds ≤ t2 t1 (x, a)ds ≤ M (t 2 -t 1 ).
Step. 2-Continuity on [0, T ] × Γ.

In order to show the continuity of the value function on [0, T ] × Γ, we need the following lemma on the behavior of controlled dynamics. We refer also to [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF]Lemma 4.3] for an analogous result in the setting of a two-domain partitions of R d and control problems with bounded cost and dynamic. The proof is postponed at the end of the proof of Proposition 2.6.

Lemma A.1. Assume (H1), (HF), (HL), (HG) , (H2)(ii). Let t ∈ [0, T ], x ∈ Γ and {x n } be a sequence such that x n ∈ Ω i for some i ∈ {1, . . . , m} and x n → x as n → +∞. Then for n large enough there exists two trajectories y n , y n driven by F and h n → 0, h n → 0 as n → +∞ such that

y n (t) = x n , y n (t + h n ) ∈ Γ, y n ([t, t + h n )) ⊂ Ω i , y n (t) ∈ Γ, y n (t + h n ) = x n , y n ((t, t + h n ]) ⊂ Ω i .
Now we prove that v is continuous at any point of [0, T ] × Γ.

Proof. Taking into account that v, restricted on Γ, is continuous, it is enough to prove that for any t ∈

[0, T ], x ∈ Γ, v(t n , x n ) → v(t, x), for any t n → t, x n → x, t n ∈ [0, T ], x n ∈ Ω i , i ∈ {1, . . . , m}.
By applying Lemma A.1, for n large enough there exist , h n , h n and y n , y n driven by F such that

y n (t) = x n , y n (t + h n ) ∈ Γ, y n ([t, t + h n )) ⊂ Ω i , y n (t) ∈ Γ, y n (t + h n ) = x n , y n ((t, t + h n ]) ⊂ Ω i .
Note that h n , h n → 0 and by the local boundedness of f there exists some constant M such that

|y n (t + h n ) -x| ≤ |y n (t + h n ) -x n | + |x n -x| ≤ M h n + |x n -x|,
which implies y n (t + h n ) → x. By the same arguments, y n (t) → x. Let α n , α n be the corresponding controls for y n , y n . By the sub-optimality satisfied by v, we have

v(t n , x n ) ≤ v(t + h n , y n (t + h n )) + t+hn tn (y n (s), α n (s))ds ≤ v(t + h n , y n (t + h n )) + M n (h n + t -t n ), v(t n -h n , y n (t)) ≤ v(t n , x n ) + tn tn-h n (y n (s), α n (s))ds ≤ v(t n , x n ) + M n h n .
where M n = max s∈(tn,tn+hn) l(y n (s)) and M n = max s∈(tn-h n ,tn) l(y n (s)). For any s ∈ (t n , t n + h n ) we estimate the cost by the Gronwall lemma and we get

l(y n (s)) ≤ c l (1 + |y n (s)|) λ l e c f λ l s .
Then, since y n (s) is uniformly bounded in n for s ∈ (t n , t n + h n ) and for large n, we get

M n h n → 0, M n h n → 0, as n → +∞.
Putting n → +∞ and by the continuity of v| [0,T ]×Γ , we derive

lim sup tn→t, xn→x v(t n , x n ) ≤ v(t, x), v(t, x) ≤ lim inf tn→t, xn→x v(t n , x n ),
which shows the assertion.

Step

. 3-Continuity in [0, T ] × R d .
Proof. The proof follows similar arguments to [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF], Theorem 4.5 (part 3) and essentially extends the result to the case of unbounded cost and dynamic. We consider a bounded subset B of Ω i . We prove that, given t ∈ [0, T ], for any ε > 0, there exists δ > 0 such that where L depends on the compact K where the support of y lies. Then by taking h = T -t in (A.32) and (A.33) we obtain

|v(t, z) -v(t,
v(t, z) -v(t, x) ≤ ϕ(ȳ z (T )) + T t i (ȳ z (s), ᾱ(s))ds -ϕ(ȳ x (T )) - T t i (ȳ x (s), ᾱ(s))ds + ε 2 ≤ (L ϕ + T L)e LT |x -z| + ε 2 .
The assertion holds true by taking any δ > 0 with δ ≤ e -LT 2(Lϕ+T L) ε. Otherwise, if T < T , we still have

|ȳ x (s) -ȳz (s)| ≤ e Ls |x -z|, ∀ s ∈ [t, T ].
By taking h = T -t in (A.32) and (A.33) we obtain

v(t, z) -v(t, x) ≤ v( T , ȳz ( T )) + T t i (ȳ z (s), ᾱ(s))ds -v( T , ȳx ( T )) - T t i (ȳ x (s), ᾱ(s))ds + ε 2 ≤ v( T , ȳz ( T )) -v( T , ȳx ( T )) + T Le LT |x -z|.
(A.34) Lemma B.1. Assume (H1), (HF), (HL), (HG), (H3). Then, for any k ∈ {0, • • • m + l} such that A M k has nonempty images, for every (t, x) ∈ [0, T ] × M k and any a ∈ A M k (x) there exist τ > 0, a measurable control map α : (t -τ, t + τ ] → A, a measurable function r : (t -τ, t + τ ] → [0, +∞) and (y(•), η(•)) ∈ C 1 ((t -τ, t + τ ]), y(s) ∈ M k for any s ∈ (t -τ, t + τ ], such that ẏ(s) = f (y(s), α(s)), η(s) = -(y(s), α(s)) -r(s) and y(t) = x, ẏ(t) = f (x, a), η(t) = 0, η(t) = l(x, a).

We recall the notion of proximal subgradient, proximal normal cone and its relation with the proximal subgradients. We refer to [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] for more details. We denote the set of all proximal subgradients at x by ∂ P ω(x).

Let B ⊆ R d be a locally closed set. For any x ∈ B a vector η ∈ R d is called proximal normal to B at x if there exists σ = σ(x, η) > 0 so that |η| 2σ |x -y| 2 ≥< η, y -x > ∀y ∈ B.

The Proximal normal cone to B at x is the set of all such vectors η. We denote it by N P B (x). Proof. First we prove the implication (i) ⇒ (ii), that is, if u : [0, T ] × R d → R is a lsc function satisfying the sub-optimality, then is the bilateral subsolution to (1.1)-(1.4). Let (t 0 , x 0 ) ∈ (0, T ) × R d , k ∈ {0, . . . , m + l} with x 0 ∈ M k and φ ∈ C 1 ((0, T ) × M k ) such that u| M k -φ attains a local minimum at (t 0 , x 0 ). We assume A M k (x 0 ) = ∅, otherwise the claim is trivial. For any a ∈ A M k (x 0 ), since G M k is locally Lipschitz continuous, by Lemma B.1, there exist τ > 0, (y(•), η(•)) ∈ C 1 ((t 0 -τ, t 0 ]), y(s) ∈ M k for any s ∈ (t 0 -τ, t 0 ] and a measurable control map α : (t 0 -τ, t 0 ] → A such that ẏ(s) = f (y(s), α(s)), η(s) ≤ -(y(s), α(s)) (B.40) and y(t 0 ) = x 0 , ẏ(t 0 ) = f (x 0 , a), η(t 0 ) = 0, η(t 0 ) = l(x 0 , a). (B.41) Take ȳ, ᾱ satisfying (2.10) on (0, t 0 -τ ) such and ȳ(t 0 -τ ) = y(t 0 -τ ) and remark that ỹ, α where ỹ = ȳ1 [0,t0-τ ) + y1 [t0-τ,t0] , α = ᾱ1 [0,t0-τ ) + α1 [t0-τ,t0] satisfy (2.10) on (0, t 0 ) with ỹ(t 0 ) = x 0 . Therefore, since u satisfies the suboptimality and then by Proposition 2.4, u satisfies the backward sub-optimality, we have that u(t 0 , x 0 ) ≥ u(t 0 -h, y(t 0 -h)) -η(t 0 -h) + η(t 0 ) ∀h ∈ [0, τ ). (B.42) Since (t 0 , x 0 ) is a local minimum of u| M k -φ we have u(t 0 , x 0 ) -φ(t 0 , x 0 ) ≤ u(t 0 -h, y(t 0 -h)) -φ(t 0 -h, y(t 0 -h)) ∀h ∈ [0, τ ), from which we conclude -∂ t φ(t 0 , x 0 ) + H M k (x 0 , Dφ(t 0 , x 0 )) ≤ 0, that is, u is a bilateral subsolution to (1.1)-(1.4). Now we prove the implication (ii) ⇒ (i). We will prove that, if u : [0, T ] × R d → R is a lsc bilateral subsolution to (1. 

G k (t, x, z, w) = {-1} × G M k (x) × {0}, ∀(t, x, z, w) ∈ [0, T ] × M k × R 2 .
Note that M k is an embedded manifold of R d+3 and G k satisfies the same assumptions of G M k . Consider the closed set S k = Ep(u k ) where ∀(t, x, z)

∈ [0, T ] × M k × R u k (t, x, z) = u(x) + z if x ∈ M k , +∞ otherwise .
Note that, if u is a l.s.c. bilateral subsolution of (1. 
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 171819 (Viscosity solution and bilateral viscosity solution) 1. u is a viscosity solution to (1.1)-(1.3) ( (1.1)-(1.4) resp.) if u is both a supersolution in the sense of Definition 1.5 and a subsolution of (1.1)-(1.3) ( (1.1)-(1.4) resp.) in the sense of Definition 1.6, and u satisfies the final condition u(T, x) = ϕ(x), ∀ x ∈ R d . 2. u is a bilateral viscosity solution to (1.1)-(1.4) if u is both a supersolution in the sense of Definition 1.5 and a bilateral subsolution of (1.1)-(1.4) in the sense of Definition 1.6, and u satisfies the final condition u(T, x) = ϕ(x), ∀ x ∈ R d . The main results are the following two theorems under assumption (Hϕ1) and (Hϕ2) respectively. Assume (Hϕ1), (H1), (HF), (HL), (HG), (H2) . The systems (1.1)-(1.3) and (1.1)-(1.4) have the same unique continuous viscosity solution (in the sense of Definition 1.7) with restriction on [0, T ] × Γ locally Lipschitz continuous and with λ l -superlinear growth. Assume (Hϕ2),(H1), (HF), (HL), (HG), (H3). The system (1.1)-(1.4) has a unique lsc bilateral viscosity solution with λ-superlinear growth (in the sense of Definition 1.7).

Theorem 3 . 1 .

 31 Assume (H1), (HF), (HL), (HG). Let u : [0, T ] × R d → R be a lsc function. The following are equivalent. (i) u satisfies the super-optimality; (ii) u is a supersolution to (1.1)-(1.3); (iii) u is a supersolution to (1.1)-(1.4).

Theorem 4 . 1 .

 41 Assume (H1), (HF), (HL), (HG), (H3). Let u : [0, T ] × R d → R be a lsc function. Then the following are equivalent. (i) u satisfies the sub-optimality; (ii) u is the bilateral subsolution to (1.1)-(1.4).

Theorem 4 . 2 .

 42 Assume (H1), (HF), (HL), (HG), (H2). Let u : [0, T ] × R d → R be an usc function, such that u is continuous on Γ and the restriction of u on [0, T ] × Γ is locally Lipschitz continuous. Then the following are equivalent.(i) u satisfies the sub-optimality;(ii) u is the subsolution to (1.1)-(1.3);(iii) u is the subsolution to (1.1)-(1.4).

Proposition 4 . 4 .

 44 Assume (H1), (HF), (HL), (HG). Let u be an usc subsolution to (1.1)-(1.4), k ∈ {0, . . . , m + l} and (y(•), η(•)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ M k for s ∈ [a, b]. Then it holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b).

Proposition 4 . 5 .. 14 )

 4514 Assume (H1), (HF), (HL), (HG), (H2). Let u be an usc subsolution to (1.1)-(1.4) such that u is continuous on Γ and the restriction of u on [0, T ] × Γ is locally Lipschitz continuous. Take Γ k for some k ∈ {0, . . . , l} and D a union of subdomains with Γ k ⊂ D. Assume that D enjoys the following property: for any(y(•), η(•)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D for s ∈ [a, b], it holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b). (4Thenfor any (y(•), η(•)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D ∪ Γ k for s ∈ [a, b], it still holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b). Proof. Let (y(•), η(•)) satisfy (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D ∪ Γ k for s ∈ [a, b]. Without loss of generality, suppose that y(a) ∈ Γ k and y(b) ∈ Γ k . Otherwise, suppose for example y(a) / ∈ Γ k , then y(a) ∈ D. We consider the first arrival time τ 1 of y for Γ k and we take ε > 0 small enough such that [a, τ 1 -ε] ∈ [a, τ 1 ). By (4.14) we have u(a, y(a)) -η(a) ≤ u(τ 1 -ε), y(τ 1 -ε)) -η(τ 1 -ε) and we conclude sending ε → 0, by the continuity of y(•), η(•) and u(•, •). Analogously, we treat the case y(b) ∈ D by considering the last exit time of y for Γ k .

  The next step is to deal with the part of y(•) restricted on [b n , a n+1 ] for n = 0, . . . , p. We set ε n := meas([b n , a n+1 ] ∩ J), then p n=0 ε n = meas(J\J p ). For any s ∈ [b n , a n+1 ]\J, y(s) ∈ Γ k . It follows that ( ẏ(s), η(s)) ∈ G Γ k (y(s)) a.e. s ∈ [b n , a n+1 ]\J. Now we calculate how far (y(•), η(•)) is from any trajectory lying in Γ k driven by the dynamics G Γ k by

Proposition 4 . 6 .

 46 Assume (H1), (HF), (HL), (HG), (H2). Let u be an usc subsolution to (1.1)-(1.4). If u is continuous on [0, T ] × Γ and the restriction of u on [0, T ] × Γ is locally Lipschitz continuous, then for any (y(•), η(•)) satisfying (2.7) on some [a, b] ⊂ [0, T ], it holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b).

(4. 15 ) 1 .

 151 Proof. Let D be a union of some subdomains and d D ∈ {0, . . . , d} be the minimal dimension of the subdomains which are subsets of D. The proof of (4.15) is based on the following induction argument with regard to d D : Claim : for any d = 0, . . . , d, any D with d D ≥ d and any (y, η) driven by G with y lying within D, (4.15) holds. Let us first check the case when d = d. In this case, d D = d, then D is a union of d-manifolds, which are disjoint by (H1). For any trajectory (y, η) driven by G with y lying within D, y lies entirely within one of the d-manifolds. Hence, Claim follows by Proposition 4.4. Now we assume that Claim is true for some d ∈ {1, . . . , d} and we prove that Claim still holds true for d -In this case, d D = d -1. Then the following three cases can occur. Case 1: if D contains only one subdomain, i.e. D = M k for some k ∈ {0, . . . , l + m}, by Proposition 4.4 it follows that Claim holds. Case 2: If D contains more than one subdomain and D is connected, let M 1 , . . . , M p be all the subdomains of D with the dimension d D . Then K := D\(∪ p k=1 M k ) is a union of subdomains with dimension greater than d. As an induction hypothesis, (4.15) holds true for any (y, η) driven by G with y lying within K.

  s ), α(s ))ds , for s ∈ [t, T ]. Since (y(•), η(•)) satisfies (2.7), Proposition 4.6 implies that

. 2

 2 Now we prove that the value function v is the unique continuous viscosity solution to (1.1)-(1.3) ((1.1)-(1.4)) with λ l -superlinear growth. The continuity and the λ l -superlinear growth of v are given respectively in Proposition 2.6 and Proposition 2.2. In addition, the restriction of v on [0, T ] × Γ is locally Lipschitz continuous (see Appendix A, Proposition 2.6). Then, by Proposition 2.3, Theorem 3.1 and Theorem 4.2, v is a viscosity solution to (1.1)-(1.3) ((1.1)-(1.4)) with v(T, x) = ϕ(x) for all x ∈ R d . The uniqueness of v follows by Step 1.

and u n

  converges to a lsc function u locally uniformly in [0, T ] × R d , then u is a supersolution to (1.1)-(1.3).

  locally Lipschitz continuous and u n converges to an usc function u locally uniformly in [0, T ]× R d , then u is a subsolution to (1.1)-(1.3).

  Moreover, we denote by M a constant estimating form above |n| in K and and |f |, | | in K × A . Also, since f (x, a) ∈ T M (x) on M we have f (x, a) • n(x) = 0. (A.20) Since f, are locally Lipschitz we have |f (x, a) -f (z, a)| ≤ L|x -z|, | (x, a) -(z, a)| ≤ L|x -z|. (A.21) Note that, if f (z, a) • n(z) = 0, then f (z, a) ∈ T M (z) and by (A.20) we deduce (A.19) with L = 2L. Suppose now that f (z, a) • n(z) := -β < 0. (A.22) The controllability assumption (H2) implies in particular that there exists b ∈ A such that f (z, b) • n(z) := γ > 0. (A.23) Note that by (A.20) and (A.21), we have β = |f (z, a) • n(z)| ≤ (L + M L)|x -z| := C|x -z|, and then |x -z| ≥ β C . (A.24)

A. 26 )

 26 and by the first of (A.21) and (A.26) we conclude|f (x, a) -f (z, c)| ≤ |f (x, a) -f (z, a)| + |f (z, a) -f (z, c)| ≤ L + 2M C γ |x -z|.

K t 0 d

 0 ( ẏ(s), F Γj (y(s)))ds ≤ r 0 , where K := exp(Lt). By Filippov Existence Theorem [12, Theorem 3.1.6], there exists z(•) such that ż(s) ∈ F Γj (z(s)) a.e. s ∈ (0, t), z(0) = x, and z(t) -y(t) ≤ K t 0 d( ẏ(s), F Γj (y(s)))ds ≤ 2KM t.

Definition B. 2 .

 2 Let ω : R d → R ∪ {+∞} be a given l.s.c function. A viscosity subgradient η ∈ R d of ω at x ∈ dom ω is called a proximal subgradient of ω at x if for some σ > 0 the test function g : R d → R can be taken as g(y) :=< ζ, y -x > -σ|y -x| 2 , ∀y ∈ R d .

  When B = Ep(ω) where ω : R d → R ∪ {+∞} is a l.s.c function, then for each x ∈ dom ω, the following relation holds:ξ ∈ ∂ P ω(x) ⇐⇒ (ξ, -1) ⊆ N P B (x, ω(x)), ∀x ∈ dom ω. (B.39)Finally, we present a useful criterion for strong invariance adapted to smooth manifolds. For the proof we refer to[START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF] Proposition 4.2 or [21] Lemma 3.4. Lemma B.3. Suppose M ⊆ R d is locally closed, B ⊆ R d is closed with B ∩ M = ∅ and Γ : M R d is locally Lipschitz and locally bounded.Let r > 0 and assume that there exists c = c(r) > 0 such thatsup ν∈Γ(x) < x -s, ν >≤ c dist B∩ M (x) 2 , ∀x ∈ M ∩ B r , ∀s ∈ proj B∩ M (x).Then for any absolutely continuous arc γ : [0, T ] → M that satisfies γ ∈ Γ(γ) a.e. on [0, T ] and γ(t) ∈ M ∩ B r ∀t ∈ (0, T ), the following estimate holds true dist B∩ M (γ(t)) ≤ e ct dist B∩ M (γ(0)) ∀t ∈ [0, T ]. B.2 Proof of Theorem 4.1

  (B.43) and by combining (B.42) and (B.43) we getφ(t 0 -h, y(t 0 -h)) -φ(t 0 , x 0 ) -η(t 0 -h) + η(t 0 ) ≤ 0 ∀h ∈ [0, τ ). (B.44) By (B.44), (B.40) and (B.41) we get-∂ t φ(t 0 , x 0 ) -Dφ(t 0 , x 0 ) • f (x 0 , a) -(x 0 , a) ≤ 0, ∀ a ∈ A M k (x 0 ).

  1)-(1.4) and if (y(•), η(•)) satisfies (2.7) on some [a, b] ⊂ [0, T ], it holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b). (B.45) Note that the suboptimality follows from (B.45) by the same arguments used in Step 4 of the proof of Theorem 4.2. We recall that for any (x, t) ∈ R d × [0, T ], we denote by S T t (x) any trajectory satisfying (2.6). We divide the proof into three steps. In Step 1 we treat the case of trajectories staying on one subdomain in Proposition B.4. Then in Step 2 we deal with the regular trajectories and finally in Step 3 we deal with non regular trajectories. Step. 1-Trajectories in a subdomain. Proposition B.4. Let (H1), (HF), (HL), (HG) hold. Let u be a lsc bilateral subsolution to (1.1)-(1.4), k ∈ {0, . . . , m + l} and (y(•), η(•)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ M k for s ∈ [a, b]. Then it holds that u(a, y(a)) -η(a) ≤ u(b, y(b)) -η(b). (B.46)Proof. We consider the backward augmented dynamic defined for any x ∈ M k as followsG M k (x) = {-(f (x, a), l(x, a) + r), a ∈ A M k (x), 0 ≤ r ≤ b(x, a)}.Note that the mapping G k has convex compact images by (HG), has nonempty images and is locally Lipschitz by Proposition 1.3. Set M k = R × M k × R 2 and define

  5.16) since it follows as in Theorem 1.8 by using Theorem 4.1 instead of Theorem 4.2. Next, thanks to Proposition 2.2, the value function v is lsc with λ-superlinear growth.

	Also, it is a
	bilateral viscosity solution to (1.1)-(1.4) due to Proposition 2.3, Theorem 3.1 and Theorem 4.2. Moreover
	v(T, x) = ϕ(x) for all x ∈ R d . The uniqueness of a lsc bilateral solution to (1.1)-(1.4) follows by the
	comparison principle.

  x)| < ε, for any x, z ∈ B such that |x -z| < δ. (A.31)We denote by K a compact set containing the support of any integral curve of F , starting at B, and defined in [0, T ]. In the following, we denote by L and L φ the Lipschitz constant respectively of f i ,

i in K × A and of φ in K. By the super-optimality of v, there exists (ȳ x , ᾱ) satisfying (2.6) with ȳx (t) = x such that

v(t, x) ≥ v(t + h, ȳx (t + h)) + t+h t (ȳ x (s), ᾱ(s))ds -2 , ∀ h ≥ 0. (A.32)

Let ȳz be the solution of (2.6) with the control ᾱ and the initial condition ȳz (t) = z. By the sub-optimality of v, v(t, z) ≤ v(t + h, ȳz (t + h)) + t+h t (ȳ z (s), ᾱ(s))ds, ∀ h ≥ 0. (A.33) Now define T := inf{s : ȳx (s) ∈ Ω i or ȳz (s) ∈ Ω i , s ∈ [t, T ]}. If T = T , then ȳx and ȳz stay in Ω i during (t, T ). Thus, ȳx and ȳz are always driven by F i and the Gronwall lemma implies that |ȳ x (s) -ȳz (s)| ≤ e Ls |x -z|, ∀ s ∈ [t, T ],

  1)-(1.4), the following holdsup ν∈G k (t,x,z,w) (η, ν) ≤ 0 ∀(t, x, z, w) ∈ S k , ∀η ∈ N P S k (t, x, z, w). (B.47)Indeed, if S k = ∅, it holds by vacuity. Otherwise, take (t, x, z, w) ∈ S k and a proximal normal (ξ, -p) ∈ N P S k (t, x, z, w). Therefore we have p ≥ 0 since S k is the epigraph of a function. Consider p > 0, then w = u k (t, x, z) and by (B.39) we have

	1 p	ξ ∈ ∂

P u k (t, x, z) ⊆ ∂ p u k (t, x) × {1},

Then (ỹ, α) satisfies ẏ(s) = f (ỹ(s), α(s)), a.e. s ∈ (t, T ), ỹ(t) = x.

Let K be a compact containing the support of ȳ(s) for s ∈ [t, T ] and denote by M an upper bound for the cost and the dynamic on K. Let L ϕ denote the Lipschitz constant of ϕ on K. By the sub-optimality of v, (A.28), the Lipschitz continuity of φ, we conclude v(t, x) -v(t, z) ≤ ϕ(ỹ(T )) + 

Then by the arbitrary choice of ε,

and we conclude the local Lipschitz continuity of v| [0,T ]×Γ (t, •) on each H j , for j = 1, • • • , q. Case 2: x, z are not on the same hyperplane. Suppose without loss of generality that x ∈ H j1 , z ∈ H j2 for some j 1 , j 2 ∈ {1, • • • q}. Then we have the following two cases:

We give the proof in case Case 2 (ii) since the proof in case Case 2 (i) follows from Case 1 and Case 2 (ii). We denote Γ 0 = H j1 ∩ H j2 . Consider the projections of x, z on Γ 0 : P Γ0 (x) and P Γ0 (z). Then we have

The last inequality holds because x, P Γ0 (x) ∈ H j1 and z, P Γ0 (z) ∈ H j2 . Now we need to estimate the length of the polyline linking x, P Γ0 (x), P Γ0 (z) and z by the length of the segment joining x with z. Since x -P Γ0 (x), P Γ0 (x) -P Γ0 (z) = 0, z -P Γ0 (z), P Γ0 (x) -P Γ0 (z) = 0, we have

where n 1 , n 2 are respectively the normal to H j1 , H j2 passing through x and z. Then

Together with (A.29), it is obtained that

Note that T < T implies that ȳx ( T ) ∈ Γ or ȳz ( T ) ∈ Γ. Without loss of generality suppose that ȳx ( T ) ∈ Γ.

By the continuity of v( T , •) on Γ, there exists δ 1 > 0 such that

Then, for any |x -z| < δ, we have

Then, by (A.36) and (A.35) with x = ȳz ( T ), we get

and the claim (A.31) follows by coupling (A.37), (A.38) and (A.34).

Finally we prove Lemma A.1.

Proof of Lemma A.1. Without loss of generality, we suppose that x ∈ H j for just one j ∈ {1, . . . , q}. Since x n → x, we have that for n large enough, x n ∈ Ω i such that Ωi ∩ H j = ∅. Let n ≥ 0 be fixed. Define g j : R d → R as

where n j denotes the normal vector to each H j as defined in subsection 1.2. By applying [START_REF] Rao | Stationary Hamilton-Jacobi-Bellman equations on multidomains[END_REF]Lemma 4.3] for K = {x} of H j and Ω i , there exists S > 0 such that for any n large enough, there exists two trajectories y n , z n driven by F and t n , t n less than Sg j (x n ) with

Note that t n , t n → 0 as n → +∞. For y n , we take h n := min{s : y n (s) ∈ Γ, s ∈ [t, t + t n ]}, then we have

For z n , we take τ n := sup{s :

and the claim follows by noting that h n ≤ τ n , h n ≤ τ n and then h n , h n → 0 as n → +∞.

Finally, if x ∈ H j1 ∩ H j2 for some j 1 , j 2 ∈ {1, . . . q}, there exist the desired S, y n , y n , h n , h n with h n , h n ≤ S min{g j1 (x n ), g j2 (x n )}.

B Appendix B

B.1 Some background in non smooth analysis: trajectories and invariance

We recall here some fundamental results which we need in the characterization of the sub-optimality. The first proposition states the existence of smooth trajectories for a given initial data, namely, initial point and initial velocity. The proof is analogous to the proof of Proposition 4.1 of [START_REF] Hermosilla | Infinite horizon problems on stratifiable state constraints sets[END_REF] and we omit it. and then for any ν ∈ G k (t, x, z, w), for some α ∈ A M k (x), r ≥ 0 and for (θ, ζ) ∈ ∂ P u k (t, x) we get

Since u is subsolution of (1.1)-(1.4) and ν ∈ G k (t, x, z, w) is arbitrary, we can take the supremum over v and obtain the desired inequality. If p = 0, we use the Rockafellar's horizontal Theorem (cf. [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF], Theorem 11.30) and the continuity of G k to obtain (B.47) for any η. Now take [a, b] ⊆ [0, T ] and y ∈ S b a (x) as in the statement. Let r > r > 0 be large enough so that y([a, b]) ⊆ B r and sup Step. 2-Regular trajectories. We take [a, x] ∈ [0, T ] × R d , and y ∈ S T a (x) for which there exists a partition of [a, T ], a = t 0 < t 1 < • • • < t n < t n+1 = T , so that for any l ∈ {0, . . . , n} we can find k such that y(s) ∈ M k on (t l , t l+1 ). Then by applying Proposition B. Step. 3-Non regular trajectories. We use the following lemma, which is proved in [START_REF] Hermosilla | The mayer and minimum time problems with stratified state constraints[END_REF], Lemma 3.3.

Lemma B.5. Assume (H1), (Hf ), (Hl), (Hg), (H3). Let (t, x) ∈ [0, T ] × R d and y(•) ∈ S T t (x) be given, then for any ε > 0 and τ ∈ [t, T ] we can find x ε ∈ B(x, ε), t ε ∈ (t -ε, t + ε) ∩ [0, τ ] and y ε ∈ S τ tε (x ε ) that verifies y ε (τ ) = y(τ ) and that is regular in the following sense: There exists a partition of [t, τ ], {t = t 0 < t 1 < • • • < t n < t n+1 = τ }, so that for any l ∈ {0, • • • , n} we can find k such that y ε (s) ∈ M k on (t l , t l+1 ). Then, since x n → x, t n → a, and by the lower semi-continuity of u, we get (B.45) and we conclude the proof.