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Abstract

For particular playing techniques such as "pop" or "slap" in the electric bass guitar, the string
collides with frets, producing a percussive sound used in di�erent music styles. The string/frets contacts
introduce a non-linearity which is investigated both numerically and experimentally in this paper. A
physical model, based on a modal description of the string, is implemented with an unconditionally
stable scheme. Simulations including a string/structure coupling and the two polarisations of the string
are confronted to controlled experiments, showing a good agreement for increasing amplitudes of initial
conditions. A parametric study is then conducted numerically in order to highlight the in�uence of
physical parameters on the transient behaviour and raises questions related to tuning and playing
issues.

Keywords: Numerical methods, 3D string vibration, experimental study, unilateral contact, sound
synthesis, electric bass guitar

1. Introduction

The solid-body electric bass has a recent history, opening up during the �rst half of the 20th
century [1]. Originally designed to increase the sound level and to be played with better precision than
the double bass, the solid-body electric bass was inspired by the solid-body electric guitar with four
heavy strings tuned to the same notes as the double bass [1]. The sound of the instrument is a result
of an electro-acoustic chain beginning with the string vibratory motion. This latter is then of prime
importance and can be disrupted by its coupling with the structure of the instrument. The string
vibration decay can vary depending on the �nger position, due to the induced boundary condition,
and dead spots can be produced at a �ngering position. This phenomenon may be explained through
a linear description of the coupling between the neck and the string [2, 3]. However, possible nonlinear
features are not investigated in these studies. In particular, among playing techniques adopted by
musicians, some rely on a percussive aspect of the sound, implying contacts between vibrating strings
and the neck. Two typical such playing modes are "pop", for which the string is plucked hardly
enough to generate contact, and "slap", for which the string is hit with the thumb, also resulting in
string/neck contacts [4]. The string/obstacle contact introduces nonlinearity, that has been widely
studied numerically. The highly nonlinear behaviour of the string vibrating in presence of an obstacle
makes the problem sti� and implies numerical di�culties, in particular regarding stability. Among
existing numerical methods, some models use waveguides [5, 6, 7], which reproduce e�ects through
signal processing, or energy-based methods [8, 9, 10, 11], ensuring a good stability to employed schemes.
Some models rely on a modal description of the string [12, 13, 10, 11], which possibly enables a �ne
description of the string linear characteristics such as damping. Only a few studies present experimental
signals with an isolated string or a complete instrument in order to give a comparison point for their
simulations [12, 14, 11, 15], the latter being applied to slap on electric basses. In [16], a listening test
is performed to evaluate the synthesis algorithm.

The present paper aims at presenting a numerical tool to simulate musical strings vibrating against
a unilateral distributed obstacle, and confronting it to experiments in detail. The method is applied
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to the pop attack on electric basses, for which the string is plucked with a su�ciently large amplitude
so that contact occurs and gives the sound a percussive timbre during the attack transient. The
objective of such a numerical tool is to move forward the comprehension of the string behaviour when
colliding with a fretboard, through the study of some key parameters. The employed numerical model
is presented in Section 2. A controlled experimental protocol is then proposed in Section 3. Numerical
and experimental signals are confronted in Section 4, and a numerical parametric study is led in order
to highlight the in�uence of some parameters on the resulting sound, some of which may be related to
playing and instrument making issues.

2. Model

2.1. Model of a string vibrating against an obstacle
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Figure 1: A string of length L vibrating against a bass guitar fretboard represented by the function g.

A sti� string of length L, mass per unit length µ, tension T , Young's modulus E and moment
of inertia I is considered. The string (see Fig. 1) vibrates in the presence of an obstacle having a
pro�le g(x) which is constant along (Oy) and under the string at rest. The transverse displacements
u(x, t) and v(x, t) of the string along (Oz) and (Oy) respectively are described by Eq. (1), in which
the subscript t (respectively x) refers to a partial derivative with respect to time (respectively space):

µutt − Tuxx + EIuxxxx = f (1a)

µvtt − Tvxx + EIvxxxx = ff , (1b)

where the right-hand sides f (contact force per unit length) and ff (friction force per unit length) are
fully described later.

Simply supported boundary conditions at the string endpoints are employed, this corresponds to
a common assumption for musical strings with a weak sti�ness, see e.g. [12, 17]. For the sake of
conciseness, the next equations are only detailed for the vertical displacement u, but of course also
apply to the horizontal displacement v. Boundary conditions read, ∀t ∈ R+:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0. (2)

The displacement is then spatially discretised by using Nm eigenmodes:

u(x, t) =

Nm∑
j=1

qj(t)φj(x), (3)

with φj(x) =
√

2
L sin

(
jπx
L

)
and qj the jth modal amplitude.

Inserting this expression in Eq. (1a), using standard Galerkin projection technique and adding
losses, one �nally obtains a system of oscillators for the unknown q = [q1, q2, ...qNm

]T gathering the
modal amplitudes as:

µ(q̈ + Ω2q + 2Υq̇) = F, (4)

where Ω and Υ are diagonal matrices with coe�cients Ωjj = ωj = 2πνj , νj being the jth eigenfre-
quency, and Υjj = σj , which corresponds to the jth damping coe�cient.

A penalty approach is selected to express the contact force per unit length, following [9, 11]:

f(η(x, t)) = K [η(x, t)]
α
+ , (5)
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where η(x, t) = g(x) − u(x, t) represents the penetration of the string into the barrier, and [η]+ =
1
2 (η + |η|). The regularised contact force thus depends on two parameters K and α, and derives from
a potential ψ:

f =
dψ

dη
, where ψ(η) =

K

α+ 1
[η]

α+1
+ . (6)

The friction force per unit length ff , acting on the polarisation along (Oy), is selected as a regu-
larised empirical Tresca friction law [18, 19], and reads:

ff (u, vt) = A


1 if vt < −s and u < g
−vt/s if |vt| ≤ s and u < g
−1 if vt > s and u < g
0 if u ≥ g,

(7)

where vt is the transverse velocity of the string along (Oy), and A (N.m−1), s > 0 (m.s−1) are two ad

hoc parameters. A number of studies in the literature use a regularised friction force [20, 21]. Note
that such a friction force only allows one equilibrium position, this may lead to incorrect behaviours
in some con�gurations [22].

In order to take into account the vibrations of the neck, the mobility at the nut is then added to
complete the model. In the case of solid body electric guitars and basses, it has been shown that the
bridge mobility is negligible as compared to that at the nut [3, 2]. Moreover, as detailed in Section 2.2,
the coupling is weak so that taking into account the nut mobility only alters linear characteristics.

2.2. Linear characteristics models

The in�uence of the dispersion due to the sti�ness of the string, though small, needs to be taken
into account. Also, under the previously exposed assumption of weak coupling at the nut and as done
in [3] for electric guitars, the eigenfrequencies are modeled following the relationship, for each mode j:

νj = j
c

2L

(
1 +

Bj2

2
+
µc

jπ
Im(Ynut(ω0,j))

)
, (8)

where c =
√

T
µ is the wave velocity of the ideal string, B = π2EI

TL2 is the inharmonicity coe�cient and

Ynut is the mobility at the nut, evaluated at ω0,j = j πcL . In the present study B is deduced from
measurements (see Section 3.2).

The modal loss factor is evaluated thanks to the model exposed in [12, 3]. For mode j, the quality
factor Qj is used to express the modal damping factor σj via Qj = πνj/σj , where Qj is modeled as:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te +
µc2

πLνj
Re (Ynut(ωj)) . (9)

In this model, the subscripts air, ve and te respectively refer to losses due to air friction, viscoelastic
and thermoelastic e�ects.

Contribution of friction with air writes:

Q−1
j,air =

jc

2Lνj

R

2πµνj
, (10)

where R = 2πηair + 2πdeq
√
πηairρairνj , with ηair and ρair the dynamic viscosity coe�cient and the

air density respectively. Usual values (for standard temperature and pressure conditions) are selected
here as: ηair = 1.8 × 10−5 kg.m−1.s−1 and ρair = 1.2 kg.m−3. Viscoelastic e�ects are supposed to be
concentrated in the string core [12], so that their contribution to global losses is given by:

Q−1
j,ve =

4π2µEcoreIcoreδve
T 2

ν3
0,j

νj
, (11)

where Ecore is the Young's modulus of the core, Icore = πr4
core/4 is the moment of inertia of the core,

with rcore the core radius, and ν0,j = jc
2L [12]. Finally, the viscoelastic loss angle δve and the constant

value Q−1
te may be adjusted according to measurements.
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2.3. Numerical model

The numerical model used in this contribution has been �rst introduced in [11] where the interested
reader can �nd a detailed description. Here only the salient features are brie�y exposed.

The numerical scheme combines an exact solution for the linear part (when no contact occurs)
with an energy-conserving expression for the regularised contact force. More speci�cally, the equation
of motion is �rst expressed in terms of the vector u = [u1, u2, ...uN−1]T of the string displacement
on interior points of an equally distributed spatial grid. Assuming a number of modes equal to the
number of interior points of the spatial grid, i.e. Nm = N − 1, a simple relationship exists between u
and the vector of modal coe�cients q = [q1, q2, ...qN−1]T : u = Sq, where S has entries Sij = φj(xi),
∀(i, j) ∈ {1, ..., N − 1}2. The discrete equation on q can therefore easily be rewritten for u. Then the
contact force is discretised according to the expression suggested in [9].

The scheme on u �nally writes:

µ

∆t2
(un+1 −Dun + D̃un−1) = fn, (12)

with fn = ψ(ηn+1)−ψ(ηn−1)
ηn+1−ηn−1 , D = SCS−1 and D̃ = SC̃S−1. C and C̃ are diagonal matrices with entries:

Cii = e−σi∆t
(
e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)
,

C̃ii = e−2σi∆t,

where ∆t is the time step, with corresponding sampling frequency Fs = 1/∆t.
The discrete equation for the displacement v = [v1, v2, ...vN−1]T along (Oy) is obtained in a similar

way:
µ

∆t2
(vn+1 −Dvn + D̃vn−1) = ff (un, δt.v

n), (13)

where δt.v
n = vn+1−vn−1

2∆t .
This scheme is conservative if there is no damping, dissipative otherwise, and unconditionally sta-
ble [11]. It should also be noted that the scheme is implicit, and that a Newton-Raphson algorithm is
used at each time step to solve the nonlinear equation for updating the unknowns. The computation
costs associated to each operation in the time-stepping algorithm have been fully discussed in [23],
showing in particular that the most time-consuming part was the computation of products between
full matrices and vectors instead of the Newton loop.

The proposed scheme thus combines a modal approach together with a treatment of the contact
force in the physical domain, in order to process the di�erent terms of the dynamical equations in the
most convenient space (modal or physical), as done for instance in [10, 24]. This method also allows one
to use an exact scheme for the instants without contact, and an easy to handle conservative numerical
expression of the contact force. The drawback of the present scheme is the use of an equal number
of modes and grid points, which may lead to consider a large number of modes in the truncation.
Decoupling these two numbers is nonetheless possible, as done for example in [10].

3. Experimental characterisation

L (m) d (mm) dcore (mm) T (N) µ (kg.m−1 )
0.863 1.14 0.43 191.6 6.69× 10−3

Table 1: String properties

The G-string of an electric bass with fundamental frequency 98 Hz is considered. Its properties are
speci�ed in Table 1, T being deduced from the other parameters. It is installed on a Fender Jazz Bass,
itself put on elastics in order to simulate free boundary conditions. Only the open string is investigated
here.
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Figure 2: Experimental set up.

3.1. Experimental set up

The mobility at the nut is measured by applying an impulse force and recording the associated
acceleration. To this end, a Brüel & Kjær 8203 impact hammer together with a PCB Piezotronics
352B10 accelerometer are employed (see Fig. 2).
The string displacement is obtained thanks to optical sensors calibrated according to the procedure
described in [25]. Uncertainties are obtained using the theoretical expression given in [25]. Both
displacements along (Oz) and (Oy) are recorded simultaneously with sensors located respectively at
9 and 18 mm from the bridge, and the neck pro�le is measured using a ruler. The initial condition
is provided by pulling the string with a copper wire until it breaks, at a selected location (64 cm
from the nut for free vibration measurements, see Fig. 2, and 2 cm from the nut in the next section
for identi�cation of linear characteristics), as done e.g. in [3, 11]. Di�erent diameters of copper wire
(0.05, 0.1 and 0.15 mm) allow one to get initial conditions with increasing amplitudes. Signals are
obtained with a sampling rate of 51200 Hz. In order to avoid sympathetic vibrations [26], other strings
are damped. The fretboard pro�le, presented in Fig. 1, is typical from a standard neck adjustment
according to musicians (private communications).

3.2. Identi�cation of linear characteristics

In order to identify the linear characteristics of the string coupled to the instrument, it is plucked
near the nut with a 0.05 mm diameter wire, so that a large number of modes are excited and no
contact arises. Then a high resolution signal processing method is employed which implies the ESPRIT
algorithm [27], according to the procedure described in [28, 3, 11].

Table 2: Models parameters

B δve Q−1
te α K N

3.5× 10−5 0.01 6× 10−6 1.5 1013 863

The results are reported in Fig. 3. Uncertainties are computed over about ten measurements. The
models presented in Section 2.2 are also reported, where the quality factor is shown with and without
taking the mobility into account in Fig. 3(b). As it can be observed, the mobility substantially a�ects
the quality factor of the string in the low frequency range (from about 100 to 2000 Hz). The parameters
of the eigenfrequencies and damping models are speci�ed in Table 2, they are selected in order to obtain
the best �t with measurements, in particular for highest frequencies, from the 20th to the 34th mode.
The mobility at the nut is included in the models up to about 10000 Hz; note that its contribution to
eigenfrequencies is negligible, and its contribution to damping decreases with frequency and becomes
negligible beyond the 30th mode.
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Figure 3: (a) Experimental (red crosses) and theoretical (blue circles) eigenfrequencies, νm and νth respectively, ex-

panded uncertainty at 95 % (gray lines) and relative error (orange diamonds) εν =
|νth−νm|

νm
. (b) Experimental (red

crosses) and theoretical (blue circles) quality factors, Qm and Qth respectively, theoretical quality factors without mobil-

ity (dark dashed line), expanded uncertainty at 95 % (gray lines) and relative error (orange diamonds) εQ =
|Qth−Qm|

Qm
.

(c) Conductance at the nut (blue line) and expanded uncertainties at 95 % (gray). Uncertainties are barely visible at
this scale as they are very small as compared to the measured values.

In order to obtain the most precise input parameters in the numerical model, measured values of
the linear characteristics are directly included up to the 34th mode, i.e. around 3400 Hz. Beyond this
value, the models exposed in Section 2.2 are employed.

4. Results

In this section, numerical results and experimental data are confronted without and with contact.
Numerical simulations are conducted with parameters speci�ed in Table 2. The sampling frequency
Fs depends on the case tested and the number of contacts involved. A convergence criterion is selected
as a relative error of the signal evaluated at the measurement point smaller than 0.1, on a simulation
duration that encompasses all contact times at least. This stringent criterion is necessary and leads to
use large values of the sampling frequency in order to determine properly the high frequency content
of the signals generated by impacts.
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For comparative listening tests complementing the analysis shown in the paper, all the sounds
corresponding to either experiments or simulations can be heard from the webpage
http://www.lam.jussieu.fr/Membres/Issanchou/sounds_bass17. They correspond to the displace-
ment of the string at the position of sensors, resampled at 44.1 kHz (WAV format).

4.1. Comparison of numerical simulations and measurements

In this section, a comparison is drawn between experimental and numerical signals. The initial
shape is a rounded triangle with an apex at 64 cm from the nut. The string is excited along the (Oz)
polarisation only, by properly pulling it vertically with the copper wire. The measured displacement
along (Oy) is found to be negligible, and is thus discarded in the simulation. Section 4.1.3 is devoted
to initial conditions implying both transverse polarisations.

Three cases are considered. The �rst one concerns a su�ciently small maximal initial displacement
(0.87 mm) so that no contact occurs. This case, labeled A, is used to validate the identi�cation
procedure. Two others cases, labeled B and C, imply contacts between the string and a large number
of frets, depending on the maximal initial displacement, given as 3.6 mm and 7.8 mm respectively.
These values have been selected as lying within the range of typical pop playing amplitudes.

Fig. 4 shows the temporal signals for the three cases considered. When no contact occurs, numer-
ical and experimental signals show an almost perfect matching of global shapes as well as detailed
waveforms, resulting in extremely similar frequency distributions and sounds. This strong agreement
highlights the quality of the identi�cation procedure and the versatility of the numerical method. A
more thorough discussion is now dedicated to cases B and C.

4.1.1. Case B: with contact, u0,max = 3.6 mm

Case B corresponds to a maximal initial displacement of 3.6 mm and gives rise to a number of
contacts during the vibration such that nonlinear e�ects are now involved. The global comparison
shown in Fig. 4(b) is very satisfactory. One can notice that the period at the very beginning of the
signal seems to be shorter than in case A, which would mean that the fundamental frequency is higher
than in the rest of the signal. A time-frequency analysis is shown in Fig. 5(a-b) with spectrograms,
revealing interesting e�ects and noteworthy similarities. The most salient feature corresponds to the
complex energy transfers at the beginning of the signals, as long as contacts occur. This phenomenon
lasts about 0.09 s during which a large amount of energy is transmitted to higher modes. It is well
recovered by the numerical simulation even though it seems to last slightly longer in the experimental
case. Besides, some reinforced spectral zones can be clearly identi�ed, for instance around 4500 Hz,
which are also well reproduced numerically.

A more quantitative viewpoint on the energy transfer can be given by de�ning a characteristic
frequency νc as [29]:

νc =

∫ Fs/2

ν=0
a(ν)2νdν∫ Fs/2

ν=0
a(ν)2dν

, (14)

where a(ν) is the Fourier amplitude evaluated at frequency ν, for the signal resampled at Fs =
51200 Hz.

Fig. 6 shows the behaviour of νc in cases A, B and C. In case A, νc slightly decreases in time
because of the larger damping coe�cients of high frequency modes. In cases B and C, the spectral
enrichment occurring in the �rst instants is clearly visible, and more pronounced in case C for which
the initial amplitude is larger. One can observe similar evolutions of νc between the experiment and
the simulation. Relative errors between the experimental and numerical signals having characteristic
frequencies νc,m and νc,n respectively, given by

νc,n−νc,m
νc,m

, are below 0.2 over the full signals duration

in case B.
A second interesting feature, revealed by the spectrograms and con�rming a previous observation

made on temporal signals, is a substantial frequency glide in the low-frequency range (mostly below
500 Hz, see the zooms in Fig. 5(a-b)), which is faithfully reproduced numerically. This phenomenon,
due to the presence of an obstacle, has already been observed in the case of a curved obstacle at one
string extremity in [30]. In the present case, it can be closely related to the occurrence of contacts in
space and time. To do so, a contactogram, which shows the contact times on frets for the numerical
signal, is presented in Fig. 7(a). More speci�cally, the contact times and their locations on the fretboard
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Figure 5: Spectrograms of the displacement in the case of string/frets contacts, drawn in dB using a 70 dB dynamic. (a)
Experimental, with zoom, u0,max = 3.6 mm (b) numerical, with zoom, u0,max = 3.6 mm, Fs = 8 MHz (c) experimental,
u0,max = 7.8 mm (d) numerical, u0,max = 7.8 mm, Fs = 16 MHz.

9



0 0.2 0.4 0.6 0.8 1
time (s)

0

500

1000

1500

2000

ν c
(H

z)

Figure 6: Characteristic frequencies of experimental (blue) and numerical (red) signals for increasing maximal initial
displacements. Case A (lines with crosses), B (lines with plus signs) and C (lines with circles).

are detected from the numerical simulation and then reported as a function of the frets colliding with
the string. The �rst set of collisions occurs around 4× 10−3 s, and the string hits 12 frets (see Fig. 1).
As shown in the zoom of the �rst contact time (insert of Fig. 7(a)), the string �rst collides with the
twelfth fret. For a better understanding, this �rst set of collisions may be observed together with Fig. 8,
which shows the string shape at times included in this period. During the second set of collisions, the
string touches frets 2 to 11. Globally, less and less frets are hit. A peculiar feature in this simulation
is that the �rst fret is hit at the �rst collision, and a second time long after, around 0.05 s.

Superimposed to the contactogram in Fig. 7(a) is also shown the relative fundamental frequency

variation during the attack transient, computed as ν(t)−νr
νr

, where νr is the �rst identi�ed eigenfre-
quency (98 Hz), and ν(t) is the instantaneous fundamental frequency of the signal at time t, which
has been obtained with the YIN algorithm [31], for both numerical and experimental signals. It allows
one to obtain a more quantitative viewpoint on the fundamental frequency decrease already observed
in spectrograms. More speci�cally, a staircase-like behaviour is found, where a decrease of the funda-
mental frequency arises each time the neck is hit. The frequency can be directly related to the number
of touched frets: the smaller the number of hit frets is, the lower the frequency is. Once again, the
agreement between the simulation and the experiment is very close when analysing the fundamental
frequency variations.

Despite a global agreement which is very satisfactory, showing that the model has been able to
reproduce faithfully all the main features of the experiment, some small di�erences still persist. A
number of factors may explain these observations. In the model, the obstacle is assumed to be rigid
while it has a mobility, not only at the nut (this is included in the model), but also on the full length of
the neck. This may a�ect the string motion when contact occurs. Besides, there are uncertainties on
each measurement step. Apart from those on eigenfrequencies, damping parameters and the plucking
position, which appear to be small and controlled as revealed by analysing case A, the main measure-
ment uncertainty concerns the neck pro�le and more speci�cally the location and height of each fret.
In numerical simulations, it has been found that re�ning the space step did not signi�cantly improve
the results. However, it shows undoubtedly that the obtained sound is very sensitive to the height of
the frets. This is illustrated through numerical examples in Section 4.2.

4.1.2. Case C: with contact, u0,max = 7.8 mm

The case of a larger initial amplitude, such that u0,max = 7.8 mm (case C), is �nally investigated.
The number of hit frets is larger than in case B, resulting in a more complex temporal signal displaying
a considerable high-frequency content, as shown in Fig. 4(c). The agreement of experimental and
numerical results is still very satisfactory, though di�erences are now a bit more pronounced than in
case B. Spectrograms in Fig. 5(c-d) show that the energy transfer to high frequencies is more substantial

10



0 0.05 0.1 0.15
time (s)

0

5

10

15

20

fr
et

 n
um

be
r

0

0.1

0.2

0

5

10

15

20

fr
et

 n
um

be
r

0.01
time (s)

0.018

0 0.05 0.1 0.15
time (s)

0

5

10

fr
et

 n
um

be
r

0

5

10

fr
et

 n
um

be
r

0.021
time (s)

0

0.004 0.003 0.004

re
la

ti
ve

 f
re

qu
en

cy
 v

ar
ia

tio
n

re
la

tiv
e 

fr
eq

ue
nc

y 
va

ri
at

io
n

(b)(a)

0.3

0.1

0.2

0. 0.0125
0

5

10

Figure 7: (a) Contact times for the numerical string with (red circles) and without (dark dots) dispersion. Relative
fundamental frequency variation of the experimental signal (blue dashed line) and numerical results with (red line) and
without dispersion (dark line). u0,max = 3.6 mm, Fs = 8 MHz. Insert: zooms on the three �rst sets of contacts. (b)
Contact times (red crosses) for the numerical string and relative fundamental frequency variation, experimental (dashed
blue line) and numerical (red line). u0,max = 7.8 mm, Fs = 16 MHz. Insert: zooms on the three �rst sets of contacts.

-4

-2

0

2

4

u 
(m

)

×10-3 t = 0 s t = 0.0035 s t = 0.0039 s

0 0.2 0.4 0.6 0.8
x (m)

-4

-2

0

2

4

u 
(m

)

×10-3 t = 0.0041 s

0 0.2 0.4 0.6 0.8
x (m)

t = 0.0043 s

0 0.2 0.4 0.6 0.8
x (m)

t = 0.0047 s

Figure 8: Snapshots of the numerical string displacement during the �rst period. u0,max = 3.6 mm, Fs = 8 MHz.

11



than in case B and lasts longer. This results in a di�erent energy repartition compared to case B. The
percussive part of the sound is very clearly visible at the beginning, and the overall sound is more
nasal. This spectral content change is very well reproduced by the numerical simulation, and yields
much higher characteristic frequencies during the whole signal, as can be seen in Fig. 6.

The contactogram in Fig. 7(b) con�rms that more frets collide with the string for a higher ex-
citation amplitude. During the �rst set of collisions, all the 20 frets are now hit. The staircase-like
behaviour of the fundamental frequency is also retrieved, with now more di�erences between numerical
and experimental signals, particularly around time 0.04 s. Interestingly, the pitch glide is only driven
by the contact times, and not by the geometrical nonlinearity which could have been involved as vi-
brations amplitudes are now moderate. This phenomenon being neglected in the model, our results in
cases B and C clearly evidence that this fundamental frequency shift is not generated by nonlinearities
associated with large-amplitude motions.

Finally, the three exposed cases show that the model employed, despite simplifying assumptions,
includes the essential features for recovering the most important information present in the signal and
more precisely in the attack transient. Our re�ned spectral and temporal investigations evidenced
that a number of nonlinear characteristics are at hand during the vibration (spectral enrichment, pitch
glide e�ects), which can be pertinently analysed in terms of contact times thanks to contactograms,
and are satisfactorily reproduced numerically.

4.1.3. Second polarisation

This section is devoted to investigating the second polarisation by confronting experiments with
simulations. For that purpose, an oblique initial condition with an angle of about 55 degrees between
the excitation plane and (xOy) is considered, so that energy is given to both transverse polarisations.

Fig. 9 shows temporal signals and spectrograms of both polarisations, of which maximal inital
displacements are measured as u0,max = 3.1 mm along (Oz) and v0,max = 2.2 mm along (Oy). Friction
force parameters (see Eq. (7)) are taken as A = 900 N.m−1 and s = 10−5 m.s−1.

As in the previous section, the agreement is very satisfactory, both on temporal signals where de-
tails of the waveforms are �nely reproduced, and on the spectrograms, displaying strong similarities.
More speci�cally, for the horizontal displacement v, a low energy for the frequency about 2400 Hz and
reinforced frequencies around 600, 900 and 1400 Hz are observed in both experiment and simulation.
Nevertheless, slight di�erences are also noticeable. They may be due to measurement uncertainties as
already mentioned in the previous section. Moreover, in this case, it must be noticed that the shape of
frets is assumed to be �at along the (Oy) direction in the model. A slight curvature is actually present,
so that an enriched model with a non-constant obstacle along (Oy) or spatially varying coe�cients in
the friction law could be considered.

Finally, this comparison shows that with a very simple coupling model between the two polarisations
through a friction mechanism, the model is able to retrieve the dynamics of the string with a number
of collisions involved. It underlines that the most important physical features are taken into account
in the model which can now be used for a parametric investigation.

4.2. Application: parameters variations

Sounds produced with pop and slap playing techniques strongly depend on materials of the string
and fretboard, the fretboard shape and the player's gesture. The distance between strings and frets may
be adjusted depending on musicians preferences, for instance a small distance may be more suitable to
favour contacts if pop and/or slap are often intended. However this distance should be large enough to
avoid undesirable grazing, therefore a compromise has to be found. With given materials and fretboard
pro�le, a musician adapts its gesture to eventually favour contact, and to shape the sound by selecting
a particular plucking point for instance.

In this section, in order to give a �rst insight into the in�uence of these parameters on the sound, the
e�ects of contact parameters, dispersion, the plucking point and the fretboard pro�le are numerically
studied and analysed.

4.2.1. String dispersion

The choice of the string, and more speci�cally its material properties and its diameter, leads to
varying dispersion properties. Its in�uence on the attack transient is thus investigated here.
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Fig. 7(a) shows contact times as well as the fundamental frequency glide during the attack transient,
with and without dispersion. From the third set of contacts (i.e. from about 0.02 s), contacts arise
earlier when dispersion is discarded. Moreover, contacts arise over a longer duration, and the number of
hit frets decreases less rapidly than in the case with dispersion. Consequently the pitch glide also lasts
longer, as evidenced by the fundamental frequency variation shown in Fig. 7(a). This is also observed
in the spectrogram shown in Fig. 10, where the time interval in which contacts occur, characterised
by complex spectral energy transfers, lasts about 0.15 s.

This numerical experiment shows that dispersion, although important, is not as essential to describe
the sound produced as in the case of tanpura for instance, as underlined e.g. in [14, 11]. This may
be due to the fact that in the tanpura string vibrations, contacts are present during the permanent
regime as a key nonlinear feature characterising the timbre of the sound, whereas in the present case
collisions only arise in the attack transient.

4.2.2. A player's parameter: plucking point in�uence

In this section, the e�ect of the plucking point is investigated. The same con�guration as in case B
of Section 4.1 is used, only the plucking point is modi�ed. Three positions are tested: near the bridge
(case a), in the middle of the string (case b), and near the nut (case c).

Fig. 11(a-c) shows the resulting spectrograms. The most signi�cant consequence of the plucking
position change is the length of the overall contact time interval, which is shorter in case b and longer
in case c. This is more clearly identi�ed in Fig. 11(d) displaying the associated contactograms. When
the string is plucked near the bridge and in the middle of the string, some frets collide at the beginning,
before a global decrease of the number of hit frets arises. This behaviour is similar to cases B and C
studied in Section 4.1, and leads to a percussive attack with more high frequencies as more contacts
arise. When the string is plucked near the nut, a completely di�erent behaviour appears. Some frets
are hit at the beginning, their number then quickly reduces to one (the last fret) until no contact arises
anymore between 0.25 and 0.35 s. After this time, many contacts appear even after several tenths
of seconds without contact, possibly from the beginning. For instance, the �rst contact between the
string and the second fret occurs at time 0.85 s. This speci�c behaviour leads to a grazing sound.

The studied cases evidence the in�uence of the plucking point on the produced sound: in order to
increase the role of contacts, the musician may either pluck the string stronger (see Section 4) or at
di�erent positions. Even though it arises for an unusual plucking position here, the case resulting in
a grazing sound (case c) is of particular interest, since it shows the possibility of a "growing" contact
that leads to a generally undesirable sound. For standard playing conditions, avoiding this e�ect is of
prime importance and is strongly related to the neck pro�le, which is a major issue in guitar making.
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Figure 11: u0,max = 3.6 mm, Fs = 4 MHz. (a-c) Top: Spectrograms of numerical signals, drawn in dB using a 70 dB
dynamic. Bottom: Initial con�gurations (neck pro�le in dark and string position in blue). Plucking at: (a) x = L− 0.1
m (b) x = L/2 m (c) x = 0.1 m. (d) Contact times for the numerical string when plucking at x = L − 0.1 m (dark
diamonds), x = L/2 m (magenta crosses) and x = 0.1 m (green plus signs).

4.2.3. A guitar maker's parameter: the neck adjustment

In this section, a �rst insight is given into the neck shape in�uence in the case of a small initial
displacement, so that no contact occurs with the measured fretboard, through two examples: the
decrease of the neck curve and an abnormally raised fret.

Fig. 12(a-c) shows spectrograms of string displacements for three fretboard curvatures. The �rst one
is the measured fretboard, with a distance d12 = 2.3 mm between the string at rest and the 12th fret.
Then, the fretboard curvature is reduced by rising frets inside the fretboard such that d12 = 2 mm, the
�rst one and the last one keeping the same height as previously. The third tested curvature corresponds
to a straight fretboard, the straight line being based on the �rst and last measured frets heights. In
this case, d12 = 1.8 mm. The string is plucked with a 1.8 mm maximal initial displacement, at 60 cm
from the nut, so that there is no contact with the measured fretboard as can be seen on the related
spectrogram, in Fig. 12(a). When reducing the curvature, collisions arise as shown in Fig. 12(e). In
the case of a straight fretboard, contacts arise earlier. Moreover, more frets are hit at the beginning,
therefore the frequency glide starts from a higher frequency. On spectrograms, higher frequencies are
involved. Furthermore, the highly perturbed zone at the beginning lasts longer and clearer reinforced
spectral zones are visible.

Let us now consider the case of the measured fretboard on which the sixth fret would be raised by
0.5 mm. As shown in Fig. 12(d-e), contacts with the sixth fret greatly alter the resulting sound, not
only during the attack transient but also in the full length of the instrument sound.

The presented cases correspond to typical issues in guitar bass making, needing �ne adjustments
of the neck. They give a �rst insight into the way the model presented here might be considered for
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Figure 12: Top: Spectrograms of numerical signals, drawn in dB using a 70 dB dynamic. Bottom: Initial con�guration
(neck pro�le in dark and string position in blue). u0,max = 1.8 mm, Fs = 2 MHz. (a) Measured pro�le (largest tested
curvature) (b) Intermediate curvature (c) Straight pro�le (d) Sixth fret raised by 0.5 mm. (e) Contact times for the
numerical string with an intermediate curvature (magenta diamonds), a straight pro�le (dark circles) and the sixth fret
raised (orange crosses). Relative fundamental frequency variation of the signal with an intermediate curvature (magenta
line), a straight fretboard (dark line) and the sixth fret raised (orange line).

teaching purpose for instance.

4.2.4. Contact sti�ness

In the simulations, the duration of the global contact period, corresponding to a complex transitory
part, strongly depends on the obstacle position as well as the numerical sti�ness of the contact. The
smoother the contact is, the longer the time period with contacts lasts. For K su�ciently small, for
instance K = 109, the previously mentioned frequency glide can be clearly heard during the contact
period which then lasts several tenths of seconds, as shown in Fig. 13. The fundamental frequency
estimation presents successive increases and decreases with an overall decrease during about 0.8 s, with
an evolution strongly related to the number of frets colliding with the string as shown in Fig. 13(b).
This leads to complex energy transfers, as can be seen in Fig. 13(a). Since contacts are smoother than
for K = 1013, highest modes have less energy, as can be observed by comparing Fig. 13(a) and 5(a-b).

Contact parameters, which may be related to materials in contact [32, 33], participate to shaping
the sound and may then be adjusted as materials properties.
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Figure 13: Numerical signal with K = 109, u0,max = 3.6 mm, Fs = 4 MHz. (a) Spectrogram of the numerical signal.
(b) Contact times for the numerical string (dark dots) and relative fundamental frequency variation (magenta line).

5. Conclusion

In this study, a numerical modal-based model was applied to the string/fretboard contact in the
case of a solid-body electric bass. Highly controlled experiments were conducted on this instrument,
in order to compare data to numerical signals for both transverse polarisations. The model, despite its
simplifying assumptions, faithfully and accurately reproduces the speci�c sound of the electric bass,
possibly including contacts. Several speci�c patterns appear when contacts arise, among which complex
energy transfers between modes and a frequency glide. Then the in�uence of numerical parameters
as well as the role of the plucking point and neck tuning were numerically explored. In particular,
the sensitivity of the sound to the height of frets was highlighted. These features may be adjusted to
obtain either highly realistic or nonstandard sounds that could enrich a musical creation for instance.

This work might be extended to instruments with a di�erent obstacle to the string vibration as fret-
less basses, and more realistic excitations may be included according to musicians' �ngers gesture [34].
The system may also be completed by considering all strings together, which involves sympathetic
vibrations [26], as well as additional damping due to the presence of the musician and the e�ect of the
microphone, through which the sound is transmitted [35].
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