
HAL Id: hal-01591717
https://ensta-paris.hal.science/hal-01591717v1

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contactless Physiological Data Analysis for User Quality
of Life Improving by Using a Humanoid Social Robot

Roxana Agrigoroaie, Adriana Tapus

To cite this version:
Roxana Agrigoroaie, Adriana Tapus. Contactless Physiological Data Analysis for User Quality of
Life Improving by Using a Humanoid Social Robot. International Conference on Image Analysis and
Processing, Sep 2017, Catania, Italy. �hal-01591717�

https://ensta-paris.hal.science/hal-01591717v1
https://hal.archives-ouvertes.fr


Contactless Physiological Data Analysis for User
Quality of Life Improving by Using a Humanoid

Social Robot

Roxana Agrigoroaie and Adriana Tapus

Autonomous Systems and Robotics Laboratory, U2IS
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Abstract. Robots have increasingly been used for improving the qual-
ity of life of people with special needs, such as people suffering from
Mild Cognitive Impairment, elderly, people with different physical and
cognitive abilities. In this paper, we propose a method for extracting and
analyzing physiological data by using contactless sensors (i.e., RGB and
thermal cameras). The physiological parameters that can be analyzed
are: the respiration rate, blinking rate, and the temperature variation
across different regions on the face (i.e., the forehead, the nose, the peri-
nasal region, the left and right periorbital regions, and the entire face).
These parameters, together with the action units (AUs) can be indica-
tors of the current internal state of an user. We analyze data from three
different scenarios and report the results obtained.
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1 Introduction

In the past years, many research works concentrated on developing assistive
technology for people with special needs (e.g., children and adults suffering of
Autism Syndrome Disorder (ASD), elderly, people with different physical abil-
ities, people suffering from Mild Cognitive Impairment (MCI)) [1–4]. One such
project is EU Horizon2020 ENRICHME project1. The purpose of this project is
to develop an assistive robot for elderly with MCI. A robot should be aware of
the internal emotional and physiological state of the human users so as to better
serve them and in the same time to improve their quality of life.

Determining the physiological internal state of a person is a research topic
that received a lot of attention in the last decade [5, 6]. Most of the devices used
to gather physiological data are invasive. To counteract this, other methods have
been developed, which use contactless sensors (e.g., RGB-D and thermal cam-
eras). These cameras can be used to extract different physiological parameters
that provide valuable information for determining the internal state of a person.

1 www.enrichme.eu
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The overall goal of the robot is to understand the context and the internal
state of the user so as to adapt its behavior for a more natural human-robot
interaction (HRI). The novelty of our work consists in combining different al-
gorithms for extracting physiological parameters in a non-invasive way with the
final goal of adapting the behavior of a humanoid robot for improving the quality
of life of an user.

Our paper is structured as follows. Section 2 presents a description of the
physiological parameters and why they are important in the context of assistive
robotics based on the literature. Section 3 briefly describes the sensors used for
data acquisition. Section 4 describes how the data was recorded and analyzed.
Section 5 shows the results, while Section 6 presents a short discussion based
on the obtained results. Finally, Section 7 concludes the paper and offers a
perspective on future work.

2 Physiological parameters

For a better understanding of human behavior, we must look at the underlying
physiological activity. Some of the physiological data that we can look at are:
the electrocardiogram (ECG), the electroencephalogram (EEG), the pupillary
dilation, the electrodermal activity (EDA), the respiration rate (RR), the heart
rate, the blinking rate (BR), etc. Moreover, there are some other non-verbal
and para-verbal indicators of the current internal state of a person (e.g., facial
expressions, prosody). In this paper, we look at the blinking rate, the respiration
rate, facial expressions, and the temperature variation on the face during an
interaction.

In this context, three types of blinking are identified in the literature [7]:
spontaneous (without external stimuli and internal effort), reflex (it occurs in
response to an external stimulus), and voluntary (similar to the reflex blink but
with a larger amplitude). The type of blinking that is of interest for assistive
applications is the spontaneous blinking. The authors of [8] found an average
resting BR of 17 blinks/minute, with a higher BR during a conversation (mean
BR of 26) and lower BR during reading (mean BR of 4.5). In [9], the authors
showed that the BR relates to both the task that an individual has to perform
and to the difficulty of that task (e.g., during a mental arithmetic task, the more
difficult the task, the higher the BR). Blinking has also been used in a deception
detection approach [10].

While performing a certain activity, either physical or cognitive, it is impor-
tant to make sure that the individual performing the task is not too stressed.
The temperature variation on different regions of interest on the face could in-
dicate the presence of different emotions (e.g., stress, fear, anxiety, joy, pain)
[11]. In [12], the authors have used a thermal camera to reliably detect stress
while interacting with a humanoid robot. The authors in [13] have shown some
of the limitations and the problems that can arise when using thermal imaging
for determining the temperature variation across different regions on the face.
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One aspect in which the quality of life of an individual can be increased is
by promoting more physical and cognitive exercises. An important parameter to
monitor during these activities is the RR. The number of breaths per minute
(BPM) is how RR is measured; where a breath is made up of two phases: inspira-
tion and expiration. The average resting RR for adults lies between 12-18 BPM
[14]. The RR can be measured either by using contact sensors (e.g., respiration
belt [15], electrocardiogram [16]), or by using a thermal camera [17, 18].

Emotional responses can be detected on the face as well. The easiest and
most natural way of communicating our emotions is by using facial expresssions.
Ekman and Friesen [19] have developed the Facial Action Coding System (FACS)
for describing these facial expresssions. The coding system defines atomic facial
muscle actions called action units (AUs). There are 44 AUs and 30 of them are
related to the contractions of specific muscles (12 on the upper face and 18 on
the lower face). AUs can occur singly or in combination. The combinations of
different AUs define different emotions [20] (e.g., happiness AU6 - cheek raiser
+ AU12 - lip corner puller).

3 Sensors

For the non-intrusive and contactless acquisition of data necessary for analyzing
the physiological features presented in Section 2, we have used two sensors:

– An ASUS Xtion Live Pro RGB-D camera

– An Optris PI 640 USB-powered thermal camera

The RGB-D camera provides a 640x480 RGB image at up to 30 Hz. We used
the configuration with a frame rate of 25 Hz. The 45x56x90 mm thermal camera
has an optical resolution of 640x480 pixels and a spectral range from 7.5 to 13
µm. It is capable of measuring temperatures ranging from -20◦C to 900◦C at a
frame rate of 32 Hz.

4 Methodology: Data extraction and analysis

The algorithms that we developed for the extraction and analysis of the phys-
iological parameters, and the AUs are described. For the extraction of all pa-
rameters previously mentioned, the face of an individual is required. Therefore
we developed a Robot Operating System (ROS) [21] package that can detect
and track faces in a video feed. The face detection algorithm uses Dlib [22], an
open source library with applications in image processing, machine learning, etc.
The same library can also be used to determine the location of 68 feature points
of interest on a face. We used these feature points to define regions of interest
(ROIs) on the face.
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4.1 Blink

For the detection of blinking we used the RGB data. Our ROS package detected
the face and the feature points around the eyes (see Fig. 1a). The only ROI in
this case is made up of the eyes. In order to determine if a person blinks or not,
we looked at the distance between the eyelids.
As can be seen in Fig. 1b, each eyelid is characterized by two feature points.
First, we computed the distance between the upper and lower eyelids for both
points (e.g., in Fig. 1b the distance between the feature points 37 and 41).
When a person is very close to the camera the face region is very large, but
as the distance between the camera and the person increases, the face region
decreases. Therefore, the distance between the eyelids can be very small. To
counteract this, we squared the sum of the two distances for each eye. As there
are multiple eye shapes and sizes, we had a period of 30 seconds in which we
recorded the distances for both eyes, at the end of which we computed the mean
eyelid distance for each eye. Only after this mean is available, we can detect if
a person is blinking or not. We consider that a person has its eyes closed if the
current distance is smaller than half the mean distance for that eye. When the
person reopens the eyes we consider that he/she blinked. Knowing that a blink
lasts for a period of 100-300 ms, our module is capable of making the distinction
between a blink and keeping the eyes closed.

(a) Feature points (b) Eyes feature points

Fig. 1: Facial feature points

We developed two methods to detect BR. For both methods, we are using a
time period of one minute. In the first one, we simply count the number of blinks
that we detected. For the second method, we saved all eyelids distances (see Fig.
3a for input signal) in a file. On the saved values we applied signal processing
algorithms to detect the blinks. The steps that we applied are:

– We applied a low pass Butterworth filter with a sampling frequency of 25
Hz (the frame rate of our RGB camera), a cutoff frequency of 1.75 (see (1))
with the purpose of filtering out small variations in eyelid distance.

– We emphasized the moments with the largest change in distance by applying
a differences and approximate derivative.
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– Finally, all peaks were detected and counted (see Fig. 3b); in case the number
of blinks for the left and right eye are different, the minimum of the two is
considered to be the BR (a difference can appear in case a person is winking).

To compute the optimal cutoff frequency we applied (1) (see Equation 9 in
[23]), where fs represents the sampling frequency, and fc, the cutoff frequency.

fc = 0.071 ∗ fs − 0.00003 ∗ f2s (1)

4.2 Temperature variation

The face detection algorithm was trained with RGB images, as a result the detec-
tor does not always work when using a thermal image. Therefore, we developed
a program, which enables us to manually select the face region in the first frame
and it is then tracked for the entire duration of the interaction. Once the face
region was determined, the 68 feature points can be localized on the face and
the ROIs can be defined (see also Fig. 2):

– the entire face: a region that covers the entire face.
– the forehead: a region with a width equal to the distance between the middle

of the two eyebrows, and a height of 50 pixels.
– the left, and right periorbital region: a region with a size of 15x15 pixels

around the inner corner of each eye.
– the perinasal region: a region defined between the corners of the nose and

the distance between the tip of the nose and the upper lip.
– the nose: a region defined between the corners of the nose and the distance

between the tip of the nose and the root of the nose.

Fig. 2: ROIs in the thermal data. Temperatures range from 20◦C in dark purple
to 40◦C in light yellow

From each of these regions the average temperature was extracted. Our pre-
vious work [13] shows that there are 3 ROIs that need more consideration when
performing the analysis. These regions are: the two periorbital regions and the
entire face. One problem that was encountered was the presence of glasses. As
the glasses do not transfer the heat from the face, their temperature is lower
than the rest of the face. Moreover, in cases when the person turns its head
there might be situations when the ROIs include parts of the background. All
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these values have to be discarded so that they do not influence the temperature
variation. We previously found that all temperatures below 30◦C are associated
with either the background or the glasses.

Once these temperatures were removed, we applied a low pass Butterworth
filter (fs = 32Hz, fc = 2.24Hz) in order to eliminate temperature variations,
which are associated to the movement of the person.

4.3 Respiration

The RR was determined using the temperature variation in the perinasal region
defined in Section 4.2. As previously mentioned, a respiration is composed of two
phases: inspiration and expiration. The temperature variation between these two
phases is of interest when computing the RR. The following procedure (based
on [18]) was implemented.
First, the mean temperature from the ROI was stored in a circular buffer of 30
seconds. Once the buffer was full, the RR could be estimated. As the resting
RR lies between 12-18 BPM (0.2 Hz and 0.3 Hz), a Butterworth bandpass filter
was applied in order to eliminate all other frequencies. Before applying a Fast
Fourier Transform (FFT) on the signal a Hann window function was performed.
Using the maximum frame rate of the camera, i.e., 32 Hz, and a duration of 30
seconds, a maximum resolution of 2 BPM (0.033 Hz) can be obtained. In order to
improve this resolution, a quadratic interpolation was applied on the maximum
magnitude and its neighbors of the frequency spectrum, which resulted after
applying the FFT. The RR corresponds to the index of the maximum magnitude
after applying the interpolation.

4.4 AUs

The detection of AUs can provide valuable input on the emotional state of a per-
son. The module for AU detection was previously developed in our laboratory.
The detector was trained using the CMU-Pittsburgh AU-Coded Face Expres-
sion Image Database [24]. The database consists of 2105 image sequences from
182 adult subjects of varying ethnicity, which perform multiple tokens of most
primary FACS action units. For the training, a support vector machine was used
and the OpenCV Viola Jones face detection algorithm. Our detector is capa-
ble of detecting the following AUs: AU1 (inner brow raiser), AU2 (outer brow
raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6 (cheek raiser), AU7
(lid tighten), AU12 (lip corner puller), AU15 (lip corner depressor), AU20 (lip
stretcher), AU23 (lip tighten), and AU25 (lips part).
Given a video frame, the detector provides the prediction confidence for each of
the previously mentioned AUs. By applying an empirically found threshold we
select only the relevant AUs in that frame. Once this is accomplished we can
know the emotional state of a person. Given the detected AUs, we are able to
detect the following emotions [20]: surprise (AU1 + AU2 + AU5 + AU26 - jaw
drop), fear (AU1 + AU2 + AU4 + AU5 + AU20 + AU25), happiness (AU6 +
AU12), and sadness (AU6 + AU15).
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5 Results

The algorithms previously described have been tested on 3 different data sets.
The first data set was recorded during a demo that we performed with two
participants at a care facility (Lace Housing, UK), part of the ENRICHME
project. The two participants (P1, P2) are older people who interacted with the
Kompäı robot through a tablet mounted on the torso of the robot. As the two
cameras (RGB-D, and thermal) were mounted on the head of the robot, the
participants did not look directly at them.
The second and third datesets were recorded during two experiments that we
performed in our laboratory for detecting deception. For the second dataset, the
participants (P3 - P5) interacted with the same Kompäı robot, in an interview-
like scenario. Therefore, all participants looked directly at the two cameras which
were mounted below the head of the robot. The age of the participants varied
between 20 and 40 years old. The last dataset used was recorded while the Meka
M1 robot gave the instructions for the participants (P6 - P9) in a pen and paper
task. The cameras were positioned on the table in front of the participants,
while the robot was positioned a little on the participants’ right side. Due to
this positioning none of the participants looked directly at the cameras. All
participants showed increased head movement during the interactions. Some of
them had facial hair, while others wore glasses. We encouraged them to leave
the glasses on, as we did not want to induce further stress.

Table 1: Blinking rate and respiration rate results
Participant Recording

duration
[seconds]

BR manual
annotation

[blinks]

BR1
[blinks]

BR2
[blinks]

RR
[BPM]

P1 120 16 29 16 16.87

P2 120 24 53 37 17.72

P3 147 95 108 78 11.78

P4 145 141 160 30 19.02

P5 134 29 53 74 27.58

P6 125 35 43 21 13.58

P7 110 23 101 73 12.24

P8 125 17 17 72 18.73

P9 105 12 19 52 22

5.1 Blinking

For testing our blinking algorithms we determined the mean distance for each
eye and saved all the distances in a file. The processing was performed offline.
We manually annotated the data (column BR manual annotation in Table 1)
and compared it with the first blinking detection algorithm (column BR1), as
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well as with the second blinking detection algorithm (column BR2). As it can
be seen, the first algorithm did not perform as well as the second in the case of
older participants (P1, and P2). Neither of the two algorithms was able to detect
all blinks, which can be explained by the movement of the participants or by the
fact that most of them had the tendency to look downwards. However, for the
first algorithm, the mean difference between the ground truth and the detected
blinks (18.55) is half of that corresponding to the second algorithm (38.33).

(a) Input signal for the right eye (b) Blinks detected for the right eye

Fig. 3: Blinking results

5.2 Thermal data

Thermal data variation in different ROIs on the face is a good indicator of the
internal state of a person. Given an input signal of the mean temperature in a
region (Fig. 4a), by applying a low-pass Butterworth filter, a smoother version
of the signal can be obtained. Using a linear regression the general trend of the
signal can be obtained. Temperature increase in the periorbital region could be
an indicator of anxiety [11].

5.3 Respiration

The results given by the respiration module are shown in Table 1. As no physi-
cal sensors were used, these results cannot be compared with the real RR of the
participants. Figure 5a represents the input signal composed of the mean tem-
perature values in the perinasal region of one of the participants. The output of
the algorithm is displayed in Fig. 5b. The index corresponding to the maximum
value after applying the interpolation gives the respiration rate. This point is
represented in the figure, with the text label “Maximum”.
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(a) Input signal with mean temperature

(b) Filtered signal

Fig. 4: Temperature variation analysis

(a) Input signal with mean temperature (b) Interpolated signal

Fig. 5: RR computing steps

5.4 AUs

As the database with which the AU detector was trained was composed of adults,
AUs are not properly detected in case of older people. A person can be detected
as being sad (due to the presence of AU4 and AU15), when actually the person
is neutral. This problem appears due to the presence of wrinkles.

6 Discussion

In a HRI scenario, in order to ensure a natural interaction the robot needs to
know the internal emotional state of the person it interacts with. The algorithms
presented in this paper enable a robot to estimate that state. All the modules
were developed using ROS and have been tested on different robots in our lab-
oratory (i.e., Meka M1 and the Kompäı robots). The results of the blinking
detection algorithm show that in a real scenario, where a person is not forced
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to look directly at the camera, this can be very challenging. The person might
move its head, the distance between the camera and the person can change, or
the person could be looking downwards. An adaptive algorithm could provide a
better performance than the algorithm we have used. Moreover, a mobile pan-tilt
platform could be used to enable the cameras mounted on the robot to follow
the gaze of a person.

In order to ensure ourselves that the results we get are in accordance with the
real physiological parameters we are planning to perform a series of experiments
in which to compare the values given by our physiological parameters analysis
modules with the values given by physical sensors. However, our camera sensors
are not considered medical devices as per the definition given by the EEC Council
Directive 93/42 2

The temperature variation module, in its current state, does not work in
a real-time interaction. The analysis can be performed only offline. One way
to improve this can be to perform the analysis every 20-30 seconds. This could
enable the robot to know if there are important changes in the facial temperature
of the person it interacts with.

7 Conclusion and Future work

In conclusion, we have presented a series of algorithms that have been applied to
extract and analyze physiological parameters (i.e., BR, RR, temperature varia-
tion across different ROIs on the face, and AUs). These algorithms have been
used to detect the internal state of participants in experiments carried out in
our laboratory. Some of our future work includes to perform a mapping between
the RGB-D and thermal cameras, for face detection and feature points detec-
tion. Moreover, we plan to train a new AU detector based on the facial features
provided by the Dlib library. This could enable us to detect multiple AUs.
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