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ABSTRACT 

In this paper, we review advanced synchronization 

techniques for the internet of things. Our study can be 

directly applied to the single-carrier IEEE 802.15.4 and 

IEEE 802.15.6 standards. In particular we display the 

advantages of using a Code-Aided approach and a Bayesian 

packet-oriented approach. The performances of several 

phase-locked loop techniques are compared to different 

Cramer Rao Bounds so that one can see the advantage of 

respectively the Bayesian approach compared to the on-line 

approach and of the Code Aided technique compared to the 

Non Data Aided/ Data Aided approach. 

Index Terms—Internet of Things (IoT), Single carrier 

systems, Phase locked loops (PLL), Code Aided (CA) 

synchronization, Bayesian synchronization. 

1. INTRODUCTION

The Internet of Things (IoT) brings a radical change to 

the telecommunications paradigm. Up to now, the digital 

world stopped in our digital terminals and most 

communications involved human beings. With the IoT, all 

these frontiers will disappear. Any physical process can be 

measured with embedded sensors and the IoT aims at 

creating an “Ambient Intelligence” where many wireless 

nodes gather and process information to control physical 

processes. The applications are numerous: industrial 

surveillance and preventive maintenance (factories 2.0), 

intelligent buildings, environment control and biodiversity 

mapping, precision agriculture, heath care and medicine, 

intelligent roads, smart cities, wearables…  

Wireless sensors are definitely different from other 

networks on many points : 

- If up to now, a few billions of human beings could 

communicate, it is expected that in a few years, tens of 

billions of wireless sensors could be deployed. With the 

IEEE 802.15.4 standard,  the number of connected nodes to 

an internet gateway can theoretically reach up to 65000 

items, which is far more than one is used to manipulate in an 

ordinary wireless network cell.   

- The nodes have generally limited calculus capacities 

and the targeted prices for the electronic chips are several 

orders less than the one of traditional chips such as Wifi, 

and even more 4 or 5G. 

-   The main problem of a sensor network is its life-time. 

Often a node is abandoned during its deployment and it has 

to rely on its own battery. The main source of energy 

consumption of a node is due to telecommunications [1] ; for 

instance, a 2200 mA.h battery node working with a 20mW 

listening/transmiting consumption will hardly survive more 

than a couple of weeks ; then the sensor network will have 

to autonomously insure its self-configurability to bypass the 

dead relay nodes. Nevertheless, sometimes the sensor 

network should be able to work reliably during more than 10 

years. The only way to reach such a duration is to turn off 

the radio most of the time with duty cycles inferior to 1%.  

In this context, synchronization is of utmost importance. 

A node should wake up at the right moment to communicate 

with its environment. In addition, as synchonization is 

achieved at the front-end before any further processing, it 

should be reliable enough, not to block any of the following 

tasks processed by the node. Finally, localization is 

necessary for  more and more applications and localization 

mainly rely on an accurate synchronization. This is why 

synchronization has to be accurate even with difficult 

transmission channels.  

There are several kinds of synchronization in each 

node : packet synchronization, time synchronization, phase 

synchronization. In this paper, we describe phase 

synchronization techniques but similar results are available 

for time synchronization [2]-[6]. In addition, as for 

simplicity reasons, most presently deployed sensor networks 

rely on single-carrier technology, we describe several 

techniques which can improve the traditional phase locked 

loop (PLL) techniques, in particular in difficult channels 

(low signal-to-noise ratio, fast fading,…)  

This paper is organized as follows. Traditional phase 

synchronization is reviewed in the next section. In section 3 

we describe the advantage of using a code-aided 

synchronization. Section 4 describes a very low-complexity 

block Bayesian synchronization technique. Results are 

compared to Cramer-Rao bounds. Finally a conclusion is 

drawn at the end of this paper. 

2. WELL-KNOWN SYNCHRONIZATION PHASE

LOOP TECHNIQUES 

We assume that a received modulated signal suffering from 

AWGN noise (with variance 2

n ) and from an unknown 

phase offset  is sampled at time k, respecting the Nyquist 

criterion : 
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yk = ak e
 jq

k + nk   ,            (1)

where ak belongs to a constellation set A. The observation 

vector ]...[ 1 Kyyy stacks K observations and the 

constellation vector ]...[ 1 Kaaa is first assumed to be 

known (Data Aided –DA approach). The likelihood can be 

written as : 
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The Maximum-Likelihood (ML) estimator is a practical 

popular estimator because if an efficient estimator exists the 

maximum likelihood procedure will produce it [7]; with 

model (1), the maximization of the log-likelihood gives: 
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so that equation (3) gives the logical estimator 

 ay.ˆ )( ArgML   , which is zero when there is no noise. In 

practice, one does not need to receive the whole observation 

vector and proceeds sequentially using a stochastic gradient: 
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However, in telecommunications networks, one often 

receives unknown information data (Non Data Aided – 

NDA approach). When the unknown data are assumed to be 

equally probable and the alphabet constellation is binary 

A={-1,+1}, the likelihood corresponding to model (1) 

becomes: 
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so that the maximization of the log-likelihood produces the 

following sequential procedure : 
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(7) looks like (4) for binary symbols, where the tanh() 

weight of the updating term belongs to ]-1,+1[ and depends 

on the signal to noise ratio. When the signal to noise ratio is 

high, (7) becomes equivalent to the decision feedback loop, 

whereas when the signal to noise is low, (7) is equivalent to 

the Costas-loop:  
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The sequential updating procedures corresponding to 

equations (4), (7) and (8) are known as digital Phase Locked 

Loops (PLL). Not only the PLLs are low complexity 

algorithms, but they also have an inherent adaptativity 

feature to time-varying estimation due to the sequential 

estimation. However, the PLLs also suffer from several 

drawbacks :  

-The choice of the step-size might be problematic. If it is 

chosen too small, the PLL hardly converges and is unable to 

follow non stationnarities. If it is chosen too large, the 

asymptotic MSE remains too large. The choice of an 

adaptative step-size [8]-[10] can prevent those phenomena 

but is beyond the scope of this paper. 

- Noise can make the PLL diverge from a fixed stable point 

(Cycle slip problem). 

- An arbitrary initialization can make a slow PLL converge 

(Hang up problem).

- The algorithm can get stuck in a local minimum. 

To prevent as much as possible, the latest situations the 

previous PLLs can be improved as seen in the next sections. 

3. CODE-AIDED PHASE LOCKED LOOPS

Clearly, the main goal of a receiver is not to only locally 

solve the problem of synchronization, but rather to recover 

reliably some useful data. To achieve this reliability and 

have a near-Shannon performance, the transmitter is helped 

by the redundancy of a channel coder. If the synchronization 

is not good, the reliability of the decoded data will be low 

and this can be highlighted by the soft information at the 

output of the decoder [11]-[15].  

Some ad-hoc methods take advantage of the inherent link 

between the quality of the synchronization and the decoder’s 

output by maximizing the average power of the soft 

information [16]-[17]. Other methods such as [18]-[19] have 

been devised but suffer from their complexity. 

In fact, the PLLs introduced in the previous section can 

easily be modified to benefit from the decoder’s soft output 

with a moderate complexity increase [20]-[22].  

We assume that the observation model is still given by 

equation (1) but that a soft decoder is able to provide some 

LLR values 
k

 . If the constellation alphabet A is first

supposed to be binary, we have : 
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Introducing (9) in the likelihood, we then obtain : 
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As in the previous section, we obtain a sequential algorithm 

by maximizing at each instant, the following quantity: 
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so that the derivation gives : 
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We then obtain the Code-Aided PLL updating : 
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Equation (13) is very similar to equation (7). The only 

difference lies in the argument of the tanh() weight. In the 

case of equation (13), the weight does not only take into 

account the SNR, but also the reliability given by the 

decoder’s output. 

Fig.1. Convergence of the CA synchronizer in 2 iterations 

In practice and as illustrated by figure 1, a CA PLL needs 

(at least) two iterations. When processing the received data 

at the first iteration, the synchronization device has no 

information from the decoder’s output so that with LLR 

values equal to zero, equation (13) is equivalent to equation 

(7). Then the receiver is able to demodulate its data and 

provide LLR values which are fed back at the front-end 

synchronizer working with equation (13). This then gives a 

more reliable phase estimate vector; it can be seen that 

sometimes two iterations are sufficient to reach the Cramer-

Rao bound [7]. In general, some Exit chart analysis [11] 

should be made to forecast the convergence conditions but 

in many situations two or three iterations (between the 

decoder’s output and the PLL’s input) are sufficient to 

obtain a good convergence of the CA phase synchronizer. 

Clearly with CA synchronization, the synchronizer can take 

advantage of the decoder soft information as long as the 

decoder works correctly; this allows some improvement, 

when compared to NDA mode, from medium to (near 

Shannon) low SNRs. The previous algorithm described by 

equation (13) can readily be extended to a QAM 

constellation alphabet A of size M. By proceeding 

analogously, we obtain:  
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where the mean soft symbol is obtained by : 
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Equation (14) is equivalent to equation (4) for the DA 

case; also, we can simplify equation (14) with a decision 

directed loop at high SNR. In short, the CA mode allows to 

achieve a better spectrum efficiency, when compared to the 

DA mode, and a better performance at lower SNR than the 

NDA mode. 

4. LOW COMPLEXITY BAYESIAN

SYNCHRONIZATION 

The Bayesian approach is a natural choice when a 

parameter is time-varying because this feeds some a priori 

to the estimation process. We add the following Brownian 

phase model to the observation model (1) : 

k = k-1 +  + wk ,          (16) 

where the phase at time k is modified by a linear drift  and 

some Gaussian noise wk of variance 2

w
 . This noise takes 

into account the poor oscillator’s quality as encountered in 

sensor networks. The phases are stacked in . Note that the 

model described by equations (1) and (16) is neither linear, 

nor stationary. The MAP approach which weights the 

likelihood can then take advantage of the natural a priori 

introduced by equation (16): 
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Bayesian (resp. Hybrid) Cramer-Rao bounds were created to 

measure the performance of a random (resp. random and 

deterministic) parameters [7][23]. These bounds indicate 

that there is room for a good estimation improvement 

brought by the Bayesian approach [24]-[27],[34]. Different 

estimators were devised to approach those bounds  but they 

usually suffer from form a complexity brought by the 

Bayesian canvas[18],[28]-[30]. We now see that the 

previous PLLs can be easily adapted to the Bayesian context 

at a very moderate complexity price [31]. We start with a 

binary constellation set A. With the model given by (1) and 

(16), the joint probability density can be written as: 
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where: 
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In order to find the maximum of equation (18), we set 
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Assuming no initial a priori on 1, we then find: 
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Equation (21) is just like equation (7), whereas equation 

(22) is similar to equation (21) with the role of the indexes 

k+1 and k being inversed. In other words, the approximate 

MAP estimator of equation (20) is just the mean of a 

forward PLL given by equation (21) and of a backward PLL 

(working from the end of the block towards its beginning). 

In practice, we can first run an ordinary PLL, then, at the 

end of the block, we run a backward PLL towards the 

beginning of the block, we repeat this procedure until 

convergence (in practice 2 or 3 forward-backward 

recursions), and in the end, we average at each time index, 

the last forward and backward estimates to obtain the 

approximate MAP estimator as described by equation (20). 

Just like in [32], the initialization has a lower impact 

because of the various forward and backward iterations, but 

differently from [32], the MAP performance improvement is 

brought by the averaging between the two trajectories. 

Fig.2. Comparison of the Forward and of the Forward-

Backward MAP estimation performance 

Fig.3 Comparison of the Forward (On-Line) and the 

Forward-Backward (Off-Line) estimation performance for 

the NDA/CA/DA modes 

The previous algorithm described by equations (20)-(22) 

can be generalized to any coded QAM systems [33]. 

Proceeding analogously, we obtain: 
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  (24), 

and )(
kQAM

aE  is given by (15). The performance of such an 

algorithm after NS-PLL=3 iterations is displayed in Figure 3 

for a (possibly turbo-coded) 16 QAM signal. The advantage 

of the MAP (Off-line) estimation over the ML (On-line) is 

very clear with a MSE gain of several dBs for any SNR. In 

addition, the MAP estimator performance is very near from 

the HCRB and one recovers that the CA mode stays near the 

bound for lower SNRs than the NDA mode. 
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5. CONCLUSION

In this paper, we have presented some single-carrier 

synchronization algorithms that are able to reach the 

Cramer-Rao bounds in difficult conditions (phase noise) 

with a very low complexity. These algorithms are well 

suited to limited devices as sensor nodes of the IoT. Some 

future work aims at including the synchronization in a cross-

layer context [35]-[36], so as to ease up some localization 

functionality, often useful with the IoT. 
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