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Abstract—This paper presents an off-line algorithm for dy- achieved with the DA mode, this technique leads to both loss
namical time delay recovery for which the whole observation of spectral efficiency and increase of the power budget due
block is used. The time offset varies over the observation terval 15 the transmission of pilot signals in the data frame. Td dea

following a random walk model. The proposed synchronizer . . . .
applies?o data-aided (DA), non-data—aiderc)i (IEIDA) ancilcodaided with this problem, NDA techniques perform synchronization

(CA) modes. Theoretical performance of the off-line techrgque  from the sole use of the received signal. It consists of using
is derived and compared to simulation results. The Bayesian hard decisions based on the received signal instead of lite pi
Cramer-Rao Bound (BCRB) is also evaluated for DA, NDA signals, or in only exploring received signal samples eHift
and CA modes and for both the off-line and on-line scenarios. by a half-symbol-period in the case of the Gardner TED.

Simulation results show the improvement brought by the offline This i hy th ¢ f b tisfact
and the CA schemes. The presented algorithm outperforms the IS 1S why, the Sysiem periormance becomes unsatstactory

conventional on-line estimator, which only takes into accont the especially in poor channel conditions [6, Chapter 7]. To
current and previous observations, and its MSE approacheshie  find a compromise between the spectral efficiency and the

BCRB. synchronizer reliability, CA techniques have been prodose
These techniques take advantage of the decoder soft ootput t
reduce the estimator error in the timing recovery [7]-[15] a
well as in the carrier frequency and the phase synchrooizati
Time synchronization is performed at the receiver front emgtocess [16], [17]. In [7], [8], the authors deal with the &im
by adjusting the receiver clock to the transmitter clockiides synchronization problem for a constant time delay and they
to mitigate inter-symbol interference (ISI). To do so, o ¢ suggest to use a CA TED derived from the Maximum Like-
implement a classical on-line timing error detector (TED3Is lihood (ML) estimator. The theoretical performance anialys
as the Mueller and Muller Detector (MMD) [1], the Gardners rather difficult for CA estimation techniques and has Isare
Detector (GD) [2], the Zero Crossing Detector (ZCD) [3] anthieen evaluated in the literature so that CA timing recovery
the Early Late Detector (ELD) [4], for which, the estimatedechniques are often evaluated by simulations. A compariso
time delay only depends on the previous observations. Thémssween different timing techniques in terms of BER has been
TEDs are low cost algorithms and were previously appliggroposed in [14] using the extrinsic information transfeat
to estimate a constant time delay. However, they have lanitéEXIT chart) [18]. Nevertheless, some statistical projesrof
tracking performance especially if the true delay is timgyva the estimators such as the bias and the mean square error
ing, e.g. time delay in a high mobility wireless device. listh (MSE) cannot be provided by the EXIT chart analysis. The
case, some ameliorations can be brought by implementing atithors of [12] have derived semi-analytical expressiohs o
line algorithms which operate on the whole observationlblo¢he estimator mean and variance, as function of the timing
taking into account both past and future observations. Sueffset, for a CA decision-directed (DD) timing synchrorize
smoothing technique was applied in [5] for phase recovery based on MMD. However, the performance evaluation has
an iterative way. In fact, the authors have proposed a MAfeen made only at low SNR regime, based on the assumption
estimator for a phase offset following a Brownian model witkhat inter-symbol interference (ISI) could be approxindabe
a linear drift in the case of a non-coded BPSK signal. an additive Gaussian noise as in [9]. To evaluate one estimat
In this paper, we derive from the Maximum A Posteriorielevance, its MSE is traditionaly compared to lower bounds
(MAP) estimation theory an off-line time delay recovery@lg such as the Cramer-Rao Bounds (CRB) [19] as the one derived
rithm in the case of a possibly coded QAM signal. Moreovefpr the unknown random phase offset problem in [16], [20].
the performance analysis in terms of MSE and bias diffe@osed form expressions of the CRB have been derived in
from the phase offset recovery performance. Another paint[R21] for CA carrier frequency and phase offset estimation fo
that timing synchronizers were mainly developed for DA antlirbo-coded Square-QAM modulated signals. However, to the
NDA scenarios. In the DA mode, pilot signals are inserted inbest of our knowledge, for the timing recovery problem, the
the transmitted frame to aid the time synchronization pgece CRB has been evaluated for DA [22], NDA [23] and CA [7],
Despite the fact that the best synchronizer performance[8 only for a constant delay.

I. INTRODUCTION



In this paper, an off-line dynamic timing estimator is We consider a sampled version of the previously defined
proposed and its MSE theoretical performance is evaluateshtinuous signals in equations (1) and (2):
as well as the corresponding Bayesian CRB (BCRB). The
proposed scheme performance is compared to that of the on- k= sk (7k) + 1k, ®)
line estimator in DA, CA and NDA modes. We also evaluat&herery, 7, sk (1) andny, are thekth sample of respectively
the DA, NDA and CA BCRB for dynamical time delaythe received signal, the time delay, the transmitted sigftat
recovery in the case of BPSK and QAM modulated signalgt)) and the noise:(t) taken at timekT/F, whereF is the
and we show the relevance of combining the CA mode argersampling factor. We assume that the detgyfollows a

the off-line approach. brownian evolution model [10], [11] according to:
This paper is organized as follows. In section Il, the system
model and the off-line time delay estimation based on the Tk = Th—1 + Wk, (4)

MAP approach are presented. In section ll, the derivatibn gherew, is a non stationary zero mean AWGN with a known

the MSE relative to the off-line technique is given for vaiso variances2 which determines the severity of the timing jitter
scenarios. Then, section IV develops closed form expressig1].

of BCRBs for DA, NDA and CA modes. Simulation results
are provided in section V and validate our analysis. The IaRt

; Time Delay Maximum A Posteriori Estimator
section concludes our work.

Let us definea the vector of the transmitted symbols and

GLOSSARY OF PRINCIPAL NOTATIONS r and T the vectors containing, respectively, tié random

observations;, and theN delayst, asr = [r1,72, - ,TnN]
o R{z} and<{z}: the real and imaginary parts of and 7 = [ry,7o,--- , 7). The estimate in the MAP sense
« 2! the conjugate ot of 7 is the vectoru with the highest probability given the
o f(t) (resp.f(t)): the first (resp. the second) derivative obbservations samples. The time delay estimator is themewrit
f, for any functionf with respect tot as:
o ®: the convolution operation R
« P(X): the probability mass function (pmf) of any discrete T T algmgx {p(ulr,a)}
re(m;ﬂotrﬂ arables ot of = argmax {p(r|u, a)p(u)}
« p(x): the probability density function (pdf) of any con-
tinuous random variable = argmax {log (p(r|u,a)) +log (p(u)},  (5)
o E(X): the mean value of the random \{Fanawl’e wheres = [f1, 70, -, 7y] andu = [ur, us, -~ ,uy]-
o Vif(r) = (%ﬁf) %ﬁ;) %fT(;)) : the gradient For givenu and a, the independence of model (2) samples
operator with respect to the vector= (71, ..., x| leads to:
628f(2‘r) g2féf) . 362fa(T) N
Pl P O piriua) = [prifui.a),
.« A f(T) _ 012071 or3 Orm20TN | . the —
: : - : where:
Pfr) P . () 1 Irs — si(u;)|?
TN OT OTNOT! oy Ti|U;, d)=——F €x —_——— ). 6
Hessian matrix with resI;V)eCQt to the vectar = plrilu:, ) 2702 7 ( 202 ) ©)
[7—17 "'7TN]T Thus:

2
n 2Gn

LY Yoy i = si(ui)
1. OFF-LINE FORWARD-BACKWARD TIMING RECOVERY p(rju,a) = 902 exp | == . ()

Let us consider the linearly modulated transmitted signal

s(t) written as: By letting the observation periody, of the signal-(t) cover
a large numbeN of symbol periods, we can assume that [6,
s(t) =Y aih(t —iT), (1) Chapter 7]:
% N

where a; denotes the zero mean independent transmitted ;'“ siud) = T Ir(®) = s(t —u(®)["dt ®)
symbols drawn from a given finite size constellatiari) is ) 5
the impulse response of the transmission filter dhds the =/ r(t)["dt + ; |s(t — u(t))["dt
symbol period. y ’ )

The received signal is: -2 ; R{r(t)s(t —u(t))"}dt. ©)

r(t) = s(t —7(t)) +n(t), (2) For sufficiently largeTy, the delayu(t) can be neglected in

the following integral [24, Chapter 5] [25, Chapter 6]:
where n(t) is a zero mean additive white Gaussian noise g gral | P I P ]

(AWGN) with a known variance2 andr(t) is a time varying / Is(t — u(t))2dt ~ / Is(t)|2dt = Z a2, (10)
delay. T, To P



After some basic mathematical derivations and considerirggthen given by:

that 7(t) = 7; andu(t) = u; during thei** symbol period o2 01 (#1)
T, we obtain [6, Chapter 7]: =T+ SR {af pral &
. hp1 F o1 1og *al”k(f'k)}
== = 4, v ——r, k=2,--- /N -1
R{r(t)s(t —u(t)ydt =~ > Riajzi(u)}, (@11 | 2 202 " o7
To i A A o2 * a:L‘]\f(/f—l\f)
N =7Nn-1+ J—%% aNiaf_N .
wherex;(u;) is the received signal after matched filtering: ) ) _ (21)
The above adaptation equations of the time error detector
zi(u) = yi(ug) + viluy), (12) involve the evaluation of the matched filter output derieti
() = Z (i = )T — (s — uy)) (13) 6””8—57) at the estimated time delays values. This can be
Yalta) = l ag T = Y))s obtained by interpolation of an up-sampled version of the
signal.
vi(u;) = / h(t —iT — u;)n(t)dt, (14)
To . . . . .
N B. Off-line Delay Estimation Smoothing Algorithm
g(t) = ht)@n (). (15) / 99

According to the previous subsection, the estimated time
We choose a root Nyquist filteh(t) such that the global delay at time instank is a function of the time delay at the
filter g(t) given by (15) is a Nyquist filter. Observing thatSamplék—1 and at the sample+1 which is actually unknown
I, Ir(t)|2dt does not depend on, it can be dropped from for an on-line f||ter|.ng procedurg. The |Qea is then to estéma
the likelihood function. Having a finite observation sansplethe time delayr, with a smoothing off-line procedure.

numberN, the maximization problem in (5) involves: Let us define:
~ (“)xﬂﬁ)
i = uRar———= 7, 22
pirva) = (55 )Ne o3 (Rleinu) ) o) & {ai 2 22
) = X - )
2mo? — o2 202 A I N A 23)
~(B) & ~(B) ~(B)
whereC' is a constant term. From the delay brownian model Tk = T (T, o), (24)
(4) we obtain: where z,(7;, ar) is the updating termy is the step size and

tis in {k — 1,k + 1}. We recognize in (23) the classical
recursive timing recovery loop [1], [3], [4], [6]. Equatiq24)
p(u) = plu) Hp(uilui_ﬂ (17) " is similar to (23) but proceeds terms posteriorktothe time
li ) index of relevance. From (21) and the previous expressions,
p(ur) H 1 exp [ — (u; —wi—1) (18) we propose the following Forward-Backward (FB) algorithm
= owV2m 202, which combines the classical forward (F) timing loop (23)
with a backward (B) timing loop (24) proceeding similarly
Thus, without loss of generality and by eliminating the corin the opposite direction from the end of the bloék£ N)
stant terms, the maximization problem (5) can be written atowards its beginningk = 1):

N

~(B) ~(B) _ 1.
%:argmuax{AL(a7u)}7 (19) ) 12 ';ZI(TQFaal)y fOrk—L
7 =9 S (AP D) fork =2, N -1,
where: %J(VF_)1+ZN(AJ(VF_)1,aN), for k = N. 5
N N 2
Ar(au) = %Z%{a;xi(ui)}ﬂog (P(Ul))—z M In an off-line context, the estimation af,, £k = 1,---, N,
Tn i1 i=2 20% can even be improved by applying multiple iterations of

o . (20) the forward and backward loops using the same observation
If we assume that the initial timing error is uniformly

distributed between—7/2 and T/2, then the gradient of block. The term "off-line" means that the timing recovery is

Az (a,u) with respect tau is given by: performed after the reception of the whole block of signal
samples at the receiving end. Such approach can be cortsidere
VuAr(a,u) = for applications with low constraints on the processingetim
5 aj;, dxp(u) LS Rl YR (latency), as any iterative algorithm. This is achieved by
o2 Ouy o2 ’ initializing the first forward estimate of the next iteratiat the
g d @k Oxnlun) | unes —2up fuky o, 4. value of the last backward estimate of the previous itematio
Ué uy, 0w ’ T " ltis thus possible to carry out several iterations (in [oact
R Z_‘; 83”515“’“) “’“*;2_ Uk L =N. 2) and by averaging the values taken by the forward loop and
n k w

the backward loop at the instaht one obtains the forward-

The steepest descent gradient algorithm is often used ve sdtackward estimate. _ R
non linear equations. The estimated time defathat maxi-  We note that the updating termy(7;,a;) depends on
mizesAy (a,u) with respect tau, involving V,Az(a,u) =0, the transmitted symbols. These symbols can be known by



the receiver when some pilot signals are inserted within téhere for a Nyquist filter, we can neglegtt) values for
transmitted frame. In this case, the proposed algorithms (@rgumentst| > 37 [6].

line or off-line) operate in a DA mode. However, in order Using the following notations:

to enhance the spectral efficiency and increase the data rate . .

these reference signals can be removed. Then, in practio, h v = pElax]"15(0) and g = pbi(7), (29)
estimatesi, of the transmitted symbols are computed at thgnd based on equations (26) and (27), we obtain:
receiver and replacey, in (25); this is called the NDA mode. . .

In a coded system, we can take advantage of the decoder soft (i ar) = (7o = 1) + g (30)
output to provide smoother and more accurate estimate, of |y what follows, we noteo? = %02 the variance ofg.

as it was proposed in [7], [8] for the on-line timing loop. We=rom this linear expression, we obtain in the sequel, the
can similarly replace:, by the soft symboli;. in (25) for the expression of the estimation bias and of the MSE for the
smoothing off-line procedure and obtain an off-line CA modgynyard, the backward and the forward-backward algorithms

In section V we will firstly assess the improvement obtainegkter any arbitrary number of iterations, starting with thst
by the off-line approach in the DA, NDA and CA modes angearation.

then compare the improvement to that obtained using only thegrom Appendix A, the bias of the estimated time delay for

CA mode (in an on-line scheme). _ only one forward loop is then given by:
Hereafter, at each time index, the analytical performance

after one and multiple iterations of the forward, the baakiva B =1+ ) 1B, (31)
and the forward-backward algorithms are derived in terms gf 4 the corresponding MSE is:

estimation bias and MSE. )
MP=F {(m -#") ] (32)
IIl. PERFORMANCEANALYSIS OF THE

FORWARD-BACKWARD ALGORITHM _ 1—[(1+~)F !
—(1 4y 4 Lol ) ]

We now approximate at any time indéxthe updating term 1= (1+9)
of each algorithm as the sum of a linear function of the esti- Similarly to the forward loop, we obtain for the backward
mation error,7; — 7, and an additive self noiséy(7;), where algorithm:
it =k—1 (resp.i = k+ 1) when the forward (resp. backward) N
algorithm is used. Let us considgf, »(v) = g(mT— (1 —u)) 5 _ 2B — (1 4 )Nk — 2By _ wi(1 4+ ~)F
where 7,, is the true delay at the!” sample. It is worthy b 1+ (v =7v7) i:zk;rl 1+
to note thatg,, n(7.) = g(mT), gmn(m) = ¢(mT) and No1
Gmn(Tn) = §(mT). — qi(1+ ’y)iik. (33)

Based on equations (22) and (12)-(15), we have: ;

(1 +7)%0% +07].

Gay) = puRial O0xy(7;) Thus the bias of the estimated time delay using one backward
AT SR ko iteration is:
(B) N—kpp(B)
. . . vy (u B, =(147)" "By, (34)
= pRQ D ahagn-jk(F) + paj, g( )|u:+i " ) N
; U and the corresponding MSE is:
= S(% — 1) + pbi(7), 26 _ 1—[(14~)2N*
(Ti = k) + pbr(73) ( )MIEB) = (142N 0By 1[(_ 5 1) ])2 [(147)%02% + 07 .
where K (35)
S(#—m) = El[z(Fi,an)] We also know that at the end of the observation block,
= Y R{Blaja;]} g (7). ™ -t =T -y (36)
J so that from (31):
and b(7;) is the loop noise. Given that the transmitted (B) N1 (F)
symbols, ay, are uncorrelated and assuming that- 7, is By =(0+)"""B, @37)
close to0, we find: and from (32):
S(#i =) = pEllax|*lg(#; — ) =~ pE[|ay|*]§(0)(Fi — ). (27) _ 21N-1
. o Mz(vB) _ (1+W)2N72M1(F)+1 [(1 “‘7) ]2 [(1 _|_,y)20120 —|—(r§} )
The loop noiseb (7;) is: 1-(1+7) 38)
) L X . Ov(w) From the expression of;, — %,EFB) given_ in (25) fork_:
bi(7i) =R D apajge—jn(fi) + aj ™ lu=r; ¢ - 2,..,N —1, and using (31) and (37), the bias of the estimated
3,57k 29) delay using a forward/backward algorithm is given by:
Its variance is given by: B;(CFB) = 3 [(1 )Rl +,Y)2N7k71] B§F),(39)
ol=F Z lax?la; 292 _; 1 (7)) | + Ellax|*02, and the MSE expression after one iteration is given by (40).

Jr gk The derivation details are provided the Appendix B.



1
4

1— (1 + ,7)2k+2
1—(14~)?

(FB)_ 1. (B)
M == 4

4

P 1 o (F ok
MY 4 5 [+ )N 2MD 4 (14 )N 4((1+7)2cf§i+a§)(

) + 03](40)

We now derive the analytical expressions of the big, knowledge of a vector prior distributigs(r). Within this con-
and the MSEM;", for respectively the forward, the backwardext, a BCRB is derived by inverting the following Bayesian
and the forwaE(I:i)—backward algorithms, afteriterations. Let information matrix [26, Chapter 2]:
us denote by, """, the estimate of, at iterationm using
the algorithm]k where I is in {F, B, FB} and respectively Gn = E-[F(7)] + Er[-Ar log (p(7))], (49)
denotes Forward, Backward and Forward-Backward. whereF.. andA - are respectively the expectation with respect

We have shown in Appendix C that, at iteratiom, the to the vectorr and the Hessian matrid'(7) is similar to the
forward bias is: conventional Fisher information matrix [19]:

B](gF).,m —(1+ 7)(2N—2)><(m—1)+k—lB§F)-,1’ (41) F(1) = Epz [ A log (p(r|T))]. (50)

and the corresponding mean square error is given by (45 e fir;t term Qf (49) considers the meanlwith respect to
where: of the information brought by the observationThe second

1— (1+47)@N-2)x(m=1) term depends on tha priori infor_mation onr. The_ diagonal
Q(m) = 1= (14 )2N-2 (43) elements of the inverse @i x give the BCRB with respect
to .
We have also shown in Appendix C that at iteratiorand In the following, we distinguish two types of BCRB,
for the k' observation the backward bias is: namely, the off-line and the on-line BCRB for time synchro-
nization. In an off-line context, the receiver waits untilet
BEI™ — (1 4 4)@N-DX(m—D) 42N k=1 g1 (44) whole observation block = [ri,...,ry] is received. Then,

. o the time delaysr;, (k=1,..,N) are estimated using all the
and the corresponding MSE expression is given by (45). received samples. In an on-line context,is estimated using
Based on (25), we have at iteratiomn only the current and the previous observations..., 7.

(FB)m _ 1 (F),m 1 ~(B),m
=T =g (me = 7Y + 3 (7 =#"™) 48) A oftiine BCRB

Replacingr A(F)m god s a(B)m by their corresponding According to (50), and based on the expressionp@fT)

k— k— : . : /

expressions reskpectively from 1{118) and (119) providedhén tgiven by (16), we can deducg thB(7) is a diagonal matrlx,

Appendix C, the expression of the forward-backward bias Bdependent of;,. Thus, the first term of (49) can be written

iterationm for the &kt observation is: as:

(FB), 1 (2N—2)(m—1) k—1 2N—k—1 (F),1 ET[F(T)] = JolN, (51)

B, M =-(1 —Hm=U (1 B
k 2( +) {( ) } (;7) where I is the (V x N) identity matrix and for any index

and the corresponding MSE expression is given by (48k)'. )

We validate these analytical expressions in section V. Some Jp = B, [_M} (52)

conclusions can directly be drawn from the numerical evalu- o7

ation of the obtained analytical expressions, as for igtan dlog (p(ri|))\”

the fact that with an adequate choice of the step size, = By (—8Tk ) : (53)

Forward-Backward iterations are sufficient for the propose

algorithm to reach to steady state in terms of MSE. Téhese expressions will be evaluated later for various migis

provide an absolute reference to evaluate both theoregtighl SIOn modes. From (18), the last term of (49) is:

experimental scheme performance, the next section is e@vot Er[-Alog (p())] =
to the derivation of the Bayesian CRB. L-D -4 o 0
IV. BAYESIAN CRAMER RAO BOUND 0 _ _ .
The standard and the modified CRBs [19, Chapter 3] [26, 0 0 ,(54)
Chapter 2] are not suited to time-varying parameter estimat _
In fact, these bounds do not take into account the statistica : 0 —% = —%
dependence between successive time delays. This dependenc 0 0 (| — =

=3

%
is naturally considered within the Bayesian framework: on 021 o
one hand, the prior distributiop() implicitly models the where D = B, [Z%Em))] |f we assume that the initial

time dependence between stochastic time delays; on the otthelay 71, is uniformly distributed between-7/2 and T/2,
hand, the Bayesian framework is intrinsically based on thleen D = 0.



k 2
M(F),m _ (1 + 7)(2N72)><2(m71)+2k72M(F),m 1_'_7 2N71+k7’iQ(m) _ (1 +ry)k+i72g(m) + (1 _’_fy)kfiJrl
k 1

+ i:: Q(m)? {(Hw)w*”’“—(1+v)’““”2} )ai+< i:: Q(m)° {(1+v)”2+’”—(1+w)k+i2r
ok i=k+1

S [(1 )N ) (14 )2 0m) + (14 fy)’H] + Qm)? [(1 PN (g w%*ﬂ )02. (42)

=2

k 2
M}EB),m _ +7)(2N—2)><2(77L—1)+4N—2k—2M1(F),m n (Z {(1 _’_W)4N71fsz9(m) 1 _’_,y)ZN—kJrz—ZQ(m) ra _’_,y)szkﬂH}

=2

N 2
+ Z |:(1+W)4N717i7kﬂ(m)_(1+W)2N7k+i72ﬂ(m)+(1+7)2N7k7i+1 _(1+7)17k:| >0_2

w
i=k+1

k—1 2 2
n ((1 DY [(1 PR Qm) — (14 7)20(m) + (1 +v>*2} (14 ) [1 L Q(m)(1 +v>2”*2]

=2

N-1 2
+ |:(1+7)4N727L7k9(m)_(1+W)2N7K+L72Q(m)_’_(1_’_,_}/)2]\{7.1&72+(1+W)L7k:| )0_3‘ (45)
i=k

M]EFB),m:

B~ =
—N

m m 1 — m— —
M}gF), —|—M,£B)’ }+§{(1+,¥)2(2N 2)(m—1)+2N le(F),1 (48)

k 2
(004 [ 2m) 149 - 2w (149)

=2
N—-1
= Y00 [P ()2 [0 ) = )14 ) = ()™ )] o ]
i=k
Consequently, from (49), (51) and (54): expression:
_ 1
[GN l]kJC = |GN| p1(6+y1)2 v 3+p2(6+1/2)2yév ’
A+1 1 0 - 0 B?
1 A 1 0 - 0 —AQ(kZVNklekalkz)}(%)
0 S : where |G| is the determinant o&Fn given by:
Gn =8 o . () Gl v GVERBY
0 o : 0 IGnl=(A+2)B8(prvy "+ pary 1), (57)
: o 1 A 1 and form =1, 2:
0 0 0 1 A+1
1 Jp 4
Vm = %4‘ 5 <1+( 1) X 1+m>,(58)
_ 2 _ 1 m
whereA_—owJD—Qandﬁ_—g. - 14+ o’fﬁ] +(=1)™ x (1+U§ULJD) o
A similar study was carried on the BCRB relative to the pm = 2, /1 + =+ . 9
estimate of the phase offset for a non-coded BPSK signal in T "D

[20]. The authors of [20] have presented the general exipressThe BCRB of time delay estimation differs from the BCRB
of the inverse of the BIM which has the same form givenf phase offset estimation with the expression/ef which is
by equation (55). They obtained the following expressiogoing to be explicitly analyzed in the following subsecton



for BPSK and QAM signals in various scenarios (DA, NDA 2) NDA case: From (6) and (16) and without loss of
and CA). generality:
* 2

B. On-line BCRB p(re|m, @) = 02 exp <§R{“kx§(7k)} - |“’“|2 ) . (68)

In the on-line mode, the observations are received in 2moy, T 205,
order to update the estimated valuerpfOnly past and current By averaging over the equiprobable BPSK transmitted sym-
observations are available. Tichavséyal. [27] have already bols a, we obtain:
provided a method for updating the Bayesian information
matrix in (49) from the time indeX — 1 to the time indexk log (P (re|m)) = log (cosh (M)) + K, (69)
according to the following recursive sequence: o

n

o2 4+ Ch_y whereK is a constant term independentf Thus, according
Cr = 5 ; (60) to (53):
o2Jp+ 14+ JpCr_1
_ 1 ) 2
whereC = +-. From (56), we also have that: Iy - %E[tanh (:ck,lgm)) ik,l(Tk)2:|- (70)
_ a. a.
Oy = [GN'lvN (61) " "

1 9 9 N—3 . o 9 N—3 Given thatg(mT) is equal to0 for m = 0, that the symbols

- |GN] P(B v+ (B 4 ve) a; are assumed to be independent and that the ridjset)}
b2 Neo 1 L Ns is independent of the symbols; for any indexi, we can

19 P P 2 )]- (62) conclude that;, 1 (7,) and:y ; (73.) are uncorrelated and con-

L .
This equation reflects that in the last position, the Sammosequentlyta?nh (ff% Tkl (T’“)) and &1 (mi) are uncorrelated.
of information is available both with the on-line and the-offAS @ result:

line techniques. We also note that this bound decreasesin ti zi1(m)\ 2 ' )
and converges to: Jp = —4E[t h ( e > ]E[Ccm(m) :|a (71)
—02 +\[ob + 45 : ix D:
lim [G;]N’N _ b (63) where according to Appendix D:
N—o0 2 RS 22
) ) . Tk 1(7_k) 2 exp 202 +oo exXp 202
C. Derivation of Jp for a BPSK signal E{tanh <72> } = 1—7/ Wd%
n n —oco  COS é

The analytical expressions ofp in the case of BPSK “72)
and square-QAM modulated signals is hereafter derivegnd.

Let us begin by considering the following equalities: ) , o2
1 (me) = R{xr(m)}, zp2(m) = S{zk(m)}, Tpi(TR) = E[ﬂbk,l(ﬂc) } = Zfi(mT) + 7”9(0)- (73)
P |y @Nd Ei (1) = T,y i € {1,2) "
. k
with: 3) CA case: Let us consider\; the log-likelihood ratio
on(m) = Zakfmg(mT) + g () (LLR) output of the decoder at time instakt We have that:
m e +2
= ap + vp(m), (64) Play, = +1) Lj). (74)
2005h(7’“)
Oy (u) Ovg,(u)

Oy, Jur=r :Za’f—mg(mT)+ ou fu=ri; (65) Then, based on (68) and by averaging over theoriori

q " probability of the BPSK transmitted symbads one obtains:
and:

0wy (ug) ;

To T %%-MWH gz "= log (P (re|m)) = log

v (u)

ou? hu=re

62vk(u) cosh (”;—g”) + %)
coshn()‘—k) + K. (75)
2

= ag(0) + (66)

Thus, according to (53):
The analytical expression of/p depends on the se-

2
lected synchronization mode. In the following subsectjoves Jp = LE [tanh (ﬁ n CL‘k,l(Tk)) r 1(71@)2} (76)
4 2 2 ’ :

present an analytical development &f, as function of the On n
SNR, respectively, in the case of DA, NDA and CA timing
recovery. Given thattanh A—; + I’“;—fg”) andzy 1 (%) can be con-

1) DA case:Based on (16), (52) and (66), we obtain:  sidered as uncorrelated if the coded symbols are transhitte
Pk with a large size interleaver [28], [29], we have:

Jp = 9(0) ) (67)

o2 2
" 1 A Zr1 (k) . 9
with |ax|2 = 1 for BPSK signals. Jp = EE[tanh (7 + T2 Eldpa(e)”|, (77)




where &/ :'ck,l(m)z] is given by (73) and according to Ap_where:

pendix D: = QQXP( (2”21021) d2) (2m — 1)dp
Hy(z) = cosh (7;3) .

A\ 2 — V2mwo22p o2

E|: <_k Tk 1(Tk)> :| _ m=1 (84)
2

2 07; , A similar factorization of the likelihood function, in theA

. exp (—ﬂ) ‘oo €Xp ( %7 de. (78 case, using the full symmetry of the square QAM constelfatio
- cosh (_k) o, /oo cosh (A + fz) - (78) " has been proposed in [30] and [31] respectively for SNR and

for frequency and phase NDA estimation.

As a result, from (79) and (83), we have:

D. Derivation of Jp for a square-QAM signal

dlog (p(zk,1k|Tk)) Hy, (zr,1(1k)) .
Similarly to the BPSK case, the analytical expressions of O - H (Ik’l(Tk))Ikvl(Tk)
Jp for square-QAM modulated signals are derived for the iy (20 (72))
DA, NDA and CA transmission modes. b SRR G (), (85)

1) DA case:For DA mode the expression df, is the same Hy, (2r,2(7))
as that obtained for BPSK signals given by (67). where:

2) NDA case: Let us consider the case of equiprobable OHy,(z)
transmitted symbols. In order to compute the expression of Hy(r) = T or
Jp using (53), we need to develop the expressiop(of; |7 ). gp—1 )

From (68) and assuming that the transmitted symbase - 2z Z exp (_ (2m —1) d2)
equally likely, the probability likelihood function becas: 2mop2r A=) 207 F
pnn) = 5 3 g enp (Rl i) i () e

M 2mwo2 o2 202 n n
N i Then using (53) and (85), we find:
= CFk(Tk), (79) _ _
. 2
whereV = {vy,v1,...,vp} is the constellation alphabet set. J, = FE <M> Tp1 (Tr)? (87)

Considering only square QAM modulated signals, the con- Hy, (k.1 (7))
stellation size can be written as an even power of tho= o 2 7
22 and we can exploit the symmetry of the constellation. + E Hi (zk.2(Tk)) i (Th)?

Let us consided’ the subset of the constellation alphabet Hy, (z,2(7x)) ’
with positive real and imaginary parts. #fbelongs to) then B i (201 (7)) i (25 ))‘
it can be written as: k \ Lk, 1\Tk)) Hk \Tk,2\Tk)) . :

o2 Hy (xp1 (1)) Hi (x2(1%)) xk’l(m)xk’z(m)} .

5= (2m —1)d, + j(2n — 1)d,, (80)

Given that zy 1(7;) (resp. zx2(m,)) and @1 () (resp.
where{m,n} € {1,...,2°'} andd, is the inter-symbol dis- i, , (7)) are uncorrelated, then the third term of (87) is equal
tance which has the following expression under the assemptio zero. Furthermoregy 1 (7x) and xy 2(7;) have the same
of normalized energy symbols: statistical properties. Thus:

_1 r, . 2
s = S SR CHCH) B R
We note thaty = V' (JV* (= V) U(=V*), so that . '(Hk (%,1(%)))21 o 69
exp (127 ) R {5} 21 (1) |\ e (o ()
Fip(me) = {Z@:} Smoda%-3 cosh< p ) with:
XM%W%?W) ©2)  E[in(n)? ZE m—?w»wm

Using (80), we obtain: We now develop the first term of (89), which by definition is:

op—1gp—1 . 2 400 . 2
(2m —1)? + (2n — 1)? Hy (xr1(7k)) _ / Hy, (zk,1 (7))
Fr ()= D 22p 5 mz:l nz:l exp ( 502 2 E T (201 (73)) AR ACTRCS) p(xk,l(Tk()g)ld)CCk,l(Tk).
wcosh <(2m d e )cosh( dg“ 2(”)> g being a Nyquist filter, the received matched filtered signal
On can be written as:

(83)

=, <mk,1(m)> (ivk 2(Tk)>

Ik(Tk) :ak—l—vk(m), (92)



P
: 1
so that: Wesp = H (101)

)\k )
_ pla=0) ( few(m) - of? =1 2cosh (%)
plak(my)) = Z 2702 xp ( 202 p
vy § ! w N (102)
= Hyp(ar(16))He(z,2(T8)) ¥ k2l 1 9cosh (A’SH) ’
x%,l(Tk) ‘HCi,z(Tk) ?
exp | — 202 . (93) andfy, 2, (i) andfy, 2,1 () are recursively obtained according
to the following equations:
_Giver_l thatzy, 1 (1) and:ck_g(fk) are resp_ectively the real and ' 20— 1— 271 + 1
imaginary parts ok (7 ), which are two independent random Ok2p(i) = Ok2p2 5
variables identically distributed, we have: \k
1—1 2p—2
plee(m)) = plaram)p(ea(m).  (94) o <<2L2p—2J B 1) > ) » (103)
where: , 20— 1—-2r"1 41
Or2p-1() = Opop-3 (' | ) X
2 2
Plari(ri)) = Hilayi(m)) exp (—x’“’i(?)) . (95) i1\ M
207, exp <2L2p_2 = 1) ’2’*3 , (104)

with ¢ € {1,2}. As a result (91) becomes: . )
_ , _ where|z| is the integer part of, 65 1(1) = 1 andf 2(1) = 1.
E{ <Hk (mk,l(m))> } _ /+°° Hy(z)? ox (_m_Q) i Thus similarly to the NDA case and based on the fact that
Hy, (r,1(7%)) o Hi@w) TP 202 ’ (i) (resp.xk2(7)) and @y 1 (1) (resp. ik (7)) are
] ) ] 6 _uncorrelated, the expression &f, is given by:
By replacing (96) and (90) into (89), we obtain the exprassio

of Jp. H?P (241 (7 ?
3) CA case: Let us consider the case of Gray-Mapped Jo = E (#ﬂ) } E [5”’6-,1(776)2]
square-QAM symbols,,. The results can also be transposed B AR
to any other mapping technique. We assume the constellation [ H2 Y (240(8)) 2
to be Gray-coded taking values in an alphabet set of &ize + B <I§pl—> E [#k,2(7)?](105)
The choserk!” transmitted symbot,, is denoted as: Hy P (k2 (7))
ar & b5 b, ) (97) where} (zx,1(mx)) = 0H} (x) /9x for I € {2p,2p — 1}.
‘ The expression of bott [i,1(7x)?] and E [iy2(7k)?] is
whereb” corresponds to thg'" binary information ofa. given by (90). Following the steps used in the NDA case we
We can assume that the coded bits in a symbol are statigtbtain:
cally independent by using a large-size interleaver [239][ . 22 (1)
Let us consider)®, the soft output of the decoder at any time p(zg,i(T)) = H§p+l_z(xk7i(Tk))exp <_ ki 5 ) , (106)
index & such that: 207,
ko_ ith 7 :
¥ o (i[z;n - (1)]) =1 loga(M). (98) with 7 € {1,2} and thus:
(b = 0] | H ' @) |- /- H ) (- a )i
The soft-information)\*, is generally obtained after several HP (2h,i(73)) ) HEPTU(2) P\ 22
decoding iterations by a soft decoder. (107)

In [8], we developed the expression of the likelihoo®Y replacing (107) and (90) into (105) we finally obtain the
probability for a constant time delay by incorporating the expression of/p in the CA case.
LLRs of the coded bits, into the likelihood function for Gray We mention that the integrand functions involved in (96),
coded square QAM constellations. This was based on resu87). respectively, decrease rapidlyamcreases. Therefore,
proposed by [32]. The obtained result can be directly adapté® integrals ovef— oo, +oo can be accurately approximated
to the variable time delay model which allows us to obtain tHey a finite integral over an interva- L, + L] and the Riemann

following expression: integration method can be adequately used. The evaluation
of the BCRB is thus possible as all implied expressions in
p(rilme) = HiP (w1 (7)) HPP ™ (w2(70)) (99) equation (49) have been derived.
In this section, we derived the BCRB for code-aided delay
where: estimation in the case of BPSK, QPSK and QAM modulated
9 op—1 (2i — 1)2d2 signals. It is worthy to note that the herein derived BCRB is
1 Wi,1 D . .
H; (x) = Z Or.1(7) exp < T) conditioned to the LLR values and thus depends on the coding
V2moy o Tn technique. A further averaging over the possible soft autpu

1 LAY (100) values should be then carried to evaluate the BCRB. This is
+(=1) 2 )’ here processed by averaging over Monte Carlo trials. Shee t
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BCRB depends on the coding technique, thus for the Monte o ‘ ‘ ‘ ‘ ‘ ‘ ‘
Carlo simulation, we consider the same encoder as that ysed b oanl B,
the selected synchronizer. For the BCRB evaluation in the CA 8
mode, the LLRs are computed in the case where the time delay
is perfectly recovered, however, for the MSE evaluatioe, th
LLRs are computed by considering the estimated time delay
given by the CA TED. Further work can be carried to develop
an analytical BCRB expression by analytically accountiog f
the LLRs variation as done in [12] for the problem of MSE
computation.

The closed form expressions of the previous BCRB for the
different transmission modes will be compared to the estima S I
performance in the next section.

0.2765

0276

02755

/T

027518
02745} -

024"

02735

0273

Fig. 1. 74/T and its estimate along the observation blogk,/7" = 104
V. SIMULATION RESULTS in DA mode for a BPSK modulation

In this paragraph, we simulate in the first four figures,
the performance of the studied synchronization algoritom fine forward only or the backward only as it averages at any
small blocks of non-coded symbols transmitted over a Gaygne the two trajectories. At the extremities of the obstiora
sian channel. The signal, with an up-sampling factor equal jock, the three algorithms have equivalent performanbés T
8, is passed through a raised cosine filter, with a roll-oftdac i a |ogical result since in practice the first backward loop

a = 0.3, before being sent. The channel introduces a variallgtimate of the time delay uses the last estimate of the forwa
time delay 7, following a brownian model (see (4)). Thejgop and vice versa.

signal is matched filtered at the receiver and retrieved By th
synchronizer. We finally evaluate the MSE ov&00 Monte

Carlo trials. The above adaptation equations of the timererr o oo E;))
detector involve the evaluation of the matched filter output + One F/B (Sim)
derivative (0x(7;)/07;) at the estimated time delays values. e One F/B (Theo)

The values ofz,(7,—1) are obtained via a cubi¢—sample » b Multiple Forward (Sim)
Lagrange interpolator. This interpolator can be impleradnt = ) iiﬁiim(;f” ]
efficiently using the Farrow structure [33]. The LLR values a = " Muliple F/5 (Theo)
initialized by the soft demapper’s outputs. The turbo-diects g7 " o OnLine BCRB
outputs are reinjected only twice to the synchronizersuitnp DI SN e |
73 is initialized to 0 and its estimation is depicted after two MOZOSOSO&ZOSOSOSOSOSOS >
forward-backward synchronization iterations when thedye sl R S RN u
state is achieved. Simulation results are evaluated fonitiali ‘ ‘ ‘ ‘ ‘ ‘ ‘
time delay uniformly distributed ift-7"/2, T'/2] and randomly ° * " Obmervation Block Longtn

generated delay samples following the brownian evolution
model for a givernr?,. The step-size: is chosen so as to iNSUrerig. 2.  Comparison between analytical and simulated MSE drious
a global convergence of the algorithm to the optimum delagasitions of the block, SNR=10 dB,, /T = 10~* , BPSK in DA mode.
An adaptive step-size [34] could be implemented in order to
have both a faster convergence and low MSE at the steadyFig. 2 presents versus time index, both the DA MSE and
state. However, for simplicity reasons, the step size va#dueBCRBs (on-line and off-line) for a SNR 10 dB. By increas-
chosen as constant during our synchronization process. ing the number of observations, the on-line performance is

We use the following notations in the figures of the preseithproved. The on-line bound thus decreases and converges
paragraph. "One Forward" means that the MSE is measutedits asymptote given by (63). The one forward MSE also
after one (on-line) forward estimation without any backavardecreases and saturates near the corresponding on-lind.bou
estimation. "Multiple Forward" (resp. "Multiple F/B") mea This saturation is both due to the time varying delay and the
that the MSE of the Forward (resp. Forward/Backward) estelf noise (see (48)). The same figure shows the FB recursion
mation is measured after three (off-line) F/B iterationisaly MSE curves and their corresponding lower limit given by the
"Simu" is related to simulation results whereas "Theo" refeoff-line BCRB. One notes that there is a gain3odiB in terms
to the theoretical MSE results obtained with the previomsdr of MSE in the center of the block by using the FB algorithm
model analysis of section Ill. and that, similarly, the on-line BCRB is higher than thelafe

Fig. 1 illustrates the normalized estimated time detgyl’” BCRB. It is also noted that, the performance of the proposed
using the forward, the backward and the forward-backwaodf-line FB is better than that of one on-line forward itéoat
algorithms after three iterations in a DA context for a BPSkind even than that of the multiple-forward scheme. We would
modulated signal. Along the observation block, the oftlinalso like to point out that we only need two forward-backward
algorithm provides a better estimate of the time delay thaterations to reach the steady state. Finally, there is adgoo



agreement between the simulated and the theoretical sesult @

of section Il which validates our linear analytical model.

—6—SNR= 5dB, 0,/ = 10~*
- %~ SNR= 5dB, o,,/T = 107"
—&—SNR= 10dB, 0,,/T = 107"

MSE [dB]

Fig. 3.
SNRs ando, /T values, 16QAM in DA mode.

Fig. 3 displays the mean square error of the time delay
estimation versus the mean value of the time delay in the 5%
center of the observation block for various SNRs and time \
delay standard deviation values, when using a 16QAM
modulation. It illustrates that the MSE decreases for lower E

0w and higher SNR values.
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Fig. 4. BCRB:s for various positions and different block g1y SNR=10dB,

ow/T = 104, BPSK in DA mode.
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Fig. 6. MSE and BCRB in various positions in the block, SNRIR0
ow = 1074, 16QAM signals.

the MSE (resp. the on-line and off-line BCRB) for respediive
the DA, NDA and CA synchronization mode, for BPSK
modulated signals. Similar curves are drawn in Fig. 6 for
16QAM modulated signals. For the CA mode, the encoder
is composed of two identical RSCs concatenated in parallel
with systematic rater = % and with generator polynomials
(1,0,1,1) and(1,1,0,1). The LLR values are evaluated after

Fig. 4 depicts the off-line and the on-line BCRB at each timg turbo decoding iterations for a BPSK modulation and after
index for different block lengths as well as the infinite loc4 turbo decoding iterations for a 16QAM modulation. A large
length on-line asymptote (given by (63)). Once again, ome caterleaver is placed between the two RSCs. Similar resalts
conclude that the off-line bound is always lower than the ove obtained with soft decoders corresponding to LDPC codes,
line bound independently of the observation block sizeoAlsBlock Turbo Codes or coded modulations. The SNR is fixed
the number of observations processed at the synchroniger tta10 dB. It is clear that the off-line techniques outperform
a great impact on the system performance. It is noted that the on-line techniques (for any mode DA/NDA/CA). We note
best time estimate in an off-line context, can be expectéiteat that, logically, the CA mode outperforms the NDA mode and
center of the observation block. In fact, at this positioothb approaches the DA mode. As expected, similar conclusions to
past and future observations, which are strongly corrélare those drawn in Fig. 2 can be obtained for the corresponding
used for the timing recovery. On the contrary, less infofamat BCRBs in the various modes (DA/NDA/CA).
is fed to the synchronizer at the borders of the block whereFig. 7 (resp. Fig. 8) displays the MSE and BCRB curves
mostly only past (resp. future) observation is used by thversus the SNR at the center position of the observatiorkbloc
forward (resp. backward) recursion.

In Fig. 5.a (resp. Fig. 5.b), we compare, versus time indeaind CA modes for a BPSK (resp. 16QAM) modulated signal.

of both the on-line and off-line scenarios for the DA, NDA
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of 3 dB is brought by the use of tha priori information.

At low SNR, the CA and the NDA modes merge and the
DA mode achieves lower errors. Actually, in modern systems,
receivers are often constrained to work at low to medium SNRs
so that one can benefit from the advantages brought by the off-
line and even the CA approaches.

VI. CONCLUSION

In this paper, an off-line smoothing algorithm for dynantica
time delay recovery is proposed. Theoretical performarfce o
the off-line technique is derived and fits well the simulatio
results. The Bayesian CRB is also evaluated for DA, NDA
and CA estimators for both off-line and on-line scenarios.
The presented algorithm reaches a MSE performance close to
the Bayesian CRB and outperforms the conventional on-line
timing detectors. One forward-backward iteration outperfs
several one way processing iterations over a large range
of observation block lengths. Simulation results show the
improvement brought by respectively the off-line and the CA
schemes. The NDA off- line approach is simple to implement
as it just averages two gradient descent trajectories.eftwe,
trading off implementation complexity and performances th
NDA off-line approach can be preferable to the CA on-line
scheme.

APPENDIXA

" A
-0-C -ne 58 :\E‘\ . .
E(g§ fOiZiE?EE ":@ RO According to (4), (23) and (30), for the forward algorithm
NBAL NN we have:
DA F-B BCRE ~‘~~ ~(F ~(F ~(F
55, L L L L i TIE ):Tlgf)l + 7(7-]&,)1 - Tk) + dk (108)
SNR [dB] Tk =Tk—1 1+ Wk.
Fig. 8. On-Line and Off-Line BCRB versus SNR,, /T = 104, Block Based on (108), we have:
length = 2000, 16QAM signal. T — %IEF) = (149 (7% — %lglj)l) —
k
_ k=1(_ _ ~(F) ) k—i+1
For both the on-line and off-line approaches, the CA mode = I+ (n—7 )+ Zwl(l +7)
outperforms the NDA mode and approaches the DA mode . =2
over a large interval of SNRs. However, better performance k—i
. . . - ) — (1 . 109
can sometimes be achieved with the off-line NDA scenario z;qz( +7) (109)
1=

compared to the on-line CA scenario for BPSK signals. . L . .
According to Fig. 7 when the SNR= —2dB (resp. SNR This leads to the e_stlmauon bias of the time delay after only
> 7dB) the off-line BCRB of the NDA mode is lower than the®N€ forward loop given by (31).

on-line BCRB in the CA mode (resp. the MSE of the NDA
forward-backward algorithm is lower than the MSE of CA
forward algorithm). Equivalent performance is expectethwi
the off-line NDA scenario and the on-line CA scenario using g;("» 1 1 B>) (m _ ﬁ@) ‘
16QAM modulation for a SNR inferior te-2dB (see Fig. 8). 4 4 (110)
For such a case, the NDA off-line loop is easier to implemegfjyen thatTN—%J(VB) — 7,N_%J(Vf'“)' thus using (109) fok = N
than the on-line CA approach. For high SNRs, the off-linend (33), we find that:
and the on-line BCRBs merge. In other words, the theoretical

Bayesian time recovery problem becomes equivalent tofg_féB):qufy)?N*’“*l(ﬁ
deterministic time delay estimation. However, as illustda

APPENDIX B
The MSE expression is given by:

1 )
M 4 M 4 SB[ (e - 7

N
_ 7A_1(F)) n Zwi(l +W)2N7k7i+l

=2

by the MSE curves of Fig. 7 and Fig. 8, in practice there is N N E N Pk
an advantage for the off-line approach as the self-noisesis | _Z ¢i(1+7) - Z wi(l+7)
critical for this mode than for the on-line mode. For mid-gan 2;2,1 i

SNRs, the off-line scenario is more advantageous than the on
line scenario: as one can expect from the BCRB study, a gain

- > a4+ g

i=k+1

(111)
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Thus, from (110), the MSE expression after one folfr, — %,EF)”" (resp.rk—i—,gB)’m) given by (118) (resp. (119)):
ward/backward iteration is given by (40).

T — 70 = (1 4 ) @EN=DX(m= D)k (2
N
APPENDIXC + Q(m) Z |:wi ((1 +7)2N—1+k—i _ (1 + 7)1@.’_1‘_2)]
1=2

We initialize (at iterationmm > 2) the first estimate of N2k N-1 ftio
the forward algorithm at the last estimate of the backward — €X(m) {Z%(l +7) +) @l +7) ]
=1

algorithm of the previous iteration. i =2
According to the iterative processing of the forward algo- ki
rithm specified in equation (111), the estimation error & th Z(l +7)" (@ +wil+9)), (118)
end of the backward loop is equal to the initial error of the =2
second iteration of the forward loop. Thus: ro— AV (1 4 ) EN-DX(moEN—R-1 (L)1)
T —T( )2 =7 — 7(B)1 112 i ;
AT = n oA (12) [ w1 ) g ]
=2
The expression ofy, —%,EB)’I is provided by (111). Fok = 1: N N-1 _
. {Zwb ) 2N kti=2 qu (1+7) 2N7k+272:|
~(F),2 ~(B),1 i=2 i=1
T — Tl = 11 — 7'1 N
_ (1 +’Y)2N_2(T1 _ 7A_I(F),l) +Z wi(l +W)2N7k7i+l _ Zqz'(l _’_ry)Qkafi
N N =2 =2
+ w; 14+ 2N —i __ i 1+ 2N—1—1 N ok N-1 e
N1 i=k+1 i=k
_ Zwl (1+ 7 Z ¢i(1+7) 1 1(113) The previous expressions lead to the estimation bias after
=1 iterations using the forward (resp. backward) algorithregi
o o ) by (41) (resp. (44) ) and the MSE expressions given by (42)
Similarly, we use for the following iteration: and (45).
n =% = — 3P, (114) APPENDIXD
Based on?) and fork = 1 . Derivation of E[g‘ck,l(m)Q]:
N _ We have that:
n=-H = )T - AT Y w4 -
i=2 E |:x'k71(7'k)2] = F |:Z ak,mg(mT) + %{’Uk (Tk)}:|
N L
- Zqz'(1+’y2N =1 szl—ky -1
i—2 X Z ak—ng(nT) + %{Uk(m)}“
N-1
- ai(1+7)"" (115)
i=1 = F Zak mg mT

Introducing (113) into (115), we obtain:
+ Z %{nl}Qh(zT — kT — Tk)2:|

n—#? = 73 (116) P
. . . . . . 2 o? .
By induction, at iterationn we obtain: = > g(mT)*+ —4(0). (120)
~(F),m (2N—2)x (m—1) ~(F),1
T — T = (1+7) (rn — 7 ) (117) o 2
N ' « Derivation of E[tanh (Az—k + “;—gf”) }:
0 (1 ] 2N717i:| .
+ (m) [Zw (1+7) a(1+7) ~ Based on (64) and given the LLRy, the pdf ofzy, ; ()
is:
- {Zw11+7 +qu1+7 1], 1 A (z —1)°
Doy (r)(T) = {exp (—) exp <— )
k,1(Tk) QCOSh( )\/—0_ 2 202
where Q(m) is given by (43). According to expressions of A (z +1)°
Ty — ,g ) and 7 — %,EB) respectively in (109) and (111) + eXP( _) exp <_ 252 )}
and by replacing; — %fF) with 7 — %fF)’m from (117), at 1 2241 DY
iterationm and thek!” observation, we obtain the expression = Vg P <_ 257 ) cosh <7 + ;) (121)



Consequently:

2
FE | tanh A—k + Lﬂ’l(q—k)
2 o2

o 2 _ JL'2+1 [9]
_ /+ tanh(A—k—i-%) eXp( 202) cosh(A—k-i-%)d:c
— oo 2 o cosh (AT’“ V2o 2 g [10]
exp (—#) +o0 sinh (%“ + %)2 22
- o | e (o)
cosh <7> Voro J—o cosh <?> o
Using againsinh(z)? = cosh(z)? — 1, we find: [12]
2
E{tanh (Lkl(;—k)) }
o [13]
exp (= 1s) +ooexp (—27) [14]
cosh (%’“) Voo —oo  cosh (%’“ + 0—“"”2)
where s
“+oo Ak T 2
= /700 cosh (7 i ;> exP( 202) dx [16]
As cosh(a+b) = cosh(a) cosh(b) +sinh(a) sinh(b) and given
that the integral oveR of an odd function is equal t0, thus
using (123), [17]

+oo — a2
/ exp(—pBx?) cosh(ax)dr = = exp (_) for B> 0,
0 2\ B 48 18]
(123)
we obtain:
[19]
Iy = cosh (ﬁ) V27 exp <i) . (124)
2 202 [20]
Thus:
A i () \?
Pl (3 ) |
_ 1 +oo  exp —1722
= 1o (a) / dz(125)
cosh (%) V2mo J—co cosh (%’C + ﬁ)

2
« Derivation ofE{tanh ”’“;—QT’“)) ]: [23]

2
FE| tanh (”;—Ef")) is a special case of the previous

. . [24]
result and can be obtained by taking = 0.
25
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