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Abstract—This paper presents an off-line algorithm for dy-
namical time delay recovery for which the whole observation
block is used. The time offset varies over the observation interval
following a random walk model. The proposed synchronizer
applies to data-aided (DA), non-data-aided (NDA) and code-aided
(CA) modes. Theoretical performance of the off-line technique
is derived and compared to simulation results. The Bayesian
Cramer-Rao Bound (BCRB) is also evaluated for DA, NDA
and CA modes and for both the off-line and on-line scenarios.
Simulation results show the improvement brought by the off-line
and the CA schemes. The presented algorithm outperforms the
conventional on-line estimator, which only takes into account the
current and previous observations, and its MSE approaches the
BCRB.

I. I NTRODUCTION

Time synchronization is performed at the receiver front end
by adjusting the receiver clock to the transmitter clock in order
to mitigate inter-symbol interference (ISI). To do so, one can
implement a classical on-line timing error detector (TED) such
as the Mueller and Muller Detector (MMD) [1], the Gardner
Detector (GD) [2], the Zero Crossing Detector (ZCD) [3] and
the Early Late Detector (ELD) [4], for which, the estimated
time delay only depends on the previous observations. These
TEDs are low cost algorithms and were previously applied
to estimate a constant time delay. However, they have limited
tracking performance especially if the true delay is time vary-
ing, e.g. time delay in a high mobility wireless device. In this
case, some ameliorations can be brought by implementing off-
line algorithms which operate on the whole observation block
taking into account both past and future observations. Such
smoothing technique was applied in [5] for phase recovery in
an iterative way. In fact, the authors have proposed a MAP
estimator for a phase offset following a Brownian model with
a linear drift in the case of a non-coded BPSK signal.

In this paper, we derive from the Maximum A Posteriori
(MAP) estimation theory an off-line time delay recovery algo-
rithm in the case of a possibly coded QAM signal. Moreover,
the performance analysis in terms of MSE and bias differs
from the phase offset recovery performance. Another point is
that timing synchronizers were mainly developed for DA and
NDA scenarios. In the DA mode, pilot signals are inserted into
the transmitted frame to aid the time synchronization process.
Despite the fact that the best synchronizer performance is

achieved with the DA mode, this technique leads to both loss
of spectral efficiency and increase of the power budget due
to the transmission of pilot signals in the data frame. To deal
with this problem, NDA techniques perform synchronization
from the sole use of the received signal. It consists of using
hard decisions based on the received signal instead of the pilot
signals, or in only exploring received signal samples shifted
by a half-symbol-period in the case of the Gardner TED.
This is why, the system performance becomes unsatisfactory
especially in poor channel conditions [6, Chapter 7]. To
find a compromise between the spectral efficiency and the
synchronizer reliability, CA techniques have been proposed.
These techniques take advantage of the decoder soft output to
reduce the estimator error in the timing recovery [7]–[15] as
well as in the carrier frequency and the phase synchronization
process [16], [17]. In [7], [8], the authors deal with the time
synchronization problem for a constant time delay and they
suggest to use a CA TED derived from the Maximum Like-
lihood (ML) estimator. The theoretical performance analysis
is rather difficult for CA estimation techniques and has rarely
been evaluated in the literature so that CA timing recovery
techniques are often evaluated by simulations. A comparison
between different timing techniques in terms of BER has been
proposed in [14] using the extrinsic information transfer chart
(EXIT chart) [18]. Nevertheless, some statistical properties of
the estimators such as the bias and the mean square error
(MSE) cannot be provided by the EXIT chart analysis. The
authors of [12] have derived semi-analytical expressions of
the estimator mean and variance, as function of the timing
offset, for a CA decision-directed (DD) timing synchronizer
based on MMD. However, the performance evaluation has
been made only at low SNR regime, based on the assumption
that inter-symbol interference (ISI) could be approximated by
an additive Gaussian noise as in [9]. To evaluate one estimator
relevance, its MSE is traditionaly compared to lower bounds
such as the Cramer-Rao Bounds (CRB) [19] as the one derived
for the unknown random phase offset problem in [16], [20].
Closed form expressions of the CRB have been derived in
[21] for CA carrier frequency and phase offset estimation for
turbo-coded Square-QAM modulated signals. However, to the
best of our knowledge, for the timing recovery problem, the
CRB has been evaluated for DA [22], NDA [23] and CA [7],
[8] only for a constant delay.
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In this paper, an off-line dynamic timing estimator is
proposed and its MSE theoretical performance is evaluated
as well as the corresponding Bayesian CRB (BCRB). The
proposed scheme performance is compared to that of the on-
line estimator in DA, CA and NDA modes. We also evaluate
the DA, NDA and CA BCRB for dynamical time delay
recovery in the case of BPSK and QAM modulated signals
and we show the relevance of combining the CA mode and
the off-line approach.

This paper is organized as follows. In section II, the system
model and the off-line time delay estimation based on the
MAP approach are presented. In section III, the derivation of
the MSE relative to the off-line technique is given for various
scenarios. Then, section IV develops closed form expressions
of BCRBs for DA, NDA and CA modes. Simulation results
are provided in section V and validate our analysis. The last
section concludes our work.

GLOSSARY OF PRINCIPAL NOTATIONS

• ℜ{z} andℑ{z}: the real and imaginary parts ofz
• z∗: the conjugate ofz
• ḟ(t) (resp.f̈(t)): the first (resp. the second) derivative of

f , for any functionf with respect tot
• ⊗: the convolution operation
• P (X): the probability mass function (pmf) of any discrete

random variableX
• p(x): the probability density function (pdf) of any con-

tinuous random variablex
• E(X): the mean value of the random variableX

• ∇τ f(τ ) =
(

∂f(τ )
∂τ1

∂f(τ )
∂τ2

· · · ∂f(τ)
∂τN

)T

: the gradient

operator with respect to the vectorτ = [τ1, ..., τN ]T

• ∆τ f(τ ) =















∂2f(τ)
∂τ2

1

∂2f(τ)
∂τ1∂τ2

· · · ∂2f(τ)
∂τ1∂τN

∂2f(τ)
∂τ2∂τ1

∂2f(τ)
∂τ2

2

· · · ∂2f(τ)
∂τ2∂τN

...
...

. . .
...

∂2f(τ)
∂τN∂τ1

∂2f(τ)
∂τN∂τ2

· · · ∂2f(τ)
∂τ2

N















: the

Hessian matrix with respect to the vectorτ =
[τ1, ..., τN ]T

II. OFF-L INE FORWARD-BACKWARD TIMING RECOVERY

Let us consider the linearly modulated transmitted signal
s(t) written as:

s(t) =
∑

i

aih(t− iT ), (1)

where ai denotes the zero mean independent transmitted
symbols drawn from a given finite size constellation,h(t) is
the impulse response of the transmission filter andT is the
symbol period.

The received signal is:

r(t) = s(t− τ(t)) + n(t), (2)

where n(t) is a zero mean additive white Gaussian noise
(AWGN) with a known varianceσ2

n andτ(t) is a time varying
delay.

We consider a sampled version of the previously defined
continuous signals in equations (1) and (2):

rk = sk(τk) + nk, (3)

whererk, τk, sk(τk) andnk are thekth sample of respectively
the received signal, the time delay, the transmitted signals(t−
τ(t)) and the noisen(t) taken at timekT/F , whereF is the
oversampling factor. We assume that the delayτk follows a
brownian evolution model [10], [11] according to:

τk = τk−1 + wk, (4)

wherewk is a non stationary zero mean AWGN with a known
varianceσ2

w which determines the severity of the timing jitter
[10].

A. Time Delay Maximum A Posteriori Estimator

Let us definea the vector of the transmitted symbols and
r and τ the vectors containing, respectively, theN random
observationsrk and theN delaysτk as r = [r1, r2, · · · , rN ]
and τ = [τ1, τ2, · · · , τN ]. The estimate in the MAP sense
of τ is the vectoru with the highest probability given the
observations samples. The time delay estimator is then written
as:

τ̂ = argmax
u

{p(u|r , a)}
= argmax

u
{p(r |u, a)p(u)}

= argmax
u

{log (p(r |u, a)) + log (p(u))} , (5)

whereτ̂ = [τ̂1, τ̂2, · · · , τ̂N ] andu = [u1, u2, · · · , uN ].
For givenu and a, the independence of model (2) samples
leads to:

p(r |u, a) =

N
∏

i=1

p(ri|ui, a),

where:

p(ri|ui, a)=
1

2πσ2
n

exp

(

−|ri − si(ui)|2
2σ2

n

)

. (6)

Thus:

p(r |u, a) =
(

1

2πσ2
n

)N

exp

(

−
∑N

i=1 |ri − si(ui)|2
2σ2

n

)

. (7)

By letting the observation period,T0, of the signalr(t) cover
a large numberN of symbol periods, we can assume that [6,
Chapter 7]:

N
∑

i=1

|ri − si(ui)|2≃
∫

T0

|r(t)− s(t− u(t))|2dt (8)

=

∫

T0

|r(t)|2dt+
∫

T0

|s(t− u(t))|2dt

−2

∫

T0

ℜ{r(t)s(t− u(t))∗} dt. (9)

For sufficiently largeT0, the delayu(t) can be neglected in
the following integral [24, Chapter 5] [25, Chapter 6]:

∫

T0

|s(t− u(t))|2dt ≃
∫

T0

|s(t)|2dt =
∑

i

|ai|2. (10)
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After some basic mathematical derivations and considering
that τ(t) = τi and u(t) = ui during theith symbol period
T , we obtain [6, Chapter 7]:

∫

T0

ℜ{r(t)s(t − u(t))∗} dt ≃
∑

i

ℜ{a∗i xi(ui)} , (11)

wherexi(ui) is the received signal after matched filtering:

xi(ui) = yi(ui) + vi(ui), (12)

yi(ui) =
∑

l

alg ((i − l)T − (τi − ui)) , (13)

vi(ui) =

∫

T0

h(t− iT − ui)n(t)dt, (14)

g(t) = h(t)⊗ h∗(−t). (15)

We choose a root Nyquist filterh(t) such that the global
filter g(t) given by (15) is a Nyquist filter. Observing that
∫

T0

|r(t)|2dt does not depend onu, it can be dropped from
the likelihood function. Having a finite observation samples
numberN , the maximization problem in (5) involves:

p(r |u, a) =
(

C

2πσ2
n

)N

exp

(

N
∑

i=1

(ℜ{a∗i xi(ui)}
σ2
n

− |ai|2
2σ2

n

)

)

,

(16)
whereC is a constant term. From the delay brownian model
(4) we obtain:

p(u) = p(u1)

N
∏

i=2

p(ui|ui−1) (17)

= p(u1)

N
∏

i=2

1

σw

√
2π

exp

(

− (ui − ui−1)
2

2σ2
w

)

.(18)

Thus, without loss of generality and by eliminating the con-
stant terms, the maximization problem (5) can be written as:

τ̂ = argmax
u

{ΛL(a, u)} , (19)

where:

ΛL(a, u) =
1

σ2
n

N
∑

i=1

ℜ{a∗
i xi(ui)}+log (p(u1))−

N
∑

i=2

(ui − ui−1)
2

2σ2
w

.

(20)
If we assume that the initial timing error is uniformly

distributed between−T/2 and T/2, then the gradient of
ΛL(a, u) with respect tou is given by:

∇uΛL(a, u) =






























ℜ
{

a∗
k

σ2
n

∂xk(uk)

∂uk

}

+
uk+1 − uk

σ2
w

, k = 1;

ℜ
{

a∗
k

σ2
n

∂xk(uk)

∂uk

}

+
uk+1 − 2uk + uk−1

σ2
w

, k = 2, · · · , N − 1;

ℜ
{

a∗
k

σ2
n

∂xk(uk)

∂uk

}

+
uk−1 − uk

σ2
w

, k = N.

The steepest descent gradient algorithm is often used to solve
non linear equations. The estimated time delayτ̂ that maxi-
mizesΛL(a, u) with respect tou, involving ∇uΛL(a, u) = 0,

is then given by:






























τ̂1 = τ̂2 +
σ2
w

σ2
n

ℜ
{

a
∗
1
∂x1(τ̂1)

∂τ̂1

}

;

τ̂k =
τ̂k+1 + τ̂k−1

2
+

1

2

σ2
w

σ2
n

ℜ
{

a
∗
k

∂xk(τ̂k)

∂τ̂k

}

, k = 2, · · · , N − 1;

τ̂N = τ̂N−1 +
σ2

w

σ2
n
ℜ
{

a
∗
N

∂xN(τ̂N )

∂τ̂N

}

.

(21)
The above adaptation equations of the time error detector
involve the evaluation of the matched filter output derivative
∂xi(τ̂i)
∂τ̂i

at the estimated time delays values. This can be
obtained by interpolation of an up-sampled version of the
signal.

B. Off-line Delay Estimation Smoothing Algorithm

According to the previous subsection, the estimated time
delay at time instantk is a function of the time delay at the
samplek−1 and at the samplek+1 which is actually unknown
for an on-line filtering procedure. The idea is then to estimate
the time delayτk with a smoothing off-line procedure.

Let us define:

zk(τ̂i, ak) , µℜ
{

a∗k
∂xk(τ̂i)

∂τ̂i

}

, (22)

τ̂
(F )
k , τ̂

(F )
k−1 + zk(τ̂

(F )
k−1, ak), (23)

τ̂
(B)
k , τ̂

(B)
k+1 + zk(τ̂

(B)
k+1, ak), (24)

wherezk(τ̂i, ak) is the updating term,µ is the step size and
i is in {k − 1, k + 1}. We recognize in (23) the classical
recursive timing recovery loop [1], [3], [4], [6]. Equation(24)
is similar to (23) but proceeds terms posterior tok, the time
index of relevance. From (21) and the previous expressions,
we propose the following Forward-Backward (FB) algorithm
which combines the classical forward (F) timing loop (23)
with a backward (B) timing loop (24) proceeding similarly
in the opposite direction from the end of the block (k = N )
towards its beginning (k = 1):

τ̂
(FB)
k =















τ̂
(B)
2 + z1(τ̂

(B)
2 , a1), for k = 1;

1

2

(

τ̂
(B)
k + τ̂

(F )
k

)

, for k = 2, · · · , N − 1;

τ̂
(F )
N−1 + zN (τ̂

(F )
N−1, aN ), for k = N.

(25)
In an off-line context, the estimation ofτk, k = 1, · · · , N ,
can even be improved by applying multiple iterations of
the forward and backward loops using the same observation
block. The term "off-line" means that the timing recovery is
performed after the reception of the whole block of signal
samples at the receiving end. Such approach can be considered
for applications with low constraints on the processing time
(latency), as any iterative algorithm. This is achieved by
initializing the first forward estimate of the next iteration at the
value of the last backward estimate of the previous iteration.
It is thus possible to carry out several iterations (in practice
2) and by averaging the values taken by the forward loop and
the backward loop at the instantk, one obtains the forward-
backward estimate.

We note that the updating termzk(τ̂i, ak) depends on
the transmitted symbols. These symbols can be known by
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the receiver when some pilot signals are inserted within the
transmitted frame. In this case, the proposed algorithms (on-
line or off-line) operate in a DA mode. However, in order
to enhance the spectral efficiency and increase the data rate,
these reference signals can be removed. Then, in practice, hard
estimateŝak of the transmitted symbols are computed at the
receiver and replaceak in (25); this is called the NDA mode.
In a coded system, we can take advantage of the decoder soft
output to provide smoother and more accurate estimate ofak
as it was proposed in [7], [8] for the on-line timing loop. We
can similarly replaceak by the soft symbol̃ak in (25) for the
smoothing off-line procedure and obtain an off-line CA mode.
In section V we will firstly assess the improvement obtained
by the off-line approach in the DA, NDA and CA modes and
then compare the improvement to that obtained using only the
CA mode (in an on-line scheme).

Hereafter, at each time index, the analytical performance
after one and multiple iterations of the forward, the backward
and the forward-backward algorithms are derived in terms of
estimation bias and MSE.

III. PERFORMANCEANALYSIS OF THE

FORWARD-BACKWARD ALGORITHM

We now approximate at any time indexk, the updating term
of each algorithm as the sum of a linear function of the esti-
mation error,̂τi − τk and an additive self noise,bk(τ̂i), where
i = k−1 (resp.i = k+1) when the forward (resp. backward)
algorithm is used. Let us considergm,n(u) = g(mT−(τn−u))
where τn is the true delay at thenth sample. It is worthy
to note thatgm,n(τn) = g(mT ), ġm,n(τn) = ġ(mT ) and
g̈m,n(τn) = g̈(mT ).

Based on equations (22) and (12)-(15), we have:

zk(τ̂i, ak) = µℜ
{

a∗k
∂xk(τ̂i)

∂τ̂i

}

= µℜ







∑

j

a∗kaj ġk−j,k(τ̂i) + µa∗k
∂vk(u)

∂u
|u=τ̂i







= S(τ̂i − τk) + µbk(τ̂i), (26)

where

S(τ̂i − τk) = E [zk(τ̂i, ak)]

= µ
∑

j

ℜ{E[a∗kaj ]} ġk−j,k(τ̂i),

and bk(τ̂i) is the loop noise. Given that the transmitted
symbols,ak, are uncorrelated and assuming thatτ̂i − τk is
close to0, we find:

S(τ̂i − τk) = µE[|ak|2]ġ(τ̂i − τk) ≃ µE[|ak|2]g̈(0)(τ̂i − τk). (27)

The loop noisebk(τ̂i) is:

bk(τ̂i) = ℜ







∑

j,j 6=k

a∗kaj ġk−j,k(τ̂i) + a∗k
∂vk(u)

∂u
|u=τ̂i







.

(28)
Its variance is given by:

σ
2
b = E





∑

j,j 6=k

|ak|2|aj |2ġ2k−j,k (τ̂i)



+ E[|ak|2]σ2
n,

where for a Nyquist filter, we can neglectġ(t) values for
arguments|t| ≥ 3T [6].

Using the following notations:

γ = µE[|ak|2]g̈(0) andqk = µbk(τ̂i), (29)

and based on equations (26) and (27), we obtain:

zk(τ̂i, ak) ≃ γ(τ̂i − τk) + qk. (30)

In what follows, we noteσ2
q = µ2σ2

b the variance ofqk.
From this linear expression, we obtain in the sequel, the
expression of the estimation bias and of the MSE for the
forward, the backward and the forward-backward algorithms
after any arbitrary number of iterations, starting with thefirst
iteration.

From Appendix A, the bias of the estimated time delay for
only one forward loop is then given by:

B
(F )
k =(1 + γ)k−1B

(F )
1 , (31)

and the corresponding MSE is:

M
(F )
k =E

[

(

τk − τ̂
(F )
k

)2
]

(32)

=(1 + γ)2k−2
M

(F )
1 +

1− [(1 + γ)2]k−1

1− (1 + γ)2
[

(1 + γ)2σ2
w + σ

2
q

]

.

Similarly to the forward loop, we obtain for the backward
algorithm:

τk − τ̂
(B)
k = (1 + γ)N−k(τN − τ̂

(B)
N )−

N
∑

i=k+1

wi(1 + γ)i−k

−
N−1
∑

i=k

qi(1 + γ)i−k. (33)

Thus the bias of the estimated time delay using one backward
iteration is:

B
(B)
k =(1 + γ)N−kB

(B)
N , (34)

and the corresponding MSE is:

M
(B)
k = (1+γ)2N−2k

M
(B)
N +

1− [(1 + γ)2]N−k

1− (1 + γ)2
[

(1 + γ)2σ2
w + σ

2
q

]

.

(35)
We also know that at the end of the observation block,

τN − τ̂
(B)
N = τN − τ̂

(F )
N , (36)

so that from (31):

B
(B)
N = (1 + γ)N−1

B
(F )
1 , (37)

and from (32):

M
(B)
N = (1+γ)2N−2

M
(F )
1 +

1− [(1 + γ)2]N−1

1− (1 + γ)2
[

(1 + γ)2σ2
w + σ

2
q

]

.

(38)
From the expression ofτk − τ̂

(FB)
k given in (25) fork =

2, .., N − 1, and using (31) and (37), the bias of the estimated
delay using a forward/backward algorithm is given by:

B
(FB)
k =

1

2

[

(1 + γ)k−1 + (1 + γ)2N−k−1
]

B
(F )
1 ,(39)

and the MSE expression after one iteration is given by (40).
The derivation details are provided the Appendix B.
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M
(FB)
k =

1

4
M

(B)
k +

1

4
M

(F )
k +

1

2

[

(1 + γ)2N−2M
(F )
1 + (1 + γ)2N−2k−4

(

(1 + γ)2σ2
w + σ2

q

)

(

1− (1 + γ)2k+2

1− (1 + γ)2

)

+ σ2
q

]

.(40)

We now derive the analytical expressions of the bias,Bm
k ,

and the MSE,Mm
k , for respectively the forward, the backward

and the forward-backward algorithms, afterm iterations. Let
us denote bŷτ (I),mk , the estimate ofτk at iterationm using
the algorithmI where I is in {F,B, FB} and respectively
denotes Forward, Backward and Forward-Backward.

We have shown in Appendix C that, at iterationm, the
forward bias is:

B
(F ),m
k = (1 + γ)(2N−2)×(m−1)+k−1B

(F ),1
1 , (41)

and the corresponding mean square error is given by (42).
where:

Ω(m) =
1− (1 + γ)(2N−2)×(m−1)

1− (1 + γ)2N−2
. (43)

We have also shown in Appendix C that at iterationm and
for the kth observation the backward bias is:

B
(B),m
k = (1 + γ)(2N−2)×(m−1)+2N−k−1

B
(F ),1
1 , (44)

and the corresponding MSE expression is given by (45).
Based on (25), we have at iterationm:

τk − τ̂
(FB),m
k =

1

2

(

τk − τ̂
(F ),m
k

)

+
1

2

(

τk − τ̂
(B),m
k

)

(46)

Replacingτk− τ̂
(F ),m
k andτk− τ̂

(B),m
k by their corresponding

expressions respectively from (118) and (119) provided in the
Appendix C, the expression of the forward-backward bias at
iterationm for the kth observation is:

B
(FB),m
k =

1

2
(1+γ)(2N−2)(m−1)

[

(1+γ)k−1+(1+γ)2N−k−1

]

B
(F ),1
1

(47)
and the corresponding MSE expression is given by (48).
We validate these analytical expressions in section V. Some
conclusions can directly be drawn from the numerical evalu-
ation of the obtained analytical expressions, as for instance
the fact that with an adequate choice of the step size,2
Forward-Backward iterations are sufficient for the proposed
algorithm to reach to steady state in terms of MSE. To
provide an absolute reference to evaluate both theoreticaland
experimental scheme performance, the next section is devoted
to the derivation of the Bayesian CRB.

IV. BAYESIAN CRAMER RAO BOUND

The standard and the modified CRBs [19, Chapter 3] [26,
Chapter 2] are not suited to time-varying parameter estimation.
In fact, these bounds do not take into account the statistical
dependence between successive time delays. This dependence
is naturally considered within the Bayesian framework: on
one hand, the prior distributionp(τ ) implicitly models the
time dependence between stochastic time delays; on the other
hand, the Bayesian framework is intrinsically based on the

knowledge of a vector prior distributionp(τ ). Within this con-
text, a BCRB is derived by inverting the following Bayesian
information matrix [26, Chapter 2]:

GN = Eτ [F (τ )] + Eτ [−∆τ log (p(τ ))], (49)

whereEτ and∆τ are respectively the expectation with respect
to the vectorτ and the Hessian matrix;F (τ ) is similar to the
conventional Fisher information matrix [19]:

F (τ ) = Er|τ [−∆τ log (p(r |τ ))]. (50)

The first term of (49) considers the mean with respect toτ

of the information brought by the observationr . The second
term depends on thea priori information onτ . The diagonal
elements of the inverse ofGN give the BCRB with respect
to τ .

In the following, we distinguish two types of BCRB,
namely, the off-line and the on-line BCRB for time synchro-
nization. In an off-line context, the receiver waits until the
whole observation blockr = [r1, ..., rN ] is received. Then,
the time delaysτk (k = 1, .., N) are estimated using all the
received samples. In an on-line context,τk is estimated using
only the current and the previous observations[r1, ..., rk].

A. Off-line BCRB

According to (50), and based on the expression ofp(r|τ )
given by (16), we can deduce thatF (τ ) is a diagonal matrix,
independent ofτk. Thus, the first term of (49) can be written
as:

Eτ [F (τ )] = JDIN , (51)

whereIN is the (N ×N) identity matrix and for any index
k:

JD = Erk|τk

[

−∂2 log (p(rk|τk))
∂τ2k

]

(52)

= Erk|τk

[

(

∂ log (p(rk|τk))
∂τk

)2
]

. (53)

These expressions will be evaluated later for various transmis-
sion modes. From (18), the last term of (49) is:

Eτ [−∆τ log (p(τ ))] =


























1
σ2
w
−D − 1

σ2
w

0 · · · 0

− 1
σ2
w

2
σ2
w

− 1
σ2
w

0 · · · 0

0
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0
...

. . . 0 − 1
σ2
w

2
σ2
w

− 1
σ2
w

0 · · · 0 0 − 1
σ2
w

1
σ2
w



























, (54)

whereD = Eτ1 [
∂2 log(p(τ1))

∂τ2

1

]. If we assume that the initial
delay τ1, is uniformly distributed between−T/2 and T/2,
thenD = 0.
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M
(F ),m
k = (1 + γ)(2N−2)×2(m−1)+2k−2

M
(F ),m
1 +

( k
∑

i=2

[

(1 + γ)2N−1+k−iΩ(m)− (1 + γ)k+i−2Ω(m) + (1 + γ)k−i+1

]2

+

N
∑

i=k+1

Ω(m)2
[

(1 + γ)2N−1+k−i − (1 + γ)k+i−2

]2)

σ
2
w +

( N
∑

i=k+1

Ω(m)2
[

(1 + γ)2N−2+k−i − (1 + γ)k+i−2

]2

+
k
∑

i=2

[

(1 + γ)2N−2+k−iΩ(m)− (1 + γ)k+i−2Ω(m) + (1 + γ)k−i

]2

+ Ω(m)2
[

(1 + γ)2N+2k−2 + (1 + γ)2k−2

])

σ
2
q . (42)

M
(B),m
k = (1 + γ)(2N−2)×2(m−1)+4N−2k−2

M
(F ),m
1 +

( k
∑

i=2

[

(1 + γ)4N−1−i−kΩ(m)− (1 + γ)2N−k+i−2Ω(m) + (1 + γ)2N−k−i+1

]2

+
N
∑

i=k+1

[

(1 + γ)4N−1−i−kΩ(m)− (1 + γ)2N−k+i−2Ω(m) + (1 + γ)2N−k−i+1 − (1 + γ)i−k

]2)

σ
2
w

+

(

(1 + γ)4N−2k
k−1
∑

i=2

[

(1 + γ)2N−2−iΩ(m)− (1 + γ)i−2Ω(m) + (1 + γ)−i

]2

+ (1 + γ)2N−2k

[

1 + Ω(m)(1 + γ)2N−2

]2

+

N−1
∑

i=k

[

(1 + γ)4N−2−i−kΩ(m)− (1 + γ)2N−k+i−2Ω(m) + (1 + γ)2N−k−i + (1 + γ)i−k

]2)

σ
2
q . (45)

M
(FB),m
k =

1

4

{

M
(F ),m
k +M

(B),m
k

}

+
1

2

{

(1 + γ)2(2N−2)(m−1)+2N−2
M

(F ),1
1 (48)

+

( k
∑

i=2

(1 + γ)2N
[

(1 + γ)−i+1 + Ω(m)(1 + γ)2N−i−1 − Ω(m)(1 + γ)i−2

]2

−
N
∑

i=k+1

Ω(m)

[

(1 + γ)2N−i−1 + (1 + γ)i−2

][

Ω(m)(1 + γ)4N−i−1 − Ω(m)(1 + γ)2N+i−2 + (1 + γ)2N−i+1

])

σ
2
w

−
(k−1
∑

i=2

(1 + γ)2N
[

Ω(m)(1 + γ)2N−i−2 + Ω(m)(1 + γ)i−2 + (1 + γ)−i

]2

+

[

(1 + γ)N−2 −Ω(m)(1 + γ)3N−2

]

(1 + γ)N−2

−
N−1
∑

i=k

Ω(m)

[

(1 + γ)2N−i−2 − (1 + γ)i−2

][

Ω(m)(1 + γ)4N−i−2 − Ω(m)(1 + γ)2N+i−2 − (1 + γ)2N−i − (1 + γ)i
])

σ
2
q

}

.

Consequently, from (49), (51) and (54):

GN = β























A+ 1 1 0 · · · 0
1 A 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0
...

. . . 0 1 A 1
0 · · · 0 0 1 A+ 1























, (55)

whereA = −σ2
wJD − 2 andβ = − 1

σ2
w

.

A similar study was carried on the BCRB relative to the
estimate of the phase offset for a non-coded BPSK signal in
[20]. The authors of [20] have presented the general expression
of the inverse of the BIM which has the same form given
by equation (55). They obtained the following expression

expression:

[GN
−1]k,k =

1

|GN |

[

ρ21(β + ν1)
2νN−3

1 + ρ22(β + ν2)
2νN−3

2

− β2

A− 2
(νk−2

1 νN−k−1
2 + νN−k−1

1 νk−2
2 )

]

, (56)

where|GN | is the determinant ofGN given by:

|GN | = (A+ 2)β
(

ρ1ν
N−1
1 + ρ2ν

N−1
2

)

, (57)

and form = 1, 2:

νm =
1

σ2
w

+
JD
2

(

1 + (−1)m ×
√

1 +
4

JDσ2
w

)

, (58)

ρm =

√

1 + 4
σ2
wJD

+ (−1)m × (1 + 2
σ2
wJD

)

2
√

1 + 4
σ2
wJD

. (59)

The BCRB of time delay estimation differs from the BCRB
of phase offset estimation with the expression ofJD which is
going to be explicitly analyzed in the following subsections
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for BPSK and QAM signals in various scenarios (DA, NDA
and CA).

B. On-line BCRB

In the on-line mode, the observationsrk are received in
order to update the estimated value ofτk. Only past and current
observations are available. Tichavskyet al. [27] have already
provided a method for updating the Bayesian information
matrix in (49) from the time indexk − 1 to the time indexk
according to the following recursive sequence:

Ck =
σ2
w + Ck−1

σ2
wJD + 1 + JDCk−1

, (60)

whereC1 = 1
JD

. From (56), we also have that:

CN = [G−1
N ]N,N (61)

=
1

|GN |

[

ρ21(β + ν1)
2νN−3

1 + ρ22(β + ν2)
2νN−3

2

− b2

A− 2
(νN−2

1 ν−1
2 + ν−1

1 νN−2
2 )

]

. (62)

This equation reflects that in the last position, the same amount
of information is available both with the on-line and the off-
line techniques. We also note that this bound decreases in time
and converges to:

lim
N→∞

[G−1
N ]N,N =

−σ2
w +

√

σ4
w + 4

σ2
w

JD

2
. (63)

C. Derivation ofJD for a BPSK signal

The analytical expressions ofJD in the case of BPSK
and square-QAM modulated signals is hereafter derived.
Let us begin by considering the following equalities:
xk,1(τk) = ℜ{xk(τk)}, xk,2(τk) = ℑ{xk(τk)}, ẋk,i(τk) =
∂xk,i(uk)

∂uk
|uk=τk and ẍk,i(τk) =

∂2xk,i(uk)

∂u2

k

|uk=τk , i ∈ {1, 2}
with:

xk(τk) =
∑

m

ak−mg(mT ) + vk(τk)

= ak + vk(τk), (64)

∂xk(uk)

∂uk

|uk=τk =
∑

m

ak−mġ(mT ) +
∂vk(u)

∂u
|u=τk , (65)

and:

∂2xk(uk)

∂u2
k

|uk=τk =
∑

m

ak−mg̈(mT ) +
∂2vk(u)

∂u2
|u=τk

= akg̈(0) +
∂2vk(u)

∂u2
|u=τk . (66)

The analytical expression ofJD depends on the se-
lected synchronization mode. In the following subsections, we
present an analytical development ofJD, as function of the
SNR, respectively, in the case of DA, NDA and CA timing
recovery.

1) DA case:Based on (16), (52) and (66), we obtain:

JD = −|ak|2
σ2
n

g̈(0), (67)

with |ak|2 = 1 for BPSK signals.

2) NDA case: From (6) and (16) and without loss of
generality:

p(rk|τk, a) =
C

2πσ2
n

exp

(ℜ{a∗kxk(τk)}
σ2
n

− |ak|2
2σ2

n

)

. (68)

By averaging over the equiprobable BPSK transmitted sym-
bols a, we obtain:

log (P (rk|τk)) = log

(

cosh

(

xk,1(τk)

σ2
n

))

+K, (69)

whereK is a constant term independent ofτk. Thus, according
to (53):

JD =
1

σ4
n

E

[

tanh

(

xk,1(τk)

σ2
n

)2

ẋk,1(τk)
2

]

. (70)

Given thatġ(mT ) is equal to0 for m = 0, that the symbols
ai are assumed to be independent and that the noiseℜ{n(t)}
is independent of the symbolsai for any index i, we can
conclude thatxk,1(τk) andẋk,1(τk) are uncorrelated and con-

sequentlytanh
(

1
σ2
n
xk,1(τk)

)

and ẋk,1(τk) are uncorrelated.
As a result:

JD =
1

σ4
n

E

[

tanh

(

xk,1(τk)

σ2
n

)2 ]

E

[

ẋk,1(τk)
2

]

, (71)

where according to Appendix D:

E

[

tanh

(

xk,1(τk)

σ2
n

)2 ]

= 1−
exp

(

− 1
2σ2

n

)

√
2πσn

∫ +∞

−∞

exp
(

− x2

2σ2
n

)

cosh
(

x

σ2
n

) dx,

(72)
and:

E

[

ẋk,1(τk)
2

]

=
∑

m

ġ(mT )2 +
σ2
n

2
g̈(0). (73)

3) CA case: Let us considerλk the log-likelihood ratio
(LLR) output of the decoder at time instantk. We have that:

P (ak = ±1) =
exp

(

±λk

2

)

2 cosh
(

λk

2

) . (74)

Then, based on (68) and by averaging over thea priori
probability of the BPSK transmitted symbolsa, one obtains:

log (P (rk|τk)) = log





cosh
(

xk,1(τk)
σ2
n

+ λk

2

)

cosh
(

λk

2

)



+K. (75)

Thus, according to (53):

JD =
1

σ4
n

E

[

tanh

(

λk

2
+

xk,1(τk)

σ2
n

)2

ẋk,1(τk)
2

]

. (76)

Given thattanh
(

λk

2 +
xk,1(τk)

σ2
n

)

and ẋk,1(τk) can be con-
sidered as uncorrelated if the coded symbols are transmitted
with a large size interleaver [28], [29], we have:

JD =
1

σ4
n

E

[

tanh

(

λk

2
+

xk,1(τk)

σ2
n

)2 ]

E

[

ẋk,1(τk)
2

]

, (77)
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whereE

[

ẋk,1(τk)
2

]

is given by (73) and according to Ap-

pendix D:

E

[(

λk

2
+

xk,1(τk)

σ2
n

)2 ]

=

1−
exp

(

− 1
2σ2

n

)

cosh
(

λk

2

)√
2πσn

∫ +∞

−∞

exp
(

− x2

2σ2
n

)

cosh
(

λk

2
+ x

σ2
n

)dx. (78)

D. Derivation ofJD for a square-QAM signal

Similarly to the BPSK case, the analytical expressions of
JD for square-QAM modulated signals are derived for the
DA, NDA and CA transmission modes.

1) DA case:For DA mode the expression ofJD is the same
as that obtained for BPSK signals given by (67).

2) NDA case: Let us consider the case of equiprobable
transmitted symbols. In order to compute the expression of
JD using (53), we need to develop the expression ofp(rk|τk).

From (68) and assuming that the transmitted symbolsa are
equally likely, the probability likelihood function becomes:

p(rk|τk) =
C

M

∑

vi∈V

1

2πσ2
n

exp

(ℜ{v∗i xk(τk)}
σ2
n

− |vi|2
2σ2

n

)

, CFk(τk), (79)

whereV = {v1, v1, ..., vM} is the constellation alphabet set.
Considering only square QAM modulated signals, the con-

stellation size can be written as an even power of two,M =
22p and we can exploit the symmetry of the constellation.

Let us consider̃V the subset of the constellation alphabet
with positive real and imaginary parts. If̃v belongs toṼ then
it can be written as:

ṽ = (2m− 1)dp + j(2n− 1)dp, (80)

where{m,n} ∈ {1, ..., 2p−1} anddp is the inter-symbol dis-
tance which has the following expression under the assumption
of normalized energy symbols:

dp =
2p−1

√

2p
∑2p−1

k=1 (2k − 1)2
. (81)

We note thatV = Ṽ⋃ Ṽ∗
⋃

(−Ṽ)⋃(−Ṽ∗), so that:

Fk(τk) =
∑

ṽ∈Ṽ

exp
(

− |ṽ|2

2σ2
n

)

2πσ2
n22p−2

cosh

(

ℜ{ṽ} xk,1(τk)

σ2
n

)

× cosh

(

ℑ{ṽ}xk,2(τk)

σ2
n

)

. (82)

Using (80), we obtain:

Fk(τk)=
1

2πσ2
n22p−2

2p−1

∑

m=1

2p−1

∑

n=1

exp

(

− (2m− 1)2 + (2n− 1)2

2σ2
n

d
2
p

)

×cosh

(

(2m− 1)dpxk,1(τk)

σ2
n

)

cosh

(

(2n− 1)dpxk,2(τk)

σ2
n

)

=Hk

(

xk,1(τk)

)

Hk

(

xk,2(τk)

)

, (83)

where:

Hk(x) =
2p−1

∑

m=1

2 exp
(

− (2m−1)2

2σ2
n

d2p

)

√
2πσ2

n2p
cosh

(

(2m− 1)dpx

σ2
n

)

.

(84)
A similar factorization of the likelihood function, in the NDA
case, using the full symmetry of the square QAM constellation
has been proposed in [30] and [31] respectively for SNR and
for frequency and phase NDA estimation.

As a result, from (79) and (83), we have:

∂ log (p(xk,1k|τk))
∂τk

=
Ḣk (xk,1(τk))

Hk (xk,1(τk))
ẋk,1(τk)

+
Ḣk (xk,2(τk))

Hk (xk,2(τk))
ẋk,2(τk), (85)

where:

Ḣk(x) =
∂Hk(x)

∂x

=
2

√

2πσ2
n2

p

2p−1

∑

m=1

exp

(

− (2m− 1)2

2σ2
n

d2p

)

× (2m− 1)dp
σ2
n

sinh

(

(2m− 1)dpx

σ2
n

)

. (86)

Then using (53) and (85), we find:

JD = E





(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2

ẋk,1(τk)
2



 (87)

+ E





(

Ḣk (xk,2(τk))

Hk (xk,2(τk))

)2

ẋk,2(τk)
2





+ 2E

[

Ḣk (xk,1(τk))

Hk (xk,1(τk))

Ḣk (xk,2(τk))

Hk (xk,2(τk))
ẋk,1(τk)ẋk,2(τk)

]

.

Given that xk,1(τk) (resp. xk,2(τk)) and ẋk,1(τk) (resp.
ẋk,2(τk)) are uncorrelated, then the third term of (87) is equal
to zero. Furthermore,xk,1(τk) and xk,2(τk) have the same
statistical properties. Thus:

JD = 2E





(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2

ẋk,1(τk)
2



 (88)

= 2E





(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2


E
[

ẋk,1(τk)
2
]

, (89)

with:

E
[

ẋk,1(τk)
2
]

=
∑

i

E[a2i ]ġ
2 ((k − i)T )− σ2

n

2
g̈(0). (90)

We now develop the first term of (89), which by definition is:

E

[(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2 ]

=

∫ +∞

−∞

(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2

p(xk,1(τk))dxk,1(τk).

(91)
g being a Nyquist filter, the received matched filtered signal
can be written as:

xk(τk) = ak + vk(τk), (92)
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so that:

p(xk(τk)) =
∑

v∈V

p(ak = v)

2πσ2
n

exp

(

−|xk(τk)− v|2
2σ2

n

)

= Hk(xk,1(τk))Hk(xk,2(τk))×

exp

(

−
x2
k,1(τk) + x2

k,2(τk)

2σ2
n

)

. (93)

Given thatxk,1(τk) andxk,2(τk) are respectively the real and
imaginary parts ofxk(τk), which are two independent random
variables identically distributed, we have:

p(xk(τk)) = p(xk,1(τk))p(xk,2(τk)), (94)

where:

p(xk,i(τk)) = Hk(xk,i(τk)) exp

(

−
x2
k,i(τk)

2σ2
n

)

, (95)

with i ∈ {1, 2}. As a result (91) becomes:

E

[(

Ḣk (xk,1(τk))

Hk (xk,1(τk))

)2 ]

=

∫ +∞

−∞

Ḣk(x)
2

Hk(x)
exp

(

− x2

2σ2
n

)

dx.

(96)
By replacing (96) and (90) into (89), we obtain the expression
of JD.

3) CA case: Let us consider the case of Gray-Mapped
square-QAM symbolsak. The results can also be transposed
to any other mapping technique. We assume the constellation
to be Gray-coded taking values in an alphabet set of sizeM .
The chosenkth transmitted symbolak is denoted as:

ak ⇔ bk1b
k
2 ...b

k
log2(M), (97)

wherebkj corresponds to thejth binary information ofak.
We can assume that the coded bits in a symbol are statisti-

cally independent by using a large-size interleaver [28], [29].
Let us consider,λk

m the soft output of the decoder at any time
index k such that:

λk
m = ln

(

P [bkm = 1]

P [bkm = 0]

)

, m = 1, · · · , log2(M). (98)

The soft-informationλk
m is generally obtained after several

decoding iterations by a soft decoder.
In [8], we developed the expression of the likelihood

probability for a constant time delayτ by incorporating the
LLRs of the coded bits, into the likelihood function for Gray-
coded square QAM constellations. This was based on results
proposed by [32]. The obtained result can be directly adapted
to the variable time delay model which allows us to obtain the
following expression:

p(rk|τk) = H2p
k (xk,1(τk))H

2p−1
k (xk,2(τk)) , (99)

where:

H l
k(x) =

2wk,l
√

2πσ2
n

2p−1

∑

i=1

θk,l(i) exp

(

−
(2i− 1)2d2p

2σ2
n

)

×

cosh

(

(2i− 1)dpx

σ2
n

+ (−1)l
λk
l

2

)

, (100)

ωk,2p =

p
∏

l=1

1

2 cosh
(

λk
2l

2

) , (101)

ωk,2p−1 =

p
∏

l=1

1

2 cosh
(

λk
2l−1

2

) , (102)

andθk,2p(i) andθk,2p−1(i) are recursively obtained according
to the following equations:

θk,2p(i) = θk,2p−2

( |2i− 1− 2p−1|+ 1

2

)

×

exp

(

(

2⌊ i− 1

2p−2
⌋ − 1

)

λk
2p−2

2

)

, (103)

θk,2p−1(i) = θk,2p−3

( |2i− 1− 2p−1|+ 1

2

)

×

exp

(

(

2⌊ i− 1

2p−2
⌋ − 1

)

λk
2p−3

2

)

, (104)

where⌊x⌋ is the integer part ofx, θk,1(1) = 1 andθk,2(1) = 1.
Thus similarly to the NDA case and based on the fact that

xk,1(τk) (resp. xk,2(τk)) and ẋk,1(τk) (resp. ẋk,2(τk)) are
uncorrelated, the expression ofJD is given by:

JD = E





(

Ḣ2p
k (xk,1(τk))

H2p
k (xk,1(τk))

)2


E
[

ẋk,1(τk)
2
]

+ E





(

Ḣ2p−1
k (xk,2(τk))

H2p−1
k (xk,2(τk))

)2


E
[

ẋk,2(τk)
2
]

,(105)

whereḢ l
k (xk,1(τk)) = ∂H l

k (x) /∂x for l ∈ {2p, 2p− 1}.
The expression of bothE

[

ẋk,1(τk)
2
]

and E
[

ẋk,2(τk)
2
]

is
given by (90). Following the steps used in the NDA case we
obtain:

p(xk,i(τk)) = H2p+1−i
k (xk,i(τk)) exp

(

−
x2
k,i(τk)

2σ2
n

)

, (106)

with i ∈ {1, 2} and thus:

E

[

(

Ḣ
2p+1−i

k (xk,i(τk))

H
2p
k (xk,i(τk))

)2
]

=

∫ +∞

−∞

Ḣ
2p+1−i

k (x)2

H
2p+1−i

k (x)
exp

(

− x2

2σ2
n

)

dx.

(107)
By replacing (107) and (90) into (105) we finally obtain the
expression ofJD in the CA case.

We mention that the integrand functions involved in (96),
(107), respectively, decrease rapidly asx increases. Therefore,
the integrals over]−∞,+∞[ can be accurately approximated
by a finite integral over an interval[−L,+L] and the Riemann
integration method can be adequately used. The evaluation
of the BCRB is thus possible as all implied expressions in
equation (49) have been derived.

In this section, we derived the BCRB for code-aided delay
estimation in the case of BPSK, QPSK and QAM modulated
signals. It is worthy to note that the herein derived BCRB is
conditioned to the LLR values and thus depends on the coding
technique. A further averaging over the possible soft output
values should be then carried to evaluate the BCRB. This is
here processed by averaging over Monte Carlo trials. Since the
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BCRB depends on the coding technique, thus for the Monte
Carlo simulation, we consider the same encoder as that used by
the selected synchronizer. For the BCRB evaluation in the CA
mode, the LLRs are computed in the case where the time delay
is perfectly recovered, however, for the MSE evaluation, the
LLRs are computed by considering the estimated time delay
given by the CA TED. Further work can be carried to develop
an analytical BCRB expression by analytically accounting for
the LLRs variation as done in [12] for the problem of MSE
computation.

The closed form expressions of the previous BCRB for the
different transmission modes will be compared to the estimator
performance in the next section.

V. SIMULATION RESULTS

In this paragraph, we simulate in the first four figures,
the performance of the studied synchronization algorithm for
small blocks of non-coded symbols transmitted over a Gaus-
sian channel. The signal, with an up-sampling factor equal to
8, is passed through a raised cosine filter, with a roll-off factor
α = 0.3, before being sent. The channel introduces a variable
time delay τk following a brownian model (see (4)). The
signal is matched filtered at the receiver and retrieved by the
synchronizer. We finally evaluate the MSE over1000 Monte
Carlo trials. The above adaptation equations of the time error
detector involve the evaluation of the matched filter output
derivative(∂xk(τ̂i)/∂τ̂i) at the estimated time delays values.
The values ofxk(τ̂k−1) are obtained via a cubic4−sample
Lagrange interpolator. This interpolator can be implemented
efficiently using the Farrow structure [33]. The LLR values are
initialized by the soft demapper’s outputs. The turbo-decoder’s
outputs are reinjected only twice to the synchronizer’s input.
τ̂k is initialized to 0 and its estimation is depicted after two
forward-backward synchronization iterations when the steady
state is achieved. Simulation results are evaluated for an initial
time delay uniformly distributed in[−T/2, T/2] and randomly
generated delay samples following the brownian evolution
model for a givenσ2

w. The step-sizeµ is chosen so as to insure
a global convergence of the algorithm to the optimum delay.
An adaptive step-size [34] could be implemented in order to
have both a faster convergence and low MSE at the steady-
state. However, for simplicity reasons, the step size valueis
chosen as constant during our synchronization process.

We use the following notations in the figures of the present
paragraph. "One Forward" means that the MSE is measured
after one (on-line) forward estimation without any backward
estimation. "Multiple Forward" (resp. "Multiple F/B") means
that the MSE of the Forward (resp. Forward/Backward) esti-
mation is measured after three (off-line) F/B iterations. Finally
"Simu" is related to simulation results whereas "Theo" refers
to the theoretical MSE results obtained with the previous linear
model analysis of section III.

Fig. 1 illustrates the normalized estimated time delayτ̂k/T
using the forward, the backward and the forward-backward
algorithms after three iterations in a DA context for a BPSK
modulated signal. Along the observation block, the off-line
algorithm provides a better estimate of the time delay than
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Fig. 1. τk/T and its estimate along the observation block,σw/T = 10−4

in DA mode for a BPSK modulation

the forward only or the backward only as it averages at any
time the two trajectories. At the extremities of the observation
block, the three algorithms have equivalent performance. This
is a logical result since in practice the first backward loop
estimate of the time delay uses the last estimate of the forward
loop and vice versa.
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On-Line BCRB

Off-Line BCRB

Fig. 2. Comparison between analytical and simulated MSE in various
positions of the block, SNR=10 dB,σw/T = 10−4 , BPSK in DA mode.

Fig. 2 presents versus time index, both the DA MSE and
BCRBs (on-line and off-line) for a SNR= 10 dB. By increas-
ing the number of observations, the on-line performance is
improved. The on-line bound thus decreases and converges
to its asymptote given by (63). The one forward MSE also
decreases and saturates near the corresponding on-line bound.
This saturation is both due to the time varying delay and the
self noise (see (48)). The same figure shows the FB recursion
MSE curves and their corresponding lower limit given by the
off-line BCRB. One notes that there is a gain of3 dB in terms
of MSE in the center of the block by using the FB algorithm
and that, similarly, the on-line BCRB is higher than the off-line
BCRB. It is also noted that, the performance of the proposed
off-line FB is better than that of one on-line forward iteration
and even than that of the multiple-forward scheme. We would
also like to point out that we only need two forward-backward
iterations to reach the steady state. Finally, there is a good
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agreement between the simulated and the theoretical results
of section III which validates our linear analytical model.
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Fig. 3. MSE versusτ0
T

in the center of the observation block for various
SNRs andσw/T values, 16QAM in DA mode.

Fig. 3 displays the mean square error of the time delay
estimation versus the mean value of the time delay in the
center of the observation block for various SNRs and time
delay standard deviation valuesσw when using a 16QAM
modulation. It illustrates that the MSE decreases for lower
σw and higher SNR values.

0 5 10 15 20 25 30 35 40
−36

−34

−32

−30

−28

−26

−24

−22

Observation Block Length

B
C
R
B

[d
B
]

Off-Line and On-Line BCRBs

 

 
On-Line BCRB
On-Line Asymptote
Off-Line BCRB

N=4

N=10
N=25 N=40

Fig. 4. BCRBs for various positions and different block lengths, SNR=10dB,
σw/T = 10−4, BPSK in DA mode.

Fig. 4 depicts the off-line and the on-line BCRB at each time
index for different block lengths as well as the infinite block
length on-line asymptote (given by (63)). Once again, one can
conclude that the off-line bound is always lower than the on-
line bound independently of the observation block size. Also,
the number of observations processed at the synchronizer has
a great impact on the system performance. It is noted that the
best time estimate in an off-line context, can be expected atthe
center of the observation block. In fact, at this position, both
past and future observations, which are strongly correlated, are
used for the timing recovery. On the contrary, less information
is fed to the synchronizer at the borders of the block where
mostly only past (resp. future) observation is used by the
forward (resp. backward) recursion.

In Fig. 5.a (resp. Fig. 5.b), we compare, versus time index,
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Fig. 5. MSE and BCRB in various positions in the block, SNR=10dB,
σw = 10−4, BPSK signals.
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Fig. 6. MSE and BCRB in various positions in the block, SNR=10dB,
σw = 10−4, 16QAM signals.

the MSE (resp. the on-line and off-line BCRB) for respectively
the DA, NDA and CA synchronization mode, for BPSK
modulated signals. Similar curves are drawn in Fig. 6 for
16QAM modulated signals. For the CA mode, the encoder
is composed of two identical RSCs concatenated in parallel
with systematic rater = 1

2 and with generator polynomials
(1, 0, 1, 1) and(1, 1, 0, 1). The LLR values are evaluated after
6 turbo decoding iterations for a BPSK modulation and after
4 turbo decoding iterations for a 16QAM modulation. A large
interleaver is placed between the two RSCs. Similar resultscan
be obtained with soft decoders corresponding to LDPC codes,
Block Turbo Codes or coded modulations. The SNR is fixed
to 10 dB. It is clear that the off-line techniques outperform
the on-line techniques (for any mode DA/NDA/CA). We note
that, logically, the CA mode outperforms the NDA mode and
approaches the DA mode. As expected, similar conclusions to
those drawn in Fig. 2 can be obtained for the corresponding
BCRBs in the various modes (DA/NDA/CA).

Fig. 7 (resp. Fig. 8) displays the MSE and BCRB curves
versus the SNR at the center position of the observation block
of both the on-line and off-line scenarios for the DA, NDA
and CA modes for a BPSK (resp. 16QAM) modulated signal.
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Fig. 7. On-Line and Off-Line BCRB versus SNR,σw/T = 10−4, Block
length= 2000, BPSK signal.
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length= 2000, 16QAM signal.

For both the on-line and off-line approaches, the CA mode
outperforms the NDA mode and approaches the DA mode
over a large interval of SNRs. However, better performance
can sometimes be achieved with the off-line NDA scenario
compared to the on-line CA scenario for BPSK signals.
According to Fig. 7 when the SNR≥ −2dB (resp. SNR
≥ 7dB) the off-line BCRB of the NDA mode is lower than the
on-line BCRB in the CA mode (resp. the MSE of the NDA
forward-backward algorithm is lower than the MSE of CA
forward algorithm). Equivalent performance is expected with
the off-line NDA scenario and the on-line CA scenario using a
16QAM modulation for a SNR inferior to−2dB (see Fig. 8).
For such a case, the NDA off-line loop is easier to implement
than the on-line CA approach. For high SNRs, the off-line
and the on-line BCRBs merge. In other words, the theoretical
Bayesian time recovery problem becomes equivalent to a
deterministic time delay estimation. However, as illustrated
by the MSE curves of Fig. 7 and Fig. 8, in practice there is
an advantage for the off-line approach as the self-noise is less
critical for this mode than for the on-line mode. For mid-range
SNRs, the off-line scenario is more advantageous than the on-
line scenario: as one can expect from the BCRB study, a gain

of 3 dB is brought by the use of thea priori information.
At low SNR, the CA and the NDA modes merge and the
DA mode achieves lower errors. Actually, in modern systems,
receivers are often constrained to work at low to medium SNRs
so that one can benefit from the advantages brought by the off-
line and even the CA approaches.

VI. CONCLUSION

In this paper, an off-line smoothing algorithm for dynamical
time delay recovery is proposed. Theoretical performance of
the off-line technique is derived and fits well the simulation
results. The Bayesian CRB is also evaluated for DA, NDA
and CA estimators for both off-line and on-line scenarios.
The presented algorithm reaches a MSE performance close to
the Bayesian CRB and outperforms the conventional on-line
timing detectors. One forward-backward iteration outperforms
several one way processing iterations over a large range
of observation block lengths. Simulation results show the
improvement brought by respectively the off-line and the CA
schemes. The NDA off- line approach is simple to implement
as it just averages two gradient descent trajectories. Therefore,
trading off implementation complexity and performance, the
NDA off-line approach can be preferable to the CA on-line
scheme.

APPENDIX A

According to (4), (23) and (30), for the forward algorithm
we have:

{

τ̂
(F )
k =τ̂

(F )
k−1 + γ(τ̂

(F )
k−1 − τk) + qk

τk =τk−1 + wk.
(108)

Based on (108), we have:

τk − τ̂
(F )
k = (1 + γ)(τk − τ̂

(F )
k−1)− qk

= (1 + γ)k−1(τ1 − τ̂
(F )
1 ) +

k
∑

i=2

wi(1 + γ)k−i+1

−
k
∑

i=2

qi(1 + γ)k−i. (109)

This leads to the estimation bias of the time delay after only
one forward loop given by (31).

APPENDIX B
The MSE expression is given by:

M
(FB)
k =

1

4
M

(B)
k +

1

4
M

(F )
k +

1

2
E
[(

τk − τ̂
(B)
k

)(

τk − τ̂
(F )
k

)]

.

(110)
Given thatτN− τ̂

(B)
N = τN− τ̂

(F )
N , thus using (109) fork = N

and (33), we find that:

τk − τ̂
(B)
k =(1 + γ)2N−k−1(τ1 − τ̂

(F )
1 ) +

N
∑

i=2

wi(1 + γ)2N−k−i+1

−
N
∑

i=2

qi(1 + γ)2N−k−i −
N
∑

i=k+1

wi(1 + γ)i−k

−
N−1
∑

i=k+1

qi(1 + γ)i−k − qk. (111)
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Thus, from (110), the MSE expression after one for-
ward/backward iteration is given by (40).

APPENDIX C

We initialize (at iterationm ≥ 2) the first estimate of
the forward algorithm at the last estimate of the backward
algorithm of the previous iteration.

According to the iterative processing of the forward algo-
rithm specified in equation (111), the estimation error at the
end of the backward loop is equal to the initial error of the
second iteration of the forward loop. Thus:

τ1 − τ̂
(F ),2
1 = τ1 − τ̂

(B),1
1 . (112)

The expression ofτk− τ̂
(B),1
k is provided by (111). Fork = 1:

τ1 − τ̂
(F ),2
1 = τ1 − τ̂

(B),1
1

= (1 + γ)2N−2(τ1 − τ̂
(F ),1
1 )

+

N
∑

i=2

wi(1 + γ)2N−i −
N
∑

i=2

qi(1 + γ)2N−1−i

−
N
∑

i=2

wi(1 + γ)i−1 −
N−1
∑

i=1

qi(1 + γ)i−1.(113)

Similarly, we use for the following iteration:

τ1 − τ̂
(F ),3
1 = τ1 − τ̂

(B),2
1 . (114)

Based on (??) and fork = 1:

τ1 − τ̂
(B),2
1 = (1 + γ)2N−2(τ1 − τ̂

(F ),2
1 ) +

N
∑

i=2

wi(1 + γ)2N−i

−
N
∑

i=2

qi(1 + γ)2N−i−1 −
N
∑

i=2

wi(1 + γ)i−1

−
N−1
∑

i=1

qi(1 + γ)i−1 (115)

Introducing (113) into (115), we obtain:

τ1 − τ̂
(B),2
1 = τ1 − τ̂

(F ),3
1 . (116)

By induction, at iterationm we obtain:

τ1 − τ̂
(F ),m
1 = (1 + γ)(2N−2)×(m−1)(τ1 − τ̂

(F ),1
1 ) (117)

+ Ω(m)

[ N
∑

i=2

wi(1 + γ)2N−i − qi(1 + γ)2N−1−i

]

− Ω(m)

[ N
∑

i=2

wi(1 + γ)i−1 +

N−1
∑

i=1

qi(1 + γ)i−1

]

,

whereΩ(m) is given by (43). According to expressions of
τk − τ̂

(F )
k and τk − τ̂

(B)
k respectively in (109) and (111)

and by replacingτ1 − τ̂
(F )
1 with τ1 − τ̂

(F ),m
1 from (117), at

iterationm and thekth observation, we obtain the expression

of τk − τ̂
(F ),m
k (resp.τk−τ̂

(B),m
k ) given by (118) (resp. (119)):

τk − τ̂
(F ),m
k = (1 + γ)(2N−2)×(m−1)+k−1(τ1 − τ̂

(F ),1
1 )

+ Ω(m)

N
∑

i=2

[

wi

(

(1 + γ)2N−1+k−i − (1 + γ)k+i−2
)

]

− Ω(m)

[ N
∑

i=2

qi(1 + γ)2N−2+k−i +

N−1
∑

i=1

qi(1 + γ)k+i−2

]

−
k
∑

i=2

(1 + γ)k−i (qi + wi(1 + γ)) , (118)

τk − τ̂
(B),m
k = (1 + γ)(2N−2)×(m−1)+2N−k−1(τ1 − τ̂

(F ),1
1 )

+Ω(m)

[ N
∑

i=2

wi(1 + γ)4N−k−1−i − qi(1 + γ)4N−k−2−i

]

−Ω(m)

[ N
∑

i=2

wi(1 + γ)2N−k+i−2 +
N−1
∑

i=1

qi(1 + γ)2N−k+i−2

]

+

N
∑

i=2

wi(1 + γ)2N−k−i+1 −
N
∑

i=2

qi(1 + γ)2N−k−i

−
N
∑

i=k+1

wi(1 + γ)i−k −
N−1
∑

i=k

qi(1 + γ)i−k
. (119)

The previous expressions lead to the estimation bias afterm
iterations using the forward (resp. backward) algorithm given
by (41) (resp. (44) ) and the MSE expressions given by (42)
and (45).

APPENDIX D

• Derivation of E
[

ẋk,1(τk)
2

]

:

We have that:

E

[

ẋk,1(τk)
2

]

= E

[[

∑

m

ak−mġ(mT ) + ℜ{v̇k(τk)}
]

×
[

∑

n

ak−nġ(nT ) + ℜ{v̇k(τk)}
]]

= E

[

∑

m

a2k−mġ(mT )2

+
N
∑

i=1

ℜ{ni}2ḣ(iT − kT − τk)
2

]

=
∑

m

ġ(mT )2 +
σ2

2
g̈(0). (120)

• Derivation of E
[

tanh
(

λk

2 +
xk,1(τk)

σ2

)2
]

:

Based on (64) and given the LLR,λk, the pdf ofxk,1(τk)
is:

pxk,1(τk)(x) =
1

2 cosh
(

λk

2

)√
2πσ

[

exp

(

λk

2

)

exp

(

− (x− 1)2

2σ2

)

+ exp

(

−λk

2

)

exp

(

− (x+ 1)2

2σ2

)]

=
1√
2πσ

exp

(

−x2 + 1

2σ2

)

cosh

(

λk

2
+

x

σ2

)

. (121)
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Consequently:

E

[

tanh

(

λk

2
+

xk,1(τk)

σ2

)2 ]

=

∫ +∞

−∞
tanh

(

λk

2
+

x

σ2

)2 exp
(

−
x2+1
2σ2

)

cosh
(

λk

2

)√

2πσ
cosh

(

λk

2
+

x

σ2

)

dx

=
exp

(

−
1

2σ2

)

cosh
(

λk

2

)

√

2πσ

∫ +∞

−∞

sinh
(

λk

2
+ x

σ2

)2

cosh
(

x

σ2

) exp

(

−

x2

2σ2

)

dx

Using againsinh(x)2 = cosh(x)2 − 1, we find:

E

[

tanh

(

xk,1(τk)

σ2

)2 ]

=
exp

(

− 1
2σ2

)

cosh
(

λk

2

)√
2πσ

[

Ik −
∫ +∞

−∞

exp
(

− x2

2σ2

)

cosh
(

λk

2
+ x

σ2

)dx

]

,(122)

where

Ik =

∫ +∞

−∞

cosh

(

λk

2
+

x

σ2

)

exp

(

− x2

2σ2

)

dx.

As cosh(a+b) = cosh(a) cosh(b)+sinh(a) sinh(b) and given
that the integral overR of an odd function is equal to0, thus
using (123),
∫ +∞

0

exp(−βx2) cosh(ax)dx =
1

2

√

π

β
exp

(

a2

4β

)

, for β > 0,

(123)
we obtain:

Ik = cosh

(

λk

2

)√
2πσ exp

(

1

2σ2

)

. (124)

Thus:

E

[(

λk

2
+

xk,1(τk)

σ2

)2 ]

= 1−
exp

(

− 1
2σ2

)

cosh
(

λk

2

)√
2πσ

∫ +∞

−∞

exp
(

− x2

2σ2

)

cosh
(

λk

2
+ x

σ2

)dx.(125)

• Derivation of E
[

tanh
(

xk,1(τk)
σ2

)2
]

:

E

[

tanh
(

xk,1(τk)
σ2

)2
]

is a special case of the previous

result and can be obtained by takingλk = 0.
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