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a negative-index material

Christophe Hazard∗ and Sandrine Paolantoni∗

October 31, 2017

Abstract

The purpose of this paper is to investigate the spectral effects of an interface between vacuum
and a negative-index material (NIM), that is, a dispersive material whose electric permittivity and
magnetic permeability become negative in some frequency range. We consider here an elementary
situation, namely, 1) the simplest existing model of NIM : the non dissipative Drude model, for which
negativity occurs at low frequencies; 2) a two-dimensional scalar model derived from the complete
Maxwell’s equations; 3) the case of a simple bounded cavity: a polygonal domain partially filled with
a portion of Drude material. Because of the frequency dispersion (the permittivity and permeability
depend on the frequency), the spectral analysis of such a cavity is unusual since it yields a nonlinear
eigenvalue problem. Thanks to the use of an additional unknown, we linearize the problem and we
present a complete description of the spectrum. We show in particular that the interface between
the NIM and vacuum is responsible for various resonance phenomena related to various components
of an essential spectrum.

1 Introduction

An electromagnetic negative-index material (NIM), often also called left-handed material, is a material
whose microscopic structure leads to an unusual macroscopic behavior: in some frequency range(s), both
macroscopic electric permittivity and magnetic permeability (or at least their real parts) become negative.
Such materials were first introduced theoretically in the late sixties by Veselago [27] who exhibited the
concept of negative refraction. The potentialities of NIMs for practical applications were investigated
about 30 years later, mainly after the famous paper by Pendry [23] who opened the quest for spectacular
devices such as the perfect flat lens or the invisibility cloak. Since then, these extraordinary materials have
generated a great effervescence among the communities of physicists and mathematicians. Surprisingly
very little has been achieved in the spectral analysis of systems involving a NIM. The present paper
intends to bring a contribution in this framework. Its purpose is to show on a simple example that the
presence of an interface between a NIM and a usual material is responsible for an essential spectrum.

One inherent difficulty of the spectral analysis of NIMs follows from an intrinsic physical property of
such materials: frequency dispersion. Indeed, an electromagnetic NIM is necessarily a dispersive material
in the sense that in the frequency domain, its permittivity and permeability (thus also the wave velocity)
depend on the frequency. As a consequence, contrarily to the case of a usual dielectric medium, the
time-harmonic Maxwell’s equations depend non-linearly on the frequency. Hence, when looking for the
spectrum of an electromagnetic device involving a NIM, one has to solve a non-linear eigenvalue problem.
This issue is very rarely mentioned in the mathematical literature. Indeed, most existing works concern
the behavior of NIMs in the frequency domain, that is, propagation of time-harmonic waves at a given
frequency. Our study relies on these works, which enlighten the fundamental role played by the contrasts,
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1POEMS (Propagation d’Ondes: Etude Mathématique et Simulation) is a mixed research team (UMR 7231) be-
tween CNRS (Centre National de la Recherche Scientifique), ENSTA-ParisTech (Ecole Nationale Supérieure de Techniques
Avancées) and INRIA (Institut National de Recherche en Informatique et en Automatique).

1



that is, the respective ratios of permittivity and permeability across the interface. The first study in this
context is due to Costabel and Stephan [14] in the mid-eighties. They considered a scalar transmission
problem (which involves only one contrast) and showed by an integral equation technique that in the
case of a smooth interface, the transmission problem is well-posed if and only if the contrast is different
from the critical value −1. The detailed study of this critical value of the contrast is achieved in [22] and
more recently in [11], both for smooth interfaces. The case of a two-dimensional non-smooth interface
was tackled about fifteen years after the pioneering work of Costabel and Stephan: it was understood
in [8] that in the presence of a corner, this critical value becomes a critical interval (which contains −1)
depending on the angle of the corner. About another fifteen years later, the elegant T-coercivity technique
gave a new light on these critical sets for two- and three-dimensional scalar transmission problems [5, 21],
as well as Maxwell’s equations [6, 7]. An alternative point of view, based on the so-called Neumann–
Poincaré operator, has received recently a resurgence of interest [1, 2, 3, 9, 24]: it provides another way to
investigate these critical sets. From a physical point of view, the critical sets of the contrast are related to
remarkable physical phenomena. On the one hand, the critical value −1 associated to a smooth interface
ensures the existence of surface waves (localized near the interface) called surface plasmons [17, 19]. On
the other hand, the critical interval associated with a corner on the interface gives rise to a possible
concentration of energy near the vertex, which has been interpreted as a “black hole” effect at the corner
[4].

Our aim is to investigate the spectral consequences of these critical sets. As mentioned above, fre-
quency dispersion leads us to a non-linear eigenvalue problem. Fortunately, there is a skilful mean to
get rid of this non-linearity. Indeed, thanks to the introduction of suitable auxiliary fields, one is able
to rewrite this non-linear eigenvalue problem as an equivalent linear self-adjoint one which involves both
electromagnetic and auxiliary fields. This augmented formulation technique was introduced by Tip [25]
for Maxwell’s equations in dissipative and dispersive linear media, starting from fundamental assump-
tions: causality (causes precede effects) and passivity (nothing comes from nothing). It applies actually
in a very wide frame of systems which observe these assumptions [16]. It is used in [12] to achieve a
complete spectral analysis of Maxwell’s equations in the case of a plane interface between a NIM and
vacuum. It is also developed in [10] to perform the numerical calculation of modes for cavities or photonic
crystals containing a dissipative NIM.

In the present paper, we show how to apply and take advantage of this augmented formulation
technique in an elementary situation. Firstly, instead of the three-dimensional Maxwell’s equations, we
deal with a two-dimensional scalar equation (which can be derived from Maxwell’s equations in a medium
which is invariant in one space direction). Secondly, we choose the simplest existing model of NIM, namely
the non dissipative Drude model, for which negativity occurs at low frequencies. Finally, we consider
the case of a bounded cavity consisting of two polygonal parts: one part filled with a Drude material
and the complementary part filled with vacuum. We will see that contrarily to a cavity filled with a
usual dielectric (for which the spectrum is always purely discrete: it is made of a sequence of positive
eigenvalues which tends to +∞), the presence of the Drude material gives rise to various components of
an essential spectrum corresponding to various unusual resonance phenomena:

(i) A low frequency bulk resonance: the zero frequency is an accumulation point of positive eigenvalues
whose associated eigenvectors are confined in the Drude material.

(ii) A surface resonance: for the particular frequency which corresponds to the critical value −1 of
the contrast, localized highly oscillating vibrations are possible near any “regular point” of the interface
between the Drude material and the vacuum (by “regular point”, we mean a point which is not a vertex
of a corner).

(iii) A corner resonance: for any frequency in the frequency intervals which correspond to the critical
intervals of the contrast associated to each corner, localized highly oscillating vibrations are possible near
the vertex, which is related to the “black hole” phenomenon.

The paper is organized as follows. In section 2, we present our scalar problem as well as its augmented
formulation and give the main results of the paper. Section 3 is devoted to the proof of these results,
which mainly consists in investigating the above mentioned resonance phenomena. We conclude with
some perspectives.

Throughout the paper, we use the following notations for usual functional spaces. For an open set
Ω ⊂ Rd (d ≥ 1), we denote by D(Ω) the space of infinitely differentiable functions with compact support
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Figure 1: Left : The polygonal cavity C divided into N (NIM: dark gray) and V (vacuum: light gray).
Middle: an inner vertex Cp of the interface Σ between N and V. Right: a boundary vertex Bq of Σ.

contained in Ω, by L2(Ω) the space of square integrable functions in Ω, by Hs(Ω), for s ∈ R, the usual
Sobolev space of order s and by H1

0 (Ω) the closure of D(Ω) in H1(Ω). Moreover, in order to avoid the
appearance of non meaningful constants in inequalities, we employ the symbols . and & which mean
that the inequality is satisfied up to a positive factor which does not depend on the parameters involved
in the inequality (for instance, |f(x)| . 1 means that f is bounded).

2 Formulation of the problem and main results

2.1 Original non-linear problem

Our aim is to study the spectral properties of a two-dimensional bounded cavity partially filled with
a NIM. We consider a polygonal cavity C (bounded open set of R2) divided into two open polygonal
domains N and V (such that N ∪V = C and N ∩V = ∅, see fig. 1). As these notations suggest, N and V
are filled respectively with a NIM and vacuum. We denote by Σ the interface between N and V (that is,
Σ := ∂N ∩ ∂V), which clearly consists of one or several polygonal curve(s). In the case of several curves,
we assume that they do not intersect (in particular checkerboard-like cavities are excluded).

We consider in this paper the simplest model of NIM, known as the non-dissipative Drude model, for
which the electric permittivity and the magnetic permeability are respectively defined in the frequency
domain by

εNλ := ε0

(
1− Λe

λ

)
and µNλ := µ0

(
1− Λm

λ

)
, (1)

where λ := ω2 denotes the square of the (circular) frequency, ε0 and µ0 are the permittivity and the
permeability of the vacuum and the coefficients Λe and Λm are positive constants which characterize the
Drude material. Such a material is a negative material at low frequencies (since εNλ < 0 if 0 < λ < Λe,
respectively µNλ < 0 if 0 < λ < Λm) and behaves like the vacuum at high frequencies (since εNλ → ε0 and
µNλ → µ0 when λ→ +∞). Note that the ratio µNλ /µ0 (respectively, εNλ /ε0) is equal to the critical value
−1 if λ = Λm/2 (respectively, λ = Λe/2).

In V, the permittivity and permeability are those of the vacuum, which leads us to introduce two
piecewise constant functions defined in the cavity C by

ελ(x) := ε0

(
1− 1N (x)

Λe

λ

)
and µλ(x) := µ0

(
1− 1N (x)

Λm

λ

)
(2)

for x ∈ C, where 1N denotes the indicator function of N . Our purpose is to investigate the following
eigenvalue problem:

Find λ ∈ C and a nonzero ϕ ∈ H1
0 (C) such that

div

(
1

µλ
gradϕ

)
+ λ ελ ϕ = 0 in C. (3)
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Figure 2: The dots on the λ-axis represent the inverse image of σ(−∆dir) =
{
λdir
n ; n ≥ 1

}
under the

function f defined in (5) (in the case Λe < Λm).

The latter equation has to be understood in the distributional sense. In other words, the above problem
is a condensed form of the following system:

∆ϕ+ λ εNλ µ
N
λ ϕ = 0 in N , (4a)

∆ϕ+ λ ε0µ0 ϕ = 0 in V, (4b)

[ϕ]Σ = 0 and

[
1

µλ

∂ϕ

∂n

]
Σ

= 0, (4c)

ϕ = 0 on ∂C, (4d)

where [f ]Σ denotes the jump of a function f across Σ, that is, the difference of the traces of f obtained
from both sides. In the transmission conditions (4c), n denotes a unit normal to Σ. These conditions
couple the Helmholtz equations (4a) and (4b) on both sides of Σ. The Dirichlet boundary condition (4d)
is contained in the choice of the Sobolev space H1

0 (C) for ϕ.
The above eigenvalue problem is clearly non-linear with respect to λ, unless N is empty (i.e., C only

contains vacuum). In this latter case, (3) is linear since it reduces to (4b)-(4d), which means that λ ε0µ0

is an eigenvalue of the Dirichlet Laplacian, that is, the self-adjoint operator −∆dir defined by

−∆dirϕ := −∆ϕ, ∀ϕ ∈ D(−∆dir) :=
{
ϕ ∈ H1

0 (C); ∆ϕ ∈ L2(C)
}
.

It is well known that the spectrum σ(−∆dir) of this operator is purely discrete: it is composed of a
sequence of positive eigenvalues of finite multiplicity which tends to +∞.

On the other hand, if V = ∅ (i.e., if C only contains the Drude material), (3) reduces to (4b)-(4d),
which means that λ εNλ µ

N
λ is an eigenvalue the operator −∆dir defined above. Hence the set of eigenvalues

of our non-linear problem is simply the inverse image of σ(−∆dir) under the function f defined by

f(λ) := λ εNλ µ
N
λ = λ ε0µ0

(
1− Λe

λ

)(
1− Λm

λ

)
, (5)

which is represented in fig. 2. As f(λ) tends to +∞ when λ goes to 0 or +∞, the eigenvalues accumulate
at +∞ as well as 0.

Of course, when both vacuum and Drude material are present in the cavity, such simple arguments
can no longer be used. We show in the next subsection that the non-linear eigenvalue problem (3)
can be transformed equivalently into a linear one which involves a self-adjoint operator, thanks to the
introduction of an additional unknown. This transformation may seem magical at first glance, especially
the fact that the resulting problem is self-adjoint. As mentioned in the introduction, it is actually a
simple application of a general method [16, 25] (which includes dissipative problems).

2.2 Linearization of the problem

Let us first introduce some notations. We denote by R : L2(C) → L2(N ) the operator of restriction
from C to N and by R∗ : L2(N ) → L2(C) the operator of extension by 0 from N to C, that is, for all
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(ϕ,ψ) ∈ L2(C)× L2(N ),

Rϕ := ϕ|N and R∗ψ(x) :=

{
ψ(x) if x ∈ N ,
0 if x ∈ V.

These operators are clearly adjoint to each other since∫
N
Rϕ(x)ψ(x) dx =

∫
C
ϕ(x)R∗ψ(x) dx.

Note that RR∗ is the identity in L2(N ), whereas R∗R is the operator of multiplication by 1N in L2(C).
We shall keep the same notations R and R∗ if ϕ and ψ are replaced by vector-valued functions in
L2(C)2 × L2(N )2.

The construction of a linear eigenvalue problem equivalent to (3) is quite simple. Suppose that
λ /∈ {0,Λm}, so that µ−1

λ and ελ remain bounded. Using the definition (2) of ελ and µλ, which shows in
particular that

1

µλ
=

1

µ0

(
1 + 1N

Λm

λ− Λm

)
,

we can rewrite (3) in the form

1

ε0µ0
div

{(
1 + 1N

Λm

λ− Λm

)
gradϕ

}
+ (λ− 1N Λe) ϕ = 0.

Hence, setting

u :=
Λm

λ− Λm
R gradϕ, (6)

equation (3) is equivalent to

−1

ε0µ0
div {gradϕ+R∗u}+ 1N Λe ϕ = λϕ in C, (7a)

ΛmR gradϕ+ Λm u = λu in N , (7b)

where the latter equation is nothing but the definition (6) of u. In this system of equations, λ only appears
in the right-hand side: it is a linear eigenvalue problem for the pair (ϕ, u). To sum up, if λ /∈ {0,Λm}, a
function ϕ ∈ H1

0 (C) is a solution to (3) if and only if (ϕ, u) ∈ H1
0 (C)× L2(N )2 satisfies

A
(
ϕ
u

)
= λ

(
ϕ
u

)
(8)

where

A
(
ϕ
u

)
:=

 −1

ε0µ0
div {gradϕ+R∗u}+ 1N Λe ϕ

ΛmR gradϕ+ Λm u

 . (9)

Our aim is to investigate the spectrum of A. We first have to make precise the proper functional framework
in which A is self-adjoint. Consider the Hilbert space

H := L2(C)× L2(N )2

equipped with the inner product(
(ϕ, u), (ϕ′, u′)

)
H

:= ε0µ0

∫
C
ϕ(x)ϕ′(x) dx+

1

Λm

∫
N
u(x) · u′(x) dx. (10)

Proposition 1. The operator A defined by (9) with domain

D(A) :=
{

(ϕ, u) ∈ H1
0 (C)× L2(N )2; div(gradϕ+R∗u) ∈ L2(C)

}
(11)

is selfadjoint and non-negative in H.
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Proof. Consider the following sesquilinear form a defined for all pairs Φ := (ϕ, u) and Φ′ := (ϕ′, u′) in
D(a) := H1

0 (C)× L2(N )2 equipped with the usual norm, denoted by ‖ · ‖D(a):

a(Φ,Φ′) :=

∫
C
(gradϕ+R∗u) · (gradϕ′ +R∗u′) dx+ Λeε0µ0

∫
N
ϕϕ′ dx.

Thanks to Green’s formula, we deduce from the definition (9) of A that

(AΦ,Φ′)H = a(Φ,Φ′) ∀Φ ∈ D(A), ∀Φ′ ∈ D(a). (12)

It is clear that a is continuous, non-negative and symmetric in D(a), which is continuously embedded in
H. Hence, if there exist λ ∈ R and m > 0 such that

a(Φ,Φ) + λ‖Φ‖2H ≥ m‖Φ‖2D(a) ∀Φ ∈ D(a), (13)

it is well-known [20] that (12) defines a unique non-negative self-adjoint operator A with domain

D(A) :=
{

Φ ∈ D(a); ∃Ψ ∈ H, ∀Φ′ ∈ D(a), a(Φ,Φ′) = (Ψ,Φ′)H
}
.

It is easy to see that this definition coincide with (11). In order to check inequality (13), note that for
any λ > 0, we have

‖gradϕ+R∗u‖2L2(C) =

∥∥∥∥∥
√

Λm

λ
gradϕ+

√
λ

Λm
R∗u

∥∥∥∥∥
2

L2(C)

+

(
1− Λm

λ

)
‖ gradϕ‖2L2(C) +

(
1− λ

Λm

)
‖u‖2L2(N ).

As a consequence,

a(Φ,Φ) + λ‖Φ‖2H ≥
(

1− Λm

λ

)
‖ gradϕ‖2L2(C) + λε0µ0 ‖ϕ‖2L2(C) + ‖u‖2L2(N ).

So, if λ > Λm, inequality (13) holds with m = min(1− Λm/λ, λε0µ0, 1).

2.3 Main results

Proposition 1 tells us that the spectrum σ(A) of A is real and non-negative. Contrarily to the case of a
cavity filled by ordinary materials, this spectrum is not only discrete. The purpose of the present paper
is precisely to describe and analyze the content of the essential spectrum σess(A) of A.

Recall (see, e.g., [15]) that the discrete spectrum σdisc(A) is the set of isolated eigenvalues of finite
multiplicity. The essential spectrum is its complement in the spectrum, that is, σess(A) := σ(A)\σdisc(A),
which contains either accumulation points of the spectrum or isolated eigenvalues of infinite multiplicity.
Our study of σess(A) is based on a convenient characterization of the essential spectrum: a real number
λ belongs to σess(A) if and only if there exists a sequence (Φn)n∈N ⊂ D(A) such that

‖Φn‖H = 1, lim
n→∞

‖AΦn − λΦn‖H = 0 and lim
n→∞

(Φn,Ψ)H = 0, ∀Ψ ∈ H,

which is called a Weyl sequence for λ (or a singular sequence). The two first conditions actually charac-
terize any point of σ(A), whereas the last one (weak convergence to 0) is specific to σess(A).

We summarize below the main results of the paper about the various components of σess(A).
First, the value λ = Λm is an eigenvalue of infinite multiplicity of A (see Proposition 3). The non-

linear eigenvalue problem (3) does not make sense for this particular value, since µ−1
λ becomes infinite

in N . We will see that this eigenvalue of A is actually an artifact of the augmented formulation (see
remark 4).

The other components of σess(A) correspond to various unusual resonance phenomena. A bulk res-
onance in the Drude material corresponds to the value λ = 0, which is an accumulation point of the
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Figure 3: Examples of cavities leading to an essential spectrum which is symmetric with respect to Λm/2.
Each column shows two different cavities leading to the same essential spectrum represented by dots and
a thick line on the λ-axis.

discrete spectrum. A surface resonance at the interface Σ between N and V corresponds to the value
λ = Λm/2. Finally, a corner resonance at every vertex of the interface Σ gives rise to a continuous set
in the essential spectrum. To make this set precise, we have to distinguish between the inner vertices
{Cp ∈ Σ; p = 1, . . . , P} located inside C and the boundary vertices {Bq ∈ Σ; q = 1, . . . , Q} located on
the boundary ∂C (see fig. 1). On the one hand, for an inner vertex Cp, the corner resonance is observed
in two intervals which are symmetric with respect to Λm/2 :

Jp :=

{
λ ∈ R; 0 <

∣∣∣∣λ− Λm

2

∣∣∣∣ < Λm

2

∣∣∣1− αp
π

∣∣∣} (14)

=

]
Λm

2

(
1−

∣∣∣1− αp
π

∣∣∣) , Λm

2

[
∪
]

Λm

2
,

Λm

2

(
1 +

∣∣∣1− αp
π

∣∣∣)[ , (15)

where αp ∈ (0, 2π)\{π} denotes the angle of the Drude sector as shown in fig. 1. We see that if αp is close
to 0 or 2π (which means that the corner is sharp either in N or in V), this set fills almost ]0,Λm[\{Λm/2},
whereas if αp is close to π, this set concentrates near Λm/2 (it becomes empty if αp = π, i.e., no corner).
On the other hand, for a boundary vertex Bq, the corner resonance is observed in only one interval defined
by

Iq :=

]
Λm

2
min

(
1,

2βq
γq

)
,

Λm

2
max

(
1,

2βq
γq

)[
,

where the angles βq, γq ∈ (0, 2π) are defined in fig. 1. As above, if βq/γq is close to 0 (respectively,
to 1), this set fills almost ]0,Λm/2[ (respectively ]Λm/2,Λm[), whereas if βq/γq is close to 1/2, this set
concentrates near Λm/2 and becomes empty if βq = γq/2.

The main result of this paper is the following theorem whose proof is the subject of the next section
(in particular section 3.6).

Theorem 2. Suppose that N 6= ∅ and V 6= ∅. Then the essential spectrum of A is given by

σess(A) = {0,Λm/2,Λm} ∪
⋃

p=1,P

Jp ∪
⋃

q=1,Q

Iq.

Moreover the eigenvalues of the discrete spectrum σdisc(A) accumulate at 0 and +∞.

Figures 3 and 4 show various examples which illustrate this theorem.
In fig. 3, each cavity has an essential spectrum which is symmetric with respect to Λm/2. This clearly

holds if there is no boundary vertex Bq (that is, if Σ ∩ ∂C = ∅), since the sets Jp are symmetric. This is
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Figure 4: Examples of cavities leading to an essential spectrum which is not symmetric with respect to
Λm/2. In each column, the domains filled by the Drude material and vacuum are interchanged.

shown in the left column where we notice that the essential spectrum remains unchanged if we interchange
both media, since Jp is unchanged if αp is replaced by 2π − αp. The middle column highlights the fact
that Iq = ∅ if βq = γq/2, that is, if the angles of both Drude and vacuum sectors at a boundary vertex Bq
are equal. Finally, the right column illustrates the fact that Iq is equal to one of the two intervals which
compose Jp if 2βq/γq = αp/π. Hence, two very different cavities may have the same essential spectrum.

Figure 4 shows examples of cavities leading to an essential spectrum which is no longer symmetric
with respect to Λm/2. We notice that if we interchange both media, the new essential spectrum is simply
deduced from the initial one by a symmetry with respect to Λm/2, which holds true for all cavities
considered here.

3 Exploration of the spectrum

3.1 Preliminaries

We have seen in section 2.2 that the equivalence between (3) and (8) holds if λ is different from 0 and
Λm. Indeed the non-linear eigenvalue problem (3) does not make sense for these particular values which
are poles of ελ and µ−1

λ respectively. On the other hand, these singularities disappear in the linear
eigenvalue problem (8). The following proposition tells us that 0 is not an eigenvalue of A, whereas Λm

is an eigenvalue of infinite multiplicity of A.

Proposition 3. We have KerA = {0} and Ker(A−ΛmI) = H∞⊕H0 where H∞ :=
{

(0, u) ∈ H; div u =

0 in N and u · n = 0 on Σ
}

is of infinite dimension whereas H0 is a finite dimensional subspace of H.

Proof. Suppose that (ϕ, u) ∈ KerA, which means that (ϕ, u) ∈ D(A) satisfies (7a) and (7b) with λ = 0.
Equation (7b) shows that u = −R gradϕ, so that (7a) becomes

1

ε0µ0
div(1V gradϕ) = Λe1Nϕ in C.

The left-hand side of this equation vanishes in N , therefore ϕ = 0 in N , which implies that u = 0.
Moreover, this equation shows that ∆ϕ = 0 in V. The trace of ϕ vanishes on ∂V ∩ ∂C (since ϕ ∈ H1

0 (C))
as well as on Σ (since ϕ is continuous across Σ, see (4c)), which implies that ϕ = 0 in V. We conclude
that (ϕ, u) = (0, 0).

Suppose now that (ϕ, u) ∈ Ker(A−ΛmI), which means that (ϕ, u) ∈ D(A) satisfies (7a) and (7b) with

8



λ = Λm, that is,

−1

ε0µ0
div {gradϕ+R∗u}+ (1N Λe − Λm)ϕ = 0 in C,

R gradϕ = 0 in N .

The latter equation implies that ϕ is constant in N . Assuming for simplicity that ∂N ∩ ∂C 6= ∅, this
constant must vanish (since ϕ|∂C = 0), so the former equation shows on the one hand that ϕV := ϕ|V is
a solution in H1

0 (V) to
−∆ϕV − ε0µ0Λm ϕV = 0 in V,

and on the other hand that u satisfies

div u = 0 in N and u · n =
∂ϕV
∂n

on Σ.

If ε0µ0Λm is not an eigenvalue of the Dirichlet Laplacian in V, we conclude that ϕV = 0. This shows
that Ker(A−ΛmI) coincide in this case with the subspaceH∞ defined in the proposition, whose dimension
is clearly infinite since it contains all pairs (0, curl2D ψ) where ψ ∈ H1(N ) satisfies ψ|Σ = 0 (here, curl2D

denotes the two-dimensional curl of a scalar function, i.e., curl2D ψ := (∂ψ/∂y,−∂ψ/∂x)).
But if by chance, ε0µ0Λm is an eigenvalue of the Dirichlet Laplacian in V, then ϕV can be any

associated eigenfunction, which yields element (φ, u) ∈ Ker(A − ΛmI) with φ 6= 0. Hence in this case,
Ker(A − ΛmI) does not reduce to H∞, but the orthogonal complement of H∞ in Ker(A − ΛmI) has
necessarily a finite dimension since the eigenvalues of the Dirichlet Laplacian have a finite multiplicity.

The above arguments are easily adapted if ∂N ∩ ∂C = ∅.

Remark 4. The above proposition shows that the fact that Λm belongs to the essential spectrum of A is
related to the infinite dimensional subspace H∞. The eigenfunctions (ϕ, u) of this subspace are such that
ϕ = 0. Hence these states cannot be revealed by the nonlinear eigenvalue problem (3). This is why Λm

can be seen as an artifact of the augmented formulation (8).

3.2 Bulk resonance in the Drude material

As mentioned in section 2.3, each point of the essential spectrum of A (except Λm) is related to an
unusual resonance phenomenon. The case of λ = 0 is related to the existence at low frequencies of highly
oscillating vibrations which are confined in the Drude material. This can be understood intuitively from
(4a)–(4d) by first noticing that in the second transmission condition of (4c), 1/µNλ tends to 0 when λ
tends to 0, which shows that on the vacuum side, the normal derivative of ϕ must be small. Hence, in
the vacuum, ϕ is close to a solution to the Helmholtz equation (4b) which vanishes on ∂V ∩ ∂C and such
that ∂ϕ/∂n = 0 on Σ. The eigenvalues λ of this problem are positive, so the only possible solution for
small λ is ϕ|V = 0, which means that ϕ is confined in N . Besides, we have seen in section 2.1 that in
a cavity which only contains a Drude material, eigenvalues accumulate at 0. This gives the idea of the
construction of a Weyl sequence for λ = 0.

Consider a sequence (ϕNn ) of eigenfunctions of the Dirichlet Laplacian in N , i.e., a sequence of nonzero
solutions ϕNn ∈ H1

0 (N ) to −∆ϕNn = λnϕ
N
n , where (λn) is the sequence of associated eigenvalues, which

tends to +∞. The idea is simply to extend ϕNn by 0 in V and introduce the corresponding auxiliary
unknown defined by (6) with λ = 0.

Proposition 5. Let Φn := (ϕn, un) where ϕn := R∗ϕNn and un := −R gradϕn. Then Φn/‖Φn‖H is a
Weyl sequence for λ = 0.

Proof. As ϕNn ∈ H1
0 (N ), we have grad(R∗ϕNn ) = R∗ gradϕNn , so ϕn ∈ H1

0 (C) and un = − gradϕNn ∈
L2(N ). Moreover, div(gradϕn +R∗un) = 0, which shows that Φn ∈ D(A) (see (11)).

Besides, from the definition (9) of A, we see that AΦn = (1NΛe ϕn, 0), so

‖AΦn‖H
‖Φn‖H

.
‖ϕNn ‖L2(N )

‖un‖L2(N )
=

‖ϕNn ‖L2(N )

‖ gradϕNn ‖L2(N )
=

1√
λn
,

9



x1

x2

•
O

vacuum NIM

Figure 5: Cartesian coordinates near a point of the interface Σ.

where the last equality follows from the definition of ϕNn . As λn → +∞, we deduce that 0 is in the
spectrum of operator A.

It is not necessary here to check the weak convergence to 0 of Φn/‖Φn‖H. Indeed, proposition 3 tells
us that 0 is not an eigenvalue of A, so it belongs necessarily to its essential spectrum.

3.3 Surface resonance at the interface between both media

We prove now that λ = Λm/2 also belongs to the essential spectrum. This value corresponds to the
case where µNλ = −µ0, that is, the critical value −1 of the contrast µNλ /µ0, which is known to lead to
an ill-posed time-harmonic problem (see the references quoted in the introduction). As shown below,
it is related to the existence of highly oscillating vibrations that can be localized near any point of the
interface Σ except the vertices. We first show how such surface waves can be derived from our initial
equation (3).

Surface waves

Consider the case of a rectilinear interface between two half-planes. Choose a Cartesian coordinate system
(O, x1, x2) so that the half-plane x1 > 0 is filled by our NIM, whereas x1 < 0 contains vacuum (see fig. 5).
Consider then the equation

div

(
1

µΛm/2
gradψ

)
= 0, (16)

which is deduced from (3) with λ = Λm/2 by removing the term λ ελ ϕ (as shown in the following, this
term acts as a “small” perturbation for highly oscillating solutions). It is readily seen that for any k > 0,
the function exp(ik(x2 − i|x1|) is a solution to (16). It represents a surface wave which propagates in the
direction of the interface and decreases exponentially as x1 → ±∞. Any superposition of such surface
waves (for various k) is still solution to (16). In particular, for a given f ∈ D(R+), the function ψ defined
by

ψ(x) = ψ(x1, x2) :=

∫
R+

f(k) eik(x2−i|x1|) dk

is a solution to (16), as well as

ψn(x) := ψ(nx1, nx2) =

∫
R+

1

n
f

(
k

n

)
eik(x2−i|x1|) dk for n ≥ 1.

Remark 6. By successive integrations par parts, we see that ψ(x) = o(|x|−p) for all p ∈ N as |x| :=√
x2

1 + x2
2 goes to +∞, and the same holds for the first-order partial derivatives of ψ (note that ∂ψ/∂x1

is discontinuous across x1 = 0). This shows in particular that ψ ∈ H1(R2). Hence ψ represents vibrations
which are localized in a bounded region near the interface, whereas ψn becomes more and more confined
near O as n increases. Notice that ψ (as well as ψn) is symmetric with respect to x1 = 0, that is,
ψ(−x1, x2) = ψ(x1, x2).
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A Weyl sequence

Returning to our cavity, we are now able to construct a Weyl sequence for λ = Λm/2. Suppose that
the center O of our coordinate system (O, x1, x2) is a given point of the interface Σ different from the
vertices and that the x1 and x2-axes are chosen such that our medium is described by fig. 5 in a vicinity
of O. More precisely, this means that one can choose a given small enough R > 0 such that BR ⊂ C,
N ∩ BR ⊂ {x1 > 0} and V ∩ BR ⊂ {x1 < 0}, where we have denoted BR := {x ∈ R2; |x| ≤ R} the ball
of radius R centered at O. Let us then define

ϕn := ψn χ and un := −2R gradϕn, (17)

where χ ∈ D(R2) is a cutoff function which vanishes outside BR, is equal to 1 in some ball BR1 with
0 < R1 < R and is symmetric with respect to x1 = 0, that is, χ(−x1, x2) = χ(x1, x2). Note that the
above definition of un follows from (6) with λ = Λm/2.

Proposition 7. Let Φn := (ϕn, un) defined by (17). Then Φn/‖Φn‖H is a Weyl sequence for λ = Λm/2.

Proof. (i) Let us first prove that Φn ∈ D(A). It is clear that ψn is a C∞ function in both half-planes
±x1 > 0 and is continuous at the interface x1 = 0. Hence ϕn ∈ H1

0 (C) (since χ = 0 on ∂C), which implies
that un ∈ L2(N )2. It remains to check that div(gradϕn +R∗un) = −div(s1 gradϕn) belongs to L2(C),
where s1 denotes the sign function s1(x1, x2) := sgnx1. As ϕn is smooth on both sides of the interface,
this amounts to proving that s1 ∂ϕn/∂x1 is continuous across the interface. We have

∂ϕn
∂x1

= ψn
∂χ

∂x1
+
∂ψn
∂x1

χ.

As χ ∈ D(R2) is symmetric with respect to x1 = 0, its partial derivative ∂χ/∂x1 vanishes on the interface.
On the other hand, ψn is continuous but not differentiable on the interface. However it is symmetric with
respect to x1 = 0, so that s1 ∂ψn/∂x1 is continuous across the interface, which yields the desired result.

(ii) We prove now that ‖AΦn− (Λm/2) Φn‖H / ‖Φn‖H tends to 0 as n→∞. First, using the fact that
ψn is solution to (16) where µΛm/2 = −s1 µ0, we infer that

AΦn −
Λm

2
Φn =

 s1

ε0µ0

(
2 gradψn · gradχ+ ψn ∆χ

)
+

(
1NΛe −

Λm

2

)
ψn χ

0

 .

As gradχ and ∆χ vanish outside BR \BR1 , we deduce∥∥∥∥AΦn −
Λm

2
Φn

∥∥∥∥
H

.
∥∥ψn∥∥H1(BR\BR1

)
+
∥∥ψn∥∥L2(BR)

.

Both terms of the right-hand side tend to 0 as n→∞, which follows from the fact that ψ ∈ H1(R2) (see
remark 6). Indeed, by a simple change of variable nx 7→ x, we have on the one hand,∥∥ψn∥∥2

L2(BR)
=

∫
BR

|ψ(nx)|2 dx =
1

n2

∫
BnR

|ψ(x)|2 dx ≤ 1

n2

∥∥ψ∥∥2

L2(R2)
→ 0 (18)

and on the other hand, for j = 1, 2,∥∥∥∥∂ψn∂xj

∥∥∥∥2

L2(BR\BR1
)

=

∫
BnR\BnR1

∣∣∣∣ ∂ψ∂xj (x)

∣∣∣∣2 dx ≤
∥∥∥∥ ∂ψ∂xj

∥∥∥∥2

L2(R2\BnR1
)

→ 0. (19)

It remains to check that ‖Φn‖H & 1. First notice that

‖Φn‖H & ‖un‖L2(N )2 &

∥∥∥∥∂ϕn∂x1

∥∥∥∥
L2(N )

≥
∥∥∥∥∂ψn∂x1

χ

∥∥∥∥
L2(N )

−
∥∥∥∥ψn ∂χ

∂x1

∥∥∥∥
L2(N )

.
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Figure 6: Polar coordinates near an inner vertex Cp (left) and near a boundary vertex Bq (right).

As χ = 1 in BR1 and χ = 0 outside BR, we infer that

‖Φn‖H &

∥∥∥∥∂ψn∂x1

∥∥∥∥
L2(B+

R1
)

− ‖ψn‖L2(B+
R)

∥∥∥∥ ∂χ∂x1

∥∥∥∥
L2(B+

R)

,

where we have denoted B+
R := BR ∩ N . We know from (18) that ‖ψn‖L2(BR) tends to 0, thus so does

‖ψn‖L2(B+
R). Moreover, similarly as in (19), we have∥∥∥∥∂ψn∂x1

∥∥∥∥2

L2(B+
R1

)

=

∫
B+
nR1

∣∣∣∣ ∂ψ∂x1
(x)

∣∣∣∣2 dx −→
∥∥∥∥ ∂ψ∂x1

∥∥∥∥2

L2(R+×R)

> 0 as n→∞.

We conclude that ‖Φn‖H & 1 for large enough n, so ‖AΦn− (Λm/2) Φn‖H / ‖Φn‖H tends to 0 as n→∞.
(iii) Lastly, we prove that Φn converges weakly to 0 as n→∞ (so the same holds true for Φn/‖Φn‖H

since ‖Φn‖H & 1). For any given Φ′ := (ϕ′, u′) ∈ D(C)×D(N )2, we have∣∣∣(Φn,Φ′)H∣∣∣ . ∫
BR

(∣∣ψ(nx)
∣∣+ n

∣∣ gradψ(nx)
∣∣)dx.

So, using again the change of variable nx→ x, we deduce that∣∣∣(Φn,Φ′)H∣∣∣ . ∫
BnR

(
1

n2

∣∣ψ(x)
∣∣+

1

n

∣∣ gradψ(x)
∣∣)dx.

As ψ(x) = o(|x|−p) and gradψ(x) = o(|x|−p) for all p ∈ N as |x| → +∞ (see remark 6), we infer that ψ
and both components of gradψ belong to L1(R2). The conclusion follows.

3.4 Corner resonance at an inner vertex

It remains to deal with the intervals of essential spectrum Jp and Iq defined in section 2.3, associated
respectively with the inner and boundary vertices of the interface Σ between N and V. In this subsection,
we consider the case of an inner vertex Cp near which the NIM fills a sector of angle αp ∈ (0, 2π) (see
fig. 1). The next subsection is devoted to boundary vertices.

Black hole waves

The part of the essential spectrum that we study here is related to the existence of highly oscillating
vibrations localized near Cp, which have been interpreted as a “black hole” phenomenon in [4]. We first
recall the construction of the so-called black hole waves, first introduced in [8]. As in section 3.3, we are
interested in solutions to

div(µ−1
λ gradψλ) = 0 in the whole plane R2, (20)

but instead of a plane interface, we suppose now that the two sectors of NIM and vacuum defined near
Cp are extended up to infinity. More precisely, by choosing polar coordinates (r, θ) ∈ R+ × (−π,+π]

12



Figure 7: For αp = π/4, representation of the real part of the black hole wave riηλ mλ(θ) for λ = Λm/4
(left, mλ given by (24)) and λ = 3Λm/4 (right, mλ given by (25)).

centered at Cp and such that the Drude sector corresponds to |θ| < αp/2 (see fig. 6, left), this equation
writes equivalently as

r
∂

∂r

(
r
∂ψλ
∂r

)
+ µλ

∂

∂θ

(
1

µλ

∂ψλ
∂θ

)
= 0

where µλ = µλ(θ) is defined by µλ(θ) = µNλ if |θ| < αp/2 and µλ(θ) = µ0 if |θ| > αp/2. In this situation,
we can use the technique of separation of variables (which would have not been possible without removing
the term λ ελ ϕ in (3)), which yields

ψλ(r, θ) = riηλ mλ(θ), (21)

where ηλ is a complex parameter and the angular modulation mλ is a 2π-periodic solution to

µλ
d

dθ

(
1

µλ

dmλ

dθ

)
− η2

λmλ = 0 in (−π,+π). (22)

It is easily seen that this equation admits a non-trivial solution if and only if ηλ satisfies the dispersion
equation (

sinh
(
ηλ(π − αp)

)
sinh(ηλπ)

)2

=

(
µ0 + µNλ
µ0 − µNλ

)2

where
µ0 + µNλ
µ0 − µNλ

=
λ− Λm/2

Λm/2
. (23)

We are actually interested in real solutions ηλ of this equation. Indeed, in this case, the radial behavior
riηλ = exp(iηλ log r) of ψλ has a constant amplitude and is increasingly oscillating as r goes to 0. Because
of these oscillations, gradψλ is not square-integrable near Cp (indeed |∂ψλ(r, θ)/∂r| & r−1). From a
physical point of view, this means that any vicinity of Cp contains an infinite energy. In fact, ψλ
represents a wave which propagates towards the corner and whose energy accumulates near this corner,
which explains its interpretation as a black hole wave.

Without loss of generality, we can restrict ourselves to positive ηλ.Noticing that the function (0,+∞) 3
η 7→

∣∣ sinh
(
η(π − αp)

)
/ sinh(ηπ)

∣∣ is strictly decreasing with range (0, |1− αp/π|), we infer that (23) has
a unique solution ηλ ∈ (0,+∞) if and only if

0 <

∣∣∣∣λ− Λm

2

∣∣∣∣ < Λm

2

∣∣∣1− αp
π

∣∣∣ ,
which leads to the definition (14) of Jp. Moreover, when λ varies in one of the two intervals which compose
Jp, the solution ηλ ranges from +∞ (as λ→ Λm/2) to 0 (as λ→ {1± |1− αp/π|}Λm/2).

For a given λ ∈ Jp, the expression of the corresponding solution mλ to (22) depends on the respective
signs of the quantities inside both squared terms in (23). Two situations occur. On the one hand, if
(αp < π and λ < Λm/2) or (αp > π and λ > Λm/2), then the angular modulation mλ is given (up to a
complex factor) by

mλ(θ) :=


sinh(ηλθ)

sinh(ηλαp/2)
if |θ| < αp

2
,

sgn(θ) sinh
(
ηλ(π − |θ|)

)
sinh

(
ηλ(π − αp/2)

) if |θ| > αp
2
.

(24)
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On the other hand, if (αp < π and λ > Λm/2) or (αp > π and λ < Λm/2), then

mλ(θ) :=


cosh(ηλθ)

cosh(ηλαp/2)
if |θ| < αp

2
,

cosh
(
ηλ(π − |θ|)

)
cosh

(
ηλ(π − αp/2)

) if |θ| > αp
2
.

(25)

These formulas are illustrated by fig. 7 which represents the associated black hole wave defined by (21)
in two particular cases that correspond to the same ηλ. Both figures are very similar: both represent
surface waves which propagate along the interfaces and concentrate near the vertex. The main difference
is the symmetry or skew-symmetry with respect to the symmetry axis of the corner.

Weyl sequences

Black hole waves are the basic ingredients for the construction of Weyl sequences here. As mentioned
above, the gradient of ψλ is not square-integrable near Cp because of its increasingly oscillating behavior.
Hence, a natural idea for a Weyl sequence is to truncate ψλ using a sequence of cutoff functions whose
supports get closer and closer to Cp. As shown at the end of this subsection, this is a bad idea! A proper
idea to define a Weyl sequence for a given λ∗ ∈ Jp consists in considering continuous superpositions
of the black hole waves ψλ, choosing smooth densities of superposition with increasingly small supports
near λ∗. Such superpositions regularize the behavior of the black hole waves near the corner (thanks
to the smoothness of the densities) and resemble more and more ψλ∗ (thanks to the increasingly small
supports).

From a practical point of view, it is actually more convenient to consider superpositions with respect
to the variable η (instead of λ) near η∗ := ηλ∗ ∈ (0,+∞). This leads to introduce the inverse function
η 7→ λ(η) of λ 7→ ηλ considered in the half part of Jp which contain our given λ∗. We deduce from (23)
that this function is given by

λ(η) =
Λm

2

(
1 + sgn

(
λ∗ −

Λm

2

)
sinh

(
η |π − αp|

)
sinh(η π)

)
, ∀η ∈ (0,+∞).

Then, for all integer n ≥ 1, we define

(
ϕn
un

)
:= χ

(
ϕ̃n
ũn

)
where


ϕ̃n :=

∫
R
fn(η)ψλ(η) dη and

ũn :=

∫
R
fn(η)

Λm

λ(η)− Λm
R gradψλ(η) dη,

(26)

where χ and fn are chosen as follows. First choose some R > 0 such that N∩BR and V∩BR are contained
respectively in the sectors |θ| < αp/2 and |θ| > αp/2. On the one hand, χ ∈ D(R2) is a cutoff function
with support in the ball BR of radius R centered at Cp and equal to 1 in BR1

for some R1 ∈ (0, R).
On the other hand, for a given function f ∈ D(R) with support contained in (−η∗,+η∗) and such that∫
R f(η) dη = 1, we define fn(η) := n f

(
n(η − η∗)

)
for all n ≥ 1 (it is an easy exercise to prove that fn

tends to the Dirac measure at η∗ in the distributional sense). Note finally that, as in section 3.3, the
above definition of ũn follows from that of ϕ̃n using (6) inside the integral.

Proposition 8. Let Φn := (ϕn, un) defined by (26). Then Φn/‖Φn‖H is a Weyl sequence for λ∗ ∈ Jp.

Proof. (i) Let us first examine some general properties of ϕ̃n and ũn, in particular their behavior near
the vertex. Using the change of variables ξ = n(η − η∗), we have

|ϕ̃n(r, θ)| =
∣∣∣∣∫

R
f(ξ) ri(η∗+ξ/n)mη∗+ξ/n(θ) dξ

∣∣∣∣ . 1, (27)

since the sequence of functions (ξ, θ) 7→ mη∗+ξ/n(θ) is uniformly bounded. Setting gn(ξ, θ) := f(ξ)mη∗+ξ/n(θ)
and integrating by part yields

|ϕ̃n(r, θ)| =
∣∣∣∣n riη∗

i log r

∫
R

∂gn
∂ξ

(ξ, θ) riξ/n dξ

∣∣∣∣ . n

| log r|
,
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which shows that unlike ψλ, each function ϕ̃n tends to 0 as r → 0.
Similar arguments can be used for both components of grad ϕ̃n and ũn. The only change is the

appearance of a factor r−1. We obtain on the one hand

|grad ϕ̃n(r, θ)| . 1

r
and |ũn(r, θ)| . 1

r
, (28)

and on the other hand

|grad ϕ̃n(r, θ)| . n

r | log r|
and |ũn(r, θ)| . n

r | log r|
. (29)

(ii) We check now that Φn ∈ D(A). First, (27) shows that ϕ̃n ∈ L2(C) and ‖ϕ̃n‖L2(C) is bounded, so the
same holds true for ϕn. Then, as r−1| log r|−2 is integrable near r = 0, (29) shows that grad ϕ̃n ∈ L2(C)2

and ũn ∈ L2(N )2, so ϕn ∈ H1
0 (C) (since χ vanishes near ∂C) and un ∈ L2(N )2. It remains to check that

div(gradϕn +R∗un) ∈ L2(C). We have

div(gradϕn +R∗un) = χ div(grad ϕ̃n +R∗ũn)

+ gradχ ·
(

2 grad ϕ̃n +R∗ũn
)

+ (∆χ) ϕ̃n.

The first term of the right-hand side writes as

χ div(grad ϕ̃n +R∗ũn) = χ

∫
R
fn(η) div

(
µ0

µλ(η)
gradψλ(η)

)
dη,

which vanishes since ψλ(η) satisfies (20). Both remaining terms belong to L2(C), for ϕ̃n, grad ϕ̃n and
R∗ũn are square integrable in C, which yields the desired result. Moreover, we can notice that these
terms are bounded in L2(C), which follows from (27) and (28) and the fact that gradχ and ∆χ vanish
near Cp. Hence div(gradϕn +R∗un) is bounded in L2(C).

(iii) Let us prove that AΦn − λ∗Φn is bounded in H. We have

AΦn − λ∗Φn =

 −1

ε0µ0
div {gradϕn +R∗un}+

(
1N Λe − λ∗

)
ϕn

ΛmR gradϕn +
(
Λm − λ∗

)
un

 .

The first component is bounded in L2(C) since we have just seen that div(gradϕn +R∗un) and ϕn are
bounded in L2(C). The second component can be split as

Λm

(
R gradχ

)
ϕ̃n + χ

(
ΛmR grad ϕ̃n + (Λm − λ∗) ũn

)
.

The first term is clearly bounded in L2(N )2 (by (27)) and the second writes as χΛm In where

In :=

∫
R
fn(η)

λ(η)− λ∗
λ(η)− Λm

R gradψλ(η) dη.

We can use the same arguments as in (i) to study this integral, noticing that

λ(η)− λ∗
λ(η)− Λm

= (η − η∗) τ(η)

where τ ∈ C∞(R+) (since λ ∈ C∞(R+), λ(η∗) = λ∗ and λ(η)− Λm never vanishes). Using the change of
variables ξ = n(η − η∗), the integral becomes

In =

∫
R
f(ξ)

ξ

n
τ(η∗ + ξ/n)R gradψλ(η∗+ξ/n) dξ.

Compared with the case of grad ϕ̃n and ũn considered in (i), the only change lies in the factor n−1.
Hence, instead of (29), an integration by parts shows that |In(r, θ)| . r−1 | log r|−1, which implies that
In is bounded in L2(N )2 and yields the conclusion.
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(iv) It remains to prove that ‖Φn‖H tends to∞ as n→∞. First notice that ‖Φn‖H & ‖un · er‖L2(N ),
where er is the unit local basis vector in the radial direction. For all r ∈ (0, R1) and θ ∈ (−π,+π], we
have χ(r, θ) = 1, so

un · er(r, θ) =
riη∗

r

∫
R
f(ξ) g

(
η∗ +

ξ

n
, θ

)
riξ/n dξ where g(η, θ) :=

iΛm ηmλ(η)(θ)

λ(η)− Λm
.

By the Lebesgue dominated convergence theorem, we see that the above integral tends to g(η∗, θ) as
n → ∞ (recall that we have chosen f such that

∫
R f(ξ) dξ = 1). In order to estimate the rate of

convergence, define

Dn(r, θ) :=

∫
R
f(ξ) g

(
η∗ +

ξ

n
, θ

)
riξ/n dξ − g(η∗, θ),

which can be rewritten as the sum∫
R
f(ξ)

(
g

(
η∗ +

ξ

n
, θ

)
− g(η∗, θ)

)
riξ/n dξ + g(η∗, θ)

∫
R
f(ξ)

(
riξ/n − 1

)
dξ.

On the one hand, we deduce from the differentiability of λ(η) and mλ(η) with respect to η that |g(η∗ +
ξ/n, θ) − g(η∗, θ)| . 1/n (uniformly with respect to ξ in the support of f and θ ∈ (−π,+π]). On the
other hand, we have |riξ/n − 1| . | log r|/n (since |eix − 1| ≤ |x| for all x ∈ R). As a consequence,
|Dn(r, θ)| . (1 + | log r|)/n. Assuming for simplicity that R1 < 1 (so that | log r| > | logR1| > 0 for all
r ∈ (0, R1)), this shows that there exists a constant C > 0 such that∣∣∣∣un · er(r, θ)− riη∗

r
g(η∗, θ)

∣∣∣∣ ≤ C | log r|
r n

, ∀r ∈ (0, R1), ∀θ ∈ (−π,+π].

Therefore, by the triangle inequality (squared), we infer that

|un · er(r, θ)|2 ≥
|g(η∗, θ)|2

2r2
− C2 | log r|2

n2r2
, ∀r ∈ (0, R1), ∀θ ∈ (−π,+π].

As g(θ, η∗) is not zero everywhere in (−π, π), one can find an interval (θ1, θ2) ⊂ (−π, π) and a con-
stant gmin > 0 such that |g(θ, η∗)| ≥ gmin for all θ ∈ (θ1, θ2). Hence, for any s > 0 and n ≥ ns :=
max

{
1, s−1| logR1|

}
, we have

‖un · er‖2L2(N ) ≥ (θ2 − θ1)

∫ R1

e−sn

(
g2

min

2
− C2 | log r|2

n2

)
dr

r
.

Notice that | log r|/n < s in the interval of integration. So, choosing s = gmin/(2C), we infer that for all
n > ns,

‖un · er‖2L2(N ) ≥ (θ2 − θ1)

∫ R1

e−sn

g2
min

4

dr

r
& logR1 + sn.

To sum up, we have proved that ‖Φn‖H &
√
n for large enough n. Together with (iii), this shows that

‖(AΦn − λ∗Φn‖H/‖Φn‖H tends to 0, which means that λ∗ belongs to the spectrum of A.
To conclude, we do not need to check the weak convergence to 0 of Φn/‖Φn‖H. Indeed we know

now that any point of Jp belongs to σ(A). Hence it is an accumulation point of σ(A), so it belongs to
σess(A).

A natural but bad idea

At first glance, the above construction of a Weyl sequence for a given λ ∈ Jp may seem complicated and
one can legitimately wonder if there is no simpler way to deduce a Weyl sequence from the black hole
waves. In particular, a natural idea is to truncate ψλ closer and closer to Cp, by setting for instance
Φn := (ϕn, un) with

ϕn(x) := χn(|x|) ψλ(x) and un(x) := χn(|x|) Λm

λ− Λm
R gradψλ(x).
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where (χn)n∈N ⊂ D(R+) is a sequence of radial real-valued functions such that χn(r) = 0 if r < 1/n or
r > R, whereas χn(r) = 1 if 2/n < r < R/2 (where R is chosen as in (26)). It is easy to see that Φn ∈ D(A)
for all n ∈ N. But Φn/‖Φn‖H is not a Weyl sequence for λ. Indeed the ratio ‖AΦn−λΦn‖H/‖Φn‖H does
not tend to 0 as n → ∞. To see this, notice that |ψλ(r, θ)| . 1 and | gradψλ(r, θ)| . r−1 in BR, which
shows on the one hand that

‖Φn‖2H .
∫ R

0

|χn(r)|2 r dr +

∫ R

0

|χn(r)|2

r
dr .

∫ R

0

|χn(r)|2

r
dr.

On the other hand, using the fact that ∂ψλ/∂r = iηλ ψλ/r, we obtain

AΦn − λΦn =


({
−∆χn
ε0µ0

+
(
1NΛe − λ

)
χn

}
− i

{
ηλ
ε0µ0

(
1 +

µ0

µλ

)
χ′n
r

})
ψλ

ΛmR (ψλ gradχn)

 .

Noticing that both terms in braces in the first component are real and |ψλ(r, θ)| = |mλ(θ)|, we deduce
that

‖AΦn − λΦn‖2H &
∫ R

0

|χ′n(r)|2

r
dr

As a consequence

‖AΦn − λΦn‖2H
‖Φn‖2H

&
∫ R

0

|χ′n(r)|2

r
dr

/∫ R

0

|χn(r)|2

r
dr.

The right-hand side cannot tend to 0. Otherwise it would contradict the inequality∫ R

0

|χn(r)|2

r
dr ≤ R2

4

∫ R

0

|χ′n(r)|2

r
dr,

which follows from the expression χn(r) =
∫ r

0

√
s (χ′n(s)/

√
s) ds and Cauchy–Schwarz inequality.

3.5 Corner resonance at a boundary vertex

The construction of Weyl sequences associated to a boundary vertex Bq is exactly the same as for inner
vertices. The only difference lies in the expression of the black hole wave ψλ. As in section 3.4, this
function is still solution to (20), but instead of the whole plane R2, we consider now an infinite sector of
angle γq divided in two sub-sectors of angles βq and γq − βq filled respectively by our NIM and vacuum
(see fig. 6, right). Moreover ψλ must vanish on the boundary of the sector of angle γq. Using polar
coordinates as shown in fig. 6, separation of variables yields again ψλ(r, θ) = riηλ mλ(θ), where ηλ ∈ C
and mλ is a solution to (22) in (0, γq) which satisfies the boundary conditions mλ(0) = mλ(γq) = 0. One
can readily check that this equation admits a non-trivial solution if and only if ηλ satisfies the dispersion
equation

µNλ tanh(ηλβq) + µ0 tanh
(
ηλ(γq − βq)

)
= 0. (30)

Again we are only interested in positive real solutions ηλ to this equation. By a simple monotonicity
argument, we see that it admits a unique solution if and only if λ belongs to the interval Iq defined in
(15). In this case, we conclude that the angular modulation of the black hole wave is given (up to a
complex factor) by

mλ(θ) :=


sinh(ηλθ)

sinh(ηλβq)
if 0 < θ < βq,

sinh
(
ηλ(γq − θ)

)
sinh

(
ηλ(γq − βq)

) if βq < θ < γq.

We can remark that this expression can be deduced from (24) by a simple angular dilation which consists
in replacing simultaneously in (22) θ by θ π/γq and ηλ by ηλ γq/π and choosing αp = 2βq π/γq. Actually,
the same angular dilation also connects the dispersion equation (23) with (30), since the latter can be
written equivalently

sinh
(
ηλ(γq − 2βq)

)
sinh(ηλγq)

= −µ0 + µNλ
µ0 − µNλ
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This remark is related to the comment made about the examples of cavities shown in the right column
of fig. 3.

Thanks to this new black hole wave adapted to a boundary vertex Bq, we can reuse the definition
(26) of (ϕn, un) and follow exactly the same lines as in the proof of proposition 8, which yields:

Proposition 9. Let Φn := (ϕn, un) defined by (26) with the above definition of ψλ(r, θ) = riηλ mλ(θ).
Then Φn/‖Φn‖H is a Weyl sequence for λ∗ ∈ Iq.

3.6 Proof of theorem 2

We can now collect the results of the preceding subsections. We have constructed Weyl sequences for
λ = 0 (proposition 5), λ = Λm/2 (proposition 7), λ ∈ Jp for p = 1, . . . , P (proposition 8) and λ ∈ Iq for
q = 1, . . . , Q (proposition 9). Moreover, proposition 3 tells us that λ = Λm is an eigenvalue of infinite
multiplicity. Hence all these points belongs to σess(A). As the essential spectrum is closed, we have proved
that

σall := {0,Λm/2,Λm} ∪
⋃

p=1,P

Jp ∪
⋃

q=1,Q

Iq ⊂ σess(A).

It remains to check that there is no other point in σess(A), that is, σall ⊃ σess(A). To do this, we use
the following characterization of the complementary of the essential spectrum [15]: a point λ ∈ R does
not belong to σess(A) if and only if A − λI is a semi-Fredholm operator (i.e., its range is closed and its
kernel is finite dimensional). We thus have to check this property for all λ ∈ R+ \ σall. This result is
far to be obvious. Fortunately, it can be easily deduced from an existing nearby result which involves
a functional framework that is slightly different from ours. Indeed it is proved in [5] by means of the
so-called T-coercivity technique that the operator Bλ : H1

0 (C)→ H−1(C) defined by

Bλϕ := div

(
1

µλ
gradϕ

)
+ λ ελ ϕ

is a semi-Fredholm operator for all λ ∈ R+ \ σall. This operator is nothing but the operator involved in
our initial non-linear eigenvalue problem (3). Its link with A− λI is given by the following relation: for
all (ϕ, u) ∈ H1

0 (C)× L2(N )2 and (ψ, v) ∈ H, we have(
(ϕ, u) ∈ D(A) and (A− λI)(ϕ, u) = (ψ, v)

)
⇐⇒

{
Bλϕ = Sλ(ψ, v),

u = Vλ(ϕ, v),
(31)

where we have denoted

Sλ(ψ, v) :=
div(R∗v)

µ0(λ− Λm)
− ε0ψ and Vλ(ϕ, v) :=

ΛmR gradϕ− v
λ− Λm

.

On the one hand, choosing (ψ, v) = 0 in this formula shows that (ϕ, u) belongs to Ker(A− λI) if and
only if ϕ ∈ KerBλ and u = ΛmR gradϕ/(λ − Λm). Hence Ker(A − λI) is finite dimensional if KerBλ is
so.

On the other hand, let us check that the range Ran(A − λI) is closed in H if RanBλ is closed in
H−1(C). Consider a sequence (ϕn, un) of D(A) such that (ψn, vn) := (A − λI)(ϕn, un) converges in H.
Let (ψ, v) denote its limit. Relation (31) shows that Bλϕn = Sλ(ψn, vn) ∈ RanBλ. Noticing that Sλ
is continuous from H to H−1(C), we infer that Sλ(ψn, vn) tends to Sλ(ψ, v) in H−1(C). As RanBλ is
closed, we deduce that Sλ(ψ, v) ∈ RanBλ, so there exists ϕ ∈ H1

0 (C) such that Bλϕ = Sλ(ψ, v). Setting
u = Vλ(ϕ, v), we see from (31) that (ϕ, u) ∈ D(A) and (A − λI)(ϕ, u) = (ψ, v) ∈ Ran(A − λI), which
yields the conclusion.

To sum up, thanks to [5], we know that A− λI is a semi-Fredholm operator for all λ ∈ R+ \ σall, thus
σall = σess(A).

The only statement of theorem 2 which has not been justified concerns the two accumulation points
of the discrete spectrum σdisc(A). First, as A is an unbounded operator, its spectrum is necessarily
unbounded. We have proved that its essential spectrum is contained in [0,Λm], so there is a sequence
of eigenvalues of σdisc(A) which tends to +∞. Besides we know that 0 is not an eigenvalue of A (see
proposition 3) and is an isolated point of σess(A). Therefore it is an accumulation point of σdisc(A). This
completes the proof of theorem 2.
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4 Conclusion

In this paper, we have explored in a simple academic situation the spectral effects of an interface between
vacuum and a negative-index material. Much more needs to be done to deal with more involved situations.
In particular, it should interesting to understand whether the results obtained here extend to cavities
with piecewise smooth (curved) boundaries. Besides, instead of the Drude model studied here, one could
consider a Lorentz model [17, 18], for which negativity arises near a non-zero frequency: the Drude’s laws
(1) are replaced by

εNλ := ε0

(
1− Λe

λ− λe

)
and µNλ := µ0

(
1− Λm

λ− λm

)
,

where Λe, λe, Λm and λm are non-negative coefficients which characterize the medium. For generalized
Lorentz material [26], εNλ and µNλ express as finite sums of similar terms. Other models, including
dissipative media, should be studied (see [13] for an overview). Finally, it seems necessary to tackle three-
dimensional problems, for scalar and vector propagation equations, in particular Maxwell’s equations.
Works in these directions are in progress.
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