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Abstract. Objective. To compensate for a limb lost in an amputation,
myoelectric prostheses use surface electromyography (EMG) from the remaining
muscles to control the prosthesis. Despite considerable progress, myoelectric
controls remain markedly di↵erent from the way we normally control movements,
and require intense user adaptation. To overcome this, our goal is to explore
concurrent machine co-adaptation techniques that are developed in the field of
brain-machine interface, and that are beginning to be used in myoelectric controls.
Approach. We combined a simplified myoelectric control with a perturbation for
which human adaptation is well characterized and modeled, in order to explore co-
adaptation settings in a principled manner. Results. First, we reproduced results
obtained in a classical visuomotor rotation paradigm in our simplified myoelectric
context, where we rotate the muscle pulling vectors used to reconstruct wrist
force from EMG. Then, a model of human adaptation in response to directional
error was used to simulate various co-adaptation settings, where perturbations
and machine co-adaptation are both applied on muscle pulling vectors. These
simulations established that a relatively low gain of machine co-adaptation
that minimizes final errors generates slow and incomplete adaptation, while
higher gains increase adaptation rate but also errors by amplifying noise.
After experimental verification on real subjects, we tested a variable gain
that cumulates the advantages of both, and implemented it with directionally
tuned neurons similar to those used to model human adaptation. This enables
machine co-adaptation to locally improve myoelectric control, and to absorb more
challenging perturbations. Significance. The simplified context used here enabled
to explore co-adaptation settings in both simulations and experiments, and to
raise important considerations such as the need for a variable gain encoded locally.
The benefits and limits of extending this approach to more complex and functional
myoelectric contexts are discussed.
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1. Introduction

Myoelectric control systems are primarily designed to enable amputees to control
the actuators of a prosthesis with the activity of their remaining muscles, recorded
from surface electromyograms (EMG). To overcome the unnatural sequential aspect
associated with successive movements recognized by conventional pattern recognition-
based controls, the field is now quickly moving toward simultaneous proportional
control of multiple degrees of freedom (Farina et al., 2014; Jiang et al., 2012, 2009).
This proportional control can be achieved using various regression techniques that
capture the natural relationship between EMG and movements (Hahne et al., 2014).
However, getting relevant data to establish this relationship is not always possible, as
for instance with amputees who can no longer produce movements with their missing
limb. The activity of remaining muscles might still be regressed against movements
intended by the amputees while producing muscle contractions, but injuries could be
such that the resulting EMG-movement relationship might be too deteriorated to be
used to control movement. And, if the activity of the remaining muscles gathered while
amputees are simulating movements, are su�cient to elicit a decent initial myoelectric
control, signal nonstationarities due for instance to electrode shifts, sweat or varying
postures, remain a major di�culty to deal with (Vidovic et al., 2014).

While a strategy could be to let the sensorimotor system adapt to these
imperfections and changes in signal quality, and despite some degree of flexibility of
muscle patterns (He et al., 2015; Ison and Artemiadis, 2015; Nazarpour et al., 2012),
there is also evidence for limited adaptation capabilities. For instance, perturbations of
the natural relationship between EMG and movement are mostly resolved within the
existing repertoire of muscle activities, and the system has great di�culties in learning
perturbations for which no such solution exist (Berger et al., 2013; de Rugy et al.,
2012a). Relying solely on subjects’ adaptation when faced to poor or deteriorating
myoelectric controls appears therefore unsatisfactory.

Similar issues occur in brain-machine interfaces, where the usual strategy consists
in designing a decoder that is as intuitive as possible, and rely on brain plasticity
to adapt to the decoder’s imperfections when using it to control movements. As
for myoelectric controls, however, it is not always practical to establish an e�cient
initial decoder, and signal quality can deteriorate. Brain adaptation capabilities
are also known to be limited, and recent studies illustrate that the structure of
existing networks constitutes important constrains on adaptation to novel or perturbed
decoders. For instance, a perturbation that requires novel relationships between the
activities of the di↵erent motor cortical neurons used by the decoder is more di�cult to
learn than a perturbation of similar magnitude that maintain the original relationships
(Sadtler et al., 2014). When only a portion of the recorded neurons are used for
the decoder, adaptation was also found that produced natural correlation with the
activities of other recorded neurons, such that the solution generated by the nervous
system was essentially already present in the repertoire of cortical activities (Chase
et al., 2012; Hwang et al., 2013).

To overcome these limitations in terms of adaptation capabilities, a strategy is
to complement human adaptation by an adaptation of the machine, or decoder. This
strategy is currently being explored with increasing success in the context of brain
machine interface (Iturrate et al., 2015; Dangi et al., 2013; Gilja et al., 2012; Orsborn
et al., 2012; Shanechi et al., 2016; Shenoy and Carmena, 2014; Vidaurre et al., 2011),
and starts also being developed in the context of myoelectric controls (Hahne et al.,
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2015; Rezazadeh et al., 2012; Tuga et al., 2013). However, many questions remain
as to the particular form and setting of the machine co-adaptation that would best
complement the human adaptation.

Here, we used a simplified myoelectric context, combined with a perturbation for
which human adaptation is well characterized and modeled, to explore co-adaptation
strategies in both simulated and real experiments. The myoelectric task consists in
aiming for two dimensional targets on a computer screen with a cursor controlled
with isometric force developed at the wrist joint, and reconstructed online from
EMGs combined to a simplified representation of the muscles’ biomechanics obtained
with linear regressions. This virtual biomechanics technique (de Rugy et al., 2012b)
represents the intuitive decoder that will receive experimental perturbations, and
that will also be the site of machine co-adaptation. First we show that a 45 degree
rotation of the muscle pulling vectors that form the virtual biomechanics, elicit
a pattern of errors that is consistent with that obtained in a typical visuomotor
rotation paradigm (de Rugy and Carroll, 2010; Krakauer et al., 2000). Then we used
a model of this adaptation, via connection weights updating in a simple sensorimotor
network of directionally tuned neurons (de Rugy, 2010; Thoroughman and Shadmehr,
2000), to simulate various perturbations and co-adaptation settings. These simulations
established that an optimal gain of machine co-adaptation that minimizes final error
generates slow and incomplete adaptation, while higher gains can produce faster
adaptation but also amplify noise. After verifying these predictions experimentally,
we set up and demonstrate the e↵ectiveness of a variable and local gain of machine
co-adaptation for absorbing more challenging perturbations that, by design, cannot be
dealt with by the sole subjects’ adaptation. Finally, we discuss the benefits and limits
of extending this approach to more complex and functional myoelectric contexts.

2. Materials and Methods

Our task involved participants to hit 1 of 16 di↵erent possible targets by moving a
cursor on the 2D space of a computer screen (figure 1(a)). The position of this cursor
was determined either by the real force generated by the subjects at the wrist joint (i.e.,
‘force-driven’ condition), or by the force reconstructed from muscle activities recorded
while generating wrist forces (i.e., ‘EMG-driven’ condition). Participants were required
to perform a fast and direct cursor motion aiming on the target while they received
continuous visual feedback of the cursor position, and a feedback on movement time
was delivered after each trial. This movement time corresponded to the time taken by
the cursor to go from 10% to 90% percent of target distance from the center of the
screen. Moreover, angular error was calculated for each trial as the di↵erence between
the target angle and the initial direction of the movement, measured by movement
direction at 80ms from movement initiation (de Rugy and Carroll, 2010). This was
designed to prevent the influence of online feedback correction that might intervene as
soon as 100ms from movement onset, and concentrate on the feedforward component
of the movement for this measure and the (co-)adaptation it will elicit. Indeed, the
model of human adaptation used here considers only the feedforward component of
the sensorimotor adaptation system, and a more comprehensive model that includes
adaptation in response to both feedback and feedforward error correction mechanisms
is beyond the scope of the present contribution.

In the following, section 2.1 presents our simplified myoelectric context, the
virtual biomechanics technique used to reconstruct forces from EMGs, and introduce
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the di↵erent perturbations applied on this biomechanics during simulations and
experiments. Section 2.2 explains the model of human adaptation used to simulate
various co-adaptation settings. Section 2.3 describes the algorithm used to perform
machine co-adaptation, and the di↵erent gain values chosen to study co-adaptation
e↵ects. Section 2.4 concentrates on the experiments conducted on real subjects,
including the apparatus, recordings, and experiments details. Finally, section 2.5
indicates the analysis conducted on simulated and real data.

2.1. Virtual biomechanics

Pulling vectors. Cursor position corresponded to wrist forces reconstructed using a
previously designed virtual biomechanics technique (de Rugy et al., 2012b), whereby
muscles activities are multiplied by a set of pulling vectors that represent the directions
and extents to which muscles are pulling per unit of activation. First, muscles activities
were recorded while subjects produced forces toward targets evenly distributed in 16
directions at the same distance from the center. Muscles tuning curves illustrated
figure 1(b) were then obtained by averaging, for each muscle and target direction,
muscle activity when the force-driven cursor was maintained within the target (i.e.
within 10% of target distance from the center of the target). Then, the virtual
biomechanics was determined as the set of five pulling vectors (one per recorded wrist
muscle, figure 1(c)) that minimizes the sum quadratic errors between target positions
and the reconstructed reaches. In practice, we used linear regression to obtain this set
of vectors.

Force reconstruction. In the EMG-driven condition, the cursor position
corresponded to the wrist forces reconstructed online. Cartesian coordinates of this
position were obtained by multiplying the rectified and filtered EMGs signals by the
virtual biomechanics (i.e. the cartesian coordinates of associated vectors):
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Perturbations of the pulling vectors. Perturbations of the virtual biomechanics
were introduced in order to simulate and test the e↵ects of di↵erent co-adaptation
processes on task performance (figure 2). We used two types of perturbations: a
+45� counterclockwise rotation of all vectors that compose the virtual biomechanics
(figure 2(b)), and a vertical alignment of all these vectors (figure 2(c)). The overall
rotation by 45� of the virtual biomechanics produces an e↵ect similar to the visuomotor
rotation paradigm that is classically used to study sensorimotor adaptation, and for
which human adaptation is well characterized and modelled (e.g. Krakauer et al., 2000;
de Rugy and Carroll, 2010). In contrast, the vertical alignment of all vectors provided
a situation that is impossible to resolve by human adaptation only, as the cursor would
be constrained on the vertical axis irrespective of the subjects’ muscle activities. This
situation is a good test because it requires a co-adaptation context to be resolved,
whereby the decoder complements the participants’ actions to reach targets that are
not situated on that axis.

2.2. Model of human adaptation

We used a model of human adaptation (see Algorithm 1) in order to simulate the
co-adaptation with di↵erent settings, and determine the parameters of machine co-
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adaptation that should optimize performance. The first aim of the model was to
reproduce a typical learning curve obtained in response to visuomotor rotation, with
rapid, exponential reduction of error, which stabilizes at an asymptotic level of residual
error (figure 3(a)). This asymptotic level can be explained by the natural tendency of
the system to return to baseline behavior in the absence of errors (Galea et al., 2011),
a behavior usually modeled by the forgetting factor, such as � used below in equation
(4). These general features of sensorimotor adaptation in response to perturbations
are well described by the state space model, which reproduces a typical learning curve
describing how motor intention is adapted on each trial as a function of the error on the
preceding trial (Donchin et al., 2003; Smith et al., 2006; Thoroughman and Shadmehr,
2000; Haith and Krakauer, 2013). In order to account for the local property of the
adaptation, whereby generalization to a learned rotation downgrades with distance
from the practiced target (Krakauer et al., 2000), we implemented the adaptation in a
network of directionally tuned neurons similar to that proposed in de Rugy (2010). The
network was made of 20 sensory neurons (figure 4), each receiving target direction as
input signal, and connected to a single output neuron that defines the motor intention.
As our control space was a set of target that described a circle, the network had to
manage circularity (figure 4 left). This was done using the following circular tuning
function (cf. Amirikian and Georgopulos, 2000)

r
i

=
expk⇥cos(✓targ�✓i)

expk
(2)

where r
i

is the firing rate of neuron i, k its receptive field, ✓
i

its preferred direction and
✓
targ

the input target direction. We set k = 15 in order to reproduce the width of the
tuning functions involved in rotation adaptation in human (±23�, Tanaka et al., 2009).
Each sensory neuron was then connected to the central motor neuron with di↵erent
weights (w

i

). The output of the network, the motor intention illustrated figure 4(b),
is given by

✓
output

= arg(
20X

i=1

r
i

⇥�!v
i

) (3)

with arg(�!v
i

) = w
i

. To simulate human adaptation, the direction that corresponds to
this motor intention (figure 4(b)) was used to select muscle activity from the muscle
tuning curves of the simulated subject (figure 4(c)-(d)), which was then coupled to
the virtual biomechanics (figure 4(e)) to provide the movement output (figure 4(f)).
In order to simulate subject-specific variability, a Gaussian white noise term with
variance similar to that of directional error recorded for this subject at baseline was
added to the movement output. The resulting position reached was then subtracted
from the target position to obtain angular error, which was used to adapt both the
human model (figure 4(h)) and the machine (figure 4(g); section 2.3). The network
adaptation illustrated figure 4(h) was elicited by updating weights after each trial
according to

w
i.t+1

= w
i.t

+ ↵⇥ ✏
t

⇥ r
i.t

� � ⇥ (w
i.t

� w
i.0

) (4)

where coe�cients ↵ (error sensibility) and � (forgetting factor) are determined
empirically (cf. section 3 ’Results’), w

i.0

is the initial weight of neuron i, w
i

its weight
at trial t, r

i.t

its firing rate and ✏ is the angular error between target direction and
movement direction at trial t.
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Algorithm 1 Human Model

1: input : listTarget . Random list of targets
demg(✓) . estimated emg for all direction (all ✓)
xyPul . virtual biomechanics

2: output : listError . List of simulated error
3:

4: function NetworkOutputCalc(r, ✓) . (3)
5: x mean(r ⇥ cos(✓))
6: y  mean(r ⇥ sin(✓))
7: NetworkOutput  arctan(x, y)
8: return NetworkOutput

9:

10: function ErrorCalc(demg, xyPul, ✓
targ

, ✓
intention

)

11: dreach ang(demg(✓
intention

)⇥ xyPul)

12: dreach dreach+ noise
13: ✏ dreach� ✓

targ

14: return ✏
15:

16: . NetworkInitialisation
17: n 20 ; k  15
18: ✓  vector(begin = 0, end = 2⇡, step = 2⇡

n

)
19: w0 ✓ ; w  w0
20:

21: for thisTrial do
22: ✓

targ

 listTarget[thisTrial]

23: r  ek⇥cos(✓targ�✓)

ek
. (2)

24: ✓
intention

 NetworkOutputCalc(r, ✓)
25: ✏ ErrorCalc(demg, xyPul, ✓

targ

, ✓
intention

)
26:

27: . Model Adaptation : weights update
28: w  w + ↵⇥ ✏⇥ r � � ⇥ (w � w0) . (4)
29: listError[thisTrial]  ✏

2.3. machine co-adaptation

Co-adaptation algorithm. We used an iterative co-adaptation algorithm to modify
the virtual biomechanics according to the error produced in the preceding trial
(figure 4(g)). The direction of each virtual biomechanics vector was changed (�✓

i

)
as a function of the angular error produced ✏

t

, the associated muscle implication (i.e.,
the relative muscle activity M

i.t

involved in the trial producing that error), and a
global gain value (g):

�✓
i

= g ⇥ ✏
t

⇥M
i.t

(5)

where M
i.t

is the proportion of muscle activity, such that
P

5

i=1

M
i.t

= 1.
Gain values. The gain parameter g determines the speed and stability of adaptation,
such that high values correspond to fast adaptation. For instance, a gain g of 1 with a
muscle activityM

i.t

of 1 would elicit a rotation of the pulling vector of that muscle that
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would totally correct the error in only one trial. In practice, however, muscle sharing
is such that a gain of 1 would not completely correct for the error in one trial, and the
correction would be distributed over the contributing muscles. In our study, we tested
two fixed values (a low or optimal one, and a high one), and a variable gain. The two
fixed values were defined using simulations, such that the low (optimal) gain is the
one that should minimize mean squared error calculated on the adapted state, and
the high gain is the one that should allow maximal amount of angular error correction
in the minimal number of trials (ideally, correcting all the error in one trial). The
variable gain was inspired by the Resilient propagation algorithm (Rprop algorithm,
Igel and Hüsken, 2003), whereby the gain was updated by comparing the sign of the
error at trial t-1 to the sign of the error at trial t: if the two signs were identical, the
gain value was increased because the correction was beneficial but not su�cient

g
t

= g
t�1

⇥ ⌘+ (6)

with ⌘+ = 1.2. In contrast, if the signs were di↵erent, the correction was considered
excessive, and the gain value was therefore decreased

g
t

= g
t�1

⇥ ⌘� (7)

with ⌘� = 0.5. However, an adjustment of a global gain g based on the Rprop algorithm
would not take into account the local requirement of error correction in the context
of adaptation to a visuomotor rotation. Indeed, the nature of the perturbation, as
well as that of the human adaptation, could be such that a requirement to change the
gain of the adaptation in an area of the workspace would be detrimental if applied
to another area of the workspace. To enable a local adjustment of gain based on
the Rprop, we designed a model based on two 20-neurons networks comparable to
that used to model human adaptation: one to locally encode the error (local errors
network), and a second to locally encode the gain (local gains network; figure 5
and Algorithm 2). As for the human network, these networks were composed of
directionally tuned neurons, and the networks’ output was the angle of the resultant
vector (equation (3)). However, the width of the tuning curves for the local errors
network were adjusted to increase local resolution (in equation (2), k was replaced by
k
er

= 45). The tuning curves of the local gains network was identical to the human
network (k

g

= 15). Furthermore, while the output of the human network corresponds
directly to the response of the human model used in the co-adaptation process, the
di↵erence between the networks input and the output was used in these two local
networks. In the local errors network, this di↵erence is used to retrieve the sign
of the previous error encountered for a similar target direction. In the local gains
network, this di↵erence is the new gain value associated with the target direction.
Note that before starting the co-adaptation process, the weights of the local gains
network were tuned so that the input-output di↵erence matched the initial gain. In
the local errors network, the connection weights were updated after each trial as a
function of the error obtained on that trial, according to (see equation (4) for variable
significations):

w
i.t+1

= w
i.t

+ sign(✏
t

)⇥ r
i.t

(8)

These weights were limited by a maximal and minimal value (limit = ±0.5) so that
in most cases, w

t+1

= w
0

� 0.5 when sign(✏
t

) is negative, and w
t+1

= w
0

+ 0.5
when sign(✏

t

) is positive. Therefore for a given input direction, the di↵erence between
the input and output indicates the sign of the error encountered for that movement
direction. This procedure was used to ensure that sign of successive errors would
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alternate between negative and positive values. The width of the tuning curves of this
network were reduced using k

er

= 45 to ensure that the sign of the error encoded for
a target direction is specific to that direction, and do not generalize to other target
directions like in human model (where k = 15). When probed for a di↵erent direction
on another trial, this network will return the sign of the error encountered for that
direction. This sign will then be compared to the sign of the actual error produced on
that trial, in order to update the weights of the local gains network according to:

w
i.t

=

(
w

i.t�1

+ ⌘+ ⇥ g
t�1

⇥ r
i.t

same signs

w
i.t�1

+ ⌘� ⇥ g
t�1

⇥ r
i.t

else
(9)

where ⌘+ et ⌘�, the coe�cients applied when the sign of the current error is
similar (figure 5, case 1) or di↵erent (figure 5, case 2) from the sign of the previous
error for a similar direction, were determined so that the dynamic of this network
mimics that of a single Rprop. This was achieved with ⌘+ = 0.28 and ⌘� = �0.7. The
output is calculated from equation (3), and the gain is the di↵erence between output
and input. Moreover, we used an inferior limit of 0.04 for the gain in order to avoid
negative or null gains to occur. Tuning curves with similar width to that used for the
model of human adaptation (i.e. k

g

= 15) were used for this second network to benefit
from similar generalization order properties. Critically, the weights of the local errors
network were updated after its output was used by the local gains network, such
that the sign of the current error is compared to that of the previous error for the same
direction. The local gain coded by the local gains network was then used to adapt
the virtual biomechanics. Figure 5 illustrates the two issues: (case 1) sign of current
error and sign of previous error were similar (figure 5(a,b)), in this case, weights of the
local gains network were updated aiming to increase gain value for that direction
(figure 5(c,d)), and the local errors network recorded the current error according
to its sign (figure 5(e)); (case 2) signs of current and previous error were di↵erent
(figure 5(f,g)), weights of the local gains network were updated aiming to decrease
gain value for that direction (figure 5(h,i)) and the local errors network recorded
the current error according to its sign (figure 5(j)).

2.4. Experimental plan

Subjects. Twenty three subjects participated in the experiments. All were right-handed
(mean ±sd score at handedness Edinburgh test were 87% ±13%; Oldfield, 1971) and
had normal or corrected to normal vision. Five subjects constituted the “control”
group, in which they had to adapt to a 45� rotation in the absence of machine co-
adaptation.“Low Gain”, “High Gain” and “Global Variable Gain” groups were formed
by four subjects each, who had to adapt to the 45� rotation in the presence of co-
adaptation, with a low, a high and a global variable gain, respectively. The last group
formed by six subjects was the “Local Variable Gain” group, which involved subjects
to adapt to a vertical alignment perturbation with co-adaptation using a variable gain
coded locally.

Apparatus. Subjects sat 80 cm from a computer display positioned at eye level
and their right hand was kept in the custom-made manipulandum described previously
(de Rugy et al., 2012b). The elbow was approximately at 110� with the forearm parallel
to the table, and the hand was placed in a semi-pronated position. The wrist was
fixed by an array of adjustable supports to fit the hand at the metacarpal-phalangeal
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Algorithm 2 Local Variable Gain

1: input : listTarget . Random list of targets
2: output : gain

thisTrial

. Gain value
3:

4: . Networks Initialisation
5: . Local error network
6: n

er

 20 ; k
er

 45
7: ✓

er

 vector(begin = 0, end = 2⇡, step = 2⇡

ner
)

8: w0
er

 ✓
er

; w
er

 w0
er

9: lim�
er

 w0
er

� 0.5; lim+

er

 w0
er

+ 0.5
10:

11: . Local gains network
12: n

g

 20 ; k
g

 15
13: ✓

g

 vector(begin = 0, end = 2⇡, step = 2⇡

ng
)

14: gain  g
init

15: w0
g

 ✓
g

; w
g

 w0
g

+ g
init

16: lim�
g

 w0
g

+ 0.04 ;
17: ⌘�  �0.7 ; ⌘�  +0.28
18:

19: for thisTrial do
20: ✓

targ

 listTarget[thisTrial]
21:

22: . Local error network

23: r
er

 eker⇥cos(✓targ�✓er)

eker
. (2)

24: networkOutput
er

 NetworkOutput(r
er

, ✓
er

)
25: ✏

pre

 networkOutput
er

� ✓
targ

26:

27: . Weights update: equation(8)
28: if sign(✏

pre

> 0) then
29: w

er

 min(lim+

er

, w
er

+sign(✏
cur

)⇥ r
er

)
30: else
31: w

er

 max(lim�
er

, w
er

+sign(✏
cur

)⇥ r
er

)

32:

33: . Local gains network

34: r
g

 ekg timescos(✓targ�✓g)

ekg
. (2)

35:

36: . Weights update: equation(9)
37: if sign(✏

pre

)⇥sign(✏
cur

) > 0 then
38: w

g

 w
g

+ ⌘+⇥gain⇥r
g

)
39: else
40: w

g

 max(lim�
g

, w
g

+ ⌘�⇥gain⇥r
g

)

41:

42: networkOutput
g

 NetworkOutput(r
g

, ✓
g

)
43: gain  networkOutput

g

� ✓
targ

44: gain
thisTrial

 gain
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joints (12 contacts) and the wrist just proximal to the radial head (10 contacts).
This apparatus allowed subjects to contract their muscles without limb movements.
Moreover, flexion/extension and abduction/adduction forces were recorded using a
6-degrees-of-freedom force/torque transducer (FT DELTA SI-660-60, ATI Industrial
Automation) coupled with the wrist manipulandum. These forces determined cursor
position on the x and y axes respectively.

EMG. Electromyograms were recorded from Extensor Carpi Radialis brevis
(ECRb) and longus (ECRl), Extensor Carpi Ulnaris (ECU), Flexor Capri Ulnaris
(FCU) and Flexor Carpi Radialis (FCR), with self-adhesive surface electrodes using
the Delsys BagnoliTM EMG System. Wrist muscles were identified using palpation
during resisted isometric contraction according to the SENIAM recommendations
(www.seniam.org). Signals were, pre-amplified 10 times, amplified 1000 times,
bandpass filtered from 20Hz to 450Hz, and sampled at 2kHz. To obtain muscle activity
envelopes, EMG signals were centered with zero mean, rectified, and filtered using a
2nd order Butterworth filter with 1.5 Hz cuto↵ frequency.

Experiments. The experiments consisted of two phases: a calibration phase and
an experimental phase (see figure 3(b)). During the calibration phase, EMGs were
recorded while subjects controlled the cursor with wrist forces (force-driven condition).
This phase provided the data necessary to establish the virtual biomechanics as
described section 2.1. During the experimental phase, subjects controlled the cursor
with their EMGs (EMG-driven condition). This phase is composed of three stages
illustrated in figure 3(b): baseline (5 blocks of 16 targets), learning (20 blocks of 16
targets) and after e↵ect (3 blocks of 16 targets). During the baseline stage, subjects got
used to control the cursor with their EMGs, and produced their baseline behavior in
that condition. During the learning stage, subjects adapted to the perturbation of the
virtual biomechanics with or without co-adaptation of the machine. During the after
e↵ect, the perturbation was removed and there was no machine co-adaptation. This
last stage allowed to indirectly assess the e↵ectiveness of the machine co-adaptation
by the end of the learning phase. Indeed, e�cient co-adaptation should absorb the
perturbation and revert the virtual biomechanics to that of the initial EMG to force
mapping, thereby eliminating after-e↵ects. This condition was also particularly useful
to distinguish the subjects’ adaptation from that of the machine, which is not easy
when both are concurrently operating.

2.5. Analysis

To evaluate the e↵ects of co-adaptation, di↵erent analyzes were conducted: (i) the
speed of adaptation was assessed as the averaged error on the first five blocks of the
learning stage (figure 3(a), point 2); (ii) the final performance was assessed as the
averaged error on the last ten blocks of the learning stage (figure 3(a), point 3); and
(iii) the after e↵ect was assessed as the averaged error on the first block of the after
e↵ect stage (figure 3(a), point 4). To compare angular errors obtained with di↵erent
gain values we performed a Wilcoxon rank-sum test. Noise amplification was assessed
by performing a Wilcoxon rank-sum test on the standard deviation of directional
error over the last 10 blocks of the learning stages. To determine if an after e↵ect was
present, we compared data against an error of zero by using a one-sample t-test. To
compare the initial versus final virtual biomechanics vectors directions, we calculated
the angular di↵erence between the initial angle and the final angle for each pulling
vector of each subject (figure 6). Then, we performed di↵erent statistical tests on
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simulated and real data to accommodate for di↵erences in sample size between these
two groups. For simulated data we performed a Wilcoxon signed rank test and for real
data we compared data against zero by using a one-sample t-test. The significance
level was fixed at ↵ = 0.05 and median values (Med) were given throughout.

3. Results

Before doing the experiments on real subjects, we used the model of human adaptation
to simulate various co-adaptation settings. At first, we set the coe�cients ↵ and � used
to update the connection weights in the model of human adaptation so as to fit the
time course of adaptation obtained in de Rugy and Carroll (2010). The resulting values
were ↵ = 0.170 and � = 0.004, and the corresponding fit is illustrated in black figure 7.
Because of the slight di↵erence in method and results (i.e., in the present study we
applied the rotation perturbation on the pulling vectors used to reconstruct force from
EMGs rather than directly on force), we subsequently adjusted the coe�cients ↵ and
� to fit the data obtained here from our control group. This resulted in ↵ = 0.172
and � = 0.003 (cf. red data and fit figure 7), the two parameter values that we
used subsequently to simulate co-adaptation settings. It is important to note that
despite small di↵erences, the fits obtained for a standard visuomotor rotation and for
the present rotation of the muscle pulling vectors are very close, which justifies our
protocol and model of human adaptation to explore co-adaptation.

3.1. Without and with fixed gains of co-adaptation

For the first set of simulations, we used a simple perturbation that consisted in a 45�

counterclockwise rotation of all virtual pulling vectors. In order to simulate subject-
specific co-adaptation, we used the virtual biomechanics and the muscle patterns of
real subjects, as well as their specific level of noise. This was done by setting the
standard deviation of the white Gaussian noise term added to the simulated reached
direction (figure 4(f)) to that of the directional error obtained on the baseline blocks
of the corresponding subjects (see section 2.2). Three di↵erent simulations were con-
ducted with the noise level of each of the five control subjects, thereby giving results
for 15 simulated subjects. Figure 8(a)-(c) displays raw data simulated for a representa-
tive subject in the di↵erent co-adaptation conditions, and provides a good illustration
of the level of noise recorded in the experiments.

Simulated and real results conducted without co-adaptation are qualitatively similar.
Results of simulation conducted in the absence of co-adaptation (blue points and

lines figure 8(d)-(f); n = 15) are qualitatively similar to those of control group (fig-
ure 8(g)-(i); n = 5). These results show a quick initial adaptation, which stabilizes at
a relatively low level or residual error (figure 8 (d),(g); points 2 and 3). An after e↵ect
was present when the perturbation was removed, both in the simulated and in the real
subjects (figure 8(d),(g); point 4; t

(14)

= �33.3, p < 0.001 and t
(4)

= �21.7, p < 0.001
respectively). Moreover, the level of variability of directional error remains relatively
low for both the simulated and the real subjects during adaptation (figure 8(e)-(h)).

Optimal fixed co-adaptation results in slow and incomplete adaptation.
The optimal gain of machine co-adaptation was defined as the one that elicits

the lowest final mean squared error (MSE), which accounts for systematic bias as
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well as the variability around it, thereby promoting both accuracy and precision. To
determine this optimal low gain, we evaluated 100 simulations per gain, for gain values
between 0 and 1.5, conducted with the muscle patterns, the virtual biomechanics, and
the noise level of our control subjects. The resulting averaged MSE calculated on the
last 10 blocks are displayed figure 9 . As can be seen on that figure, minimal errors
were obtained for gain values around 0.05, but there were also substantial variations
in this optimal value due to subject-specific characteristics and noise level. To account
for this inter-subject variability, each subject of the low gain group was tested with
his/her specific optimal gain value, determined with his/her pulling vectors, muscle
pattern, and noise level.

Results of simulated subjects (figure 8; n = 12) conducted in the presence of
co-adaptation with the low gain (red points and lines) show a faster adaptation than
without co-adaptation (figure 8(d); point 2; U = 0, p < 0.001 with Med

without

= 25.5
and Med

lowGain

= 14.7) and a final averaged angular error closer to zero (figure 8(d);
point 3; U = 0, p < 0.001 with Med

w

ithout = 6.5 and Med
lowGain

= 1.6). However,
a residual after e↵ect was predicted by the simulations (figure 8(d); point 4). Indeed,
we found a significant di↵erence between the initial error on the first block after the
perturbation has been removed and an error of zero (t

(11)

= �7.8, p < 0.001). This
after e↵ect was significantly lower than the after e↵ect observed for the simulated
“control” group (figure 8(d); point 4; U = 0, p < 0.001 with Med

without

= �34.9 and
Med

lowGain

= �10.5). Figure 10(b) illustrates that during simulation of co-adaptation
with the low gain, the angles of the virtual biomechanics vectors gradually changes
toward their initial position. However, as the gain of the machine co-adaptation was
low, the simulated human adaptation is correcting for part of the error, such that
the behavior stabilizes before the virtual biomechanics has reverted to its initial,
unperturbed values. Moreover, we found a significant di↵erence between initial and
final vector angles (figure 8(k); W = �1830, p < 0.001) and the median di↵erence
angle was equal to 13.6�.

Results of real subjects (n = 4) show a similar pattern of results. Indeed adapta-
tion with a low, “optimal” co-adaptation gain was faster than without co-adaptation
(figure 8(g); point 2; U = 0, p = 0.016 with Med

without

= 24.2 and Med
lowGain

=
13.9), and the final averaged angular error was closer to zero (figure 8(g); point 3;
U = 0, p = 0.016 with Med

without

= 6.1 and Med
lowGain

= �0.4). However, al-
though results show that average performance of “low gain” group were lower than
performance observed for the “control” group (figure 8(g); point 4; U = 0, p = 0.016
with Med

without

= �35.1 and Med
lowGain

= �10.6), the after e↵ect predicted by
simulation was not significantly di↵erent to the null error (t

(3)

= �1.7, p = 0.183).
Nevertheless, angular di↵erence between initial and final biomechanics vectors direc-
tion was significantly di↵erent to zero (figure 8(l); t

(19)

= 3.7, p = 0.001)) and was
comparable to that obtained in simulations (figure 8(k)). Therefore, although optimal
low gain allows better final performance, simulated results suggest that a residual hu-
man adaptation still exists due to slowness of machine co-adaptation.

High fixed co-adaptation results in faster but unstable adaptation.
The high gain of co-adaptation corresponded to the value that allowed correcting

the maximal amount of angular error in the minimal number of trials, ideally,
correcting all the error in one trial. However, because the machine co-adaptation
equation (5) is contingent upon muscle sharing, this gain is di↵erent for each target and
for each subject. For each target direction, we therefore determined the specific gain
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value that corrects for the entire error in that direction in one trial, before averaging
these target-specific gains over all directions for each subject.

Results of simulated subjects (n = 12) with the high gain of co-adaptation
(green points and lines figure 8) show an adaptation that is faster than without
co-adaptation (figure 8(d); point 2; U = 0, p < 0.001 with Med

without

= 25.5 and
Med

highGain

= 1.9), and than with the low gain of co-adaptation (U = 0, p < 0.001
with Med

lowGain

= 14.7 and Med
highGain

= 1.9). Final averaged angular errors
were significantly lower than that of the “control” group (figure 8(d); point 3;
U = 0, p < 0.001 with Med

without

= 6.5 and Med
highGain

= 0.02) and that of the
“low gain” group (U = 0, p < 0.001 with Med

lowGain

= 1.6 and Med
highGain

= 0.02).
There was also no after e↵ect (t

(11)

= �0.85, p = 0.415), and di↵erence between
initial and final vector angles was not significant (figure 8(k); W = �398, p = 0.144).
Moreover, the directional errors in the first after e↵ect block were significantly
lower than the after e↵ect observed for the “control” group (figure 8(d); point 4;
U = 0, p < 0.001 with Med

without

= �34.9 and Med
highGain

= �0.2), and than that
observed for the “low gain” group (U = 4, p < 0.001 with Med

lowGain

= �10.6 and
Med

highGain

= �0.2). However, standard deviation (figure 8(e)) showed that this high
gain of co-adaptation induced a level of variability that is significantly higher than for
the “control” and the “low gain” groups (U = 14 and U = 15, respectively, ps < 0.001
with Med

without

= 18.3, Med
lowGain

= 15.0 and Med
highGain

= 28.9). Indeed, as
the gain of machine co-adaptation is high, small errors that might be due to noise
rather than to a genuine error in the motor output, might induce unnecessary large
corrections in the virtual biomechanics. This excessive sensitivity of the machine co-
adaptation to error is responsible for the unstable direction of the virtual biomechanics
vectors displayed figure 10(b), and explained the noise amplification observed in the
simulations (figure 8(e)-(f); point 3).

Results of real subjects (n = 4) show a similar pattern of results. Indeed,
adaptation with the high co-adaptation gain was faster than without co-adaptation
(figure 8(g); point 2; U = 0, p = 0.016 with Med

without

= 24.2 and Med
highGain

=
0.1), and than with the low gain of co-adaptation (U = 0, p = 0.029 with
Med

lowGain

= 13.9 and Med
highGain

= 0.1). The final averaged angular error was
closer to zero than the “control” group (figure 8(g); point 3; U = 0, p = 0.016 with
Med

without

= 6.1 and Med
highGain

= �1.1), but not di↵erent from the “low” gain co-
adaptation group (U = 3, p = 0.2 with Med

lowGain

= �0.4 and Med
highGain

= �1.1).
Noise amplification was higher than for the “control” group, as indicated by standard
deviations of directional error that were significantly higher for the high co-adaptation
gain than for the “control” group (figure 8(h); point 3; U = 0, p = 0.016 with
Med

without

= 14.0 and Med
highGain

= 26.4). Moreover, there was no after e↵ect
(figure 8(g); point 4) as directional errors on the first block after perturbation was
removed were not significantly di↵erent from zero (t

(3)

= �0.5, p = 0.654), and as on
simulated data, di↵erence between initial and final vector angles was not significantly
di↵erent to zero (t

(19)

= �0.388, p = 0.702). In sum, although the high gain enables
faster adaptation and better final performance, it also amplifies noise and results in
more variables errors.

3.2. With variable gain values

Global variable gain can deal e�ciently with global rotation, but not with more complex
perturbations.
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We tested the e↵ects of co-adaptation with global variable gain values (Rprop)
to a 45� rotation on simulated and real subjects (n = 12 and n = 4, respectively,
figure 11). Results show a rapid adaptation (figure 11(a,d); point 2) with a final
error level near to null error (figure 11(a,d); point 3) and without any noise am-
plification (figure 11(b,e)). In sum, we cumulate low and high gain advantages: fast
adaptation and final performance close to null error without noise amplification nor
after e↵ect. Indeed, Rprop simulated results show a faster adaptation (figure 11(a);
point 2) than “control” and “low gain” groups (U = 0 and U = 3, respectively,
ps < 0.001 with Med

without

= 25.5; Med
lowGain

= 14.7 and Med
R

propGain = 2.9)
and was no significantly di↵erent from “high gain” group (U = 44, p = 0.112 with
Med

highGain

= 1.9 andMed
R

propGain = 2.9). In the same way, variability on the last
10 blocks (figure 11(b); point 3) was lower than high gain variability (U = 7, p < 0.001
with Med

highGain

= 28.9 and Med
R

propGain = 17.7). Finally, even if the angle
di↵erence between initial and final virtual biomechanics vectors was significant (fig-
ure 11(h); W = �694, p = 0.011), an after e↵ect was no present(figure 11 (a); point
4; t

(11)

= �1.9, p = 0.081). Results obtained on real subjects confirm these sim-
ulated results, showing a faster adaptation than for the “control” and “low gain”
groups (figure 11(d); point 2; Us = 0, p = 0.016 and p = 0.029, respectively,
with Med

without

= 24.2; Med
lowGain

= 13.9 and Med
RpropGain

= 3.4), and that
was not significantly di↵erent from the “high gain” group (U = 4, p = 0.343 with
Med

highGain

= 0.1 and Med
RpropGain

= 3.4). Noise amplification at the end of
learning was lower than with a high gain (figure 11 (e); point 3; U = 0, p < 0.029
with Med

highGain

= 26.4 and Med
RpropGain

= 15.3). Finally, there was no after
e↵ect (figure 11 (d); point 4; t

(3)

= �1.8, p = 0.163), and angular di↵erence be-
tween initial and final vectors was not significantly di↵erent from zero (figure 11 (i);
t
(19)

= �0.245, p = 0.809).This co-adaptation with a global variable gain was therefore
easily able to deal with a global 45� perturbation applied to all muscle pulling vectors.
Next, we chose to focus on a more challenging perturbation that elicits di↵erent er-
rors for di↵erent areas of the workspace, and that, by design, cannot be compensated
for by the sole human adaptation. This perturbation consisted in aligning all muscle
pulling vectors to a single, vertical axis, such that irrespective of the recorded mus-
cle activities, the cursor could only move on that axis. As with fixed gain value, we
began by testing co-adaptation through simulations. We first simulated adaptation to
the vertical alignment of biomechanics vectors without co-adaptation and with global
gain algorithm (Rprop). Raw simulated data confirm that without co-adaptation (blue
data), subjects could not adapt their behavior to perform the task (figure 12(a)). Sim-
ulations conducted with the Rprop algorithm implemented with a single, global gain
(figure 12(b)) result in an averaged error that is close to zero from early on, at the
beginning the adaptation (purple data figure 12(d)). However, instead of an indica-
tion of an e�cient adaptation, this small initial averaged error is due to the fact that
large consecutive errors of opposing signs are cancelling each other out. Indeed, high
variable errors and MSE are obtained for the initial part of the adaptation, and main-
tained for about half of the learning blocks (figure 12(e),(f)). This is because early
in the adaptation, consecutive errors of opposite signs elicit a rapid decrease of the
variable gain to its minimal value (see red dot figure 10(c)), which resulted in only
minimal changes in the muscle pulling vectors angles (figure 10(d) and figure 12 (k)).
From early on in this condition, the only adaptation that operates is therefore that of
the subjects, which is applied on a set of pulling vectors that are just slightly deviated
from the perturbed, vertical position (figure 12 (j), (k)).
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Local variable gain can absorb complex perturbations.
In contrast, simulations of co-adaptation with a gain that is coded locally (n = 15;

figure 12(c) green data) show a fast adaptation with reduced variable errors in
response to the more complex vertical alignment perturbation (figure 12(d); points
2 and 3). Results of real subjects (n = 6; figure 12(g)-(i), yellow data) were similar
to those of simulations (figure 12(d)-(i), black data). Indeed, there were no after
e↵ect (figure 12(g); point 4), and the noise was not amplified in the learning blocks,
nor in the after e↵ect blocks, as indicated by low variability (figure 12(h)-(i)). The
network used to implement this local variable gains allow to keep high gain values for
target directions that required it, while simultaneously enabling low gain for others
(figure 10(c)). These gains induced a better convergence of the direction of the muscle
pulling vectors toward their initial positions (figure 10(d) and figure 12(l)).

4. Discussion

To overcome di�culties associated with establishing and maintaining an e�cient
decoder despite limited neural recordings and changes in signal quality, closed-loop
adaptation of the decoder are increasingly studied and used to complement subjects’
adaptation in brain machine interface (Iturrate et al., 2015; Dangi et al., 2013; Orsborn
et al., 2012; Shenoy and Carmena, 2014). As similar issues occur for myoelectric
controls, co-adaptation strategies are starting to be explored there as well (Hahne
et al., 2015; Rezazadeh et al., 2012; Tuga et al., 2013). In both situations, however, the
dynamics of the concurrent adaptation of the human and machine needs to be carefully
considered since it is likely to be complex and to greatly impact the e↵ectiveness of
particular co-adaptation settings. Here, we combined a simplified myoelectric control
with a perturbation protocol for which human adaptation is well characterized and
modeled, in order to explore co-adaptation strategies in a principled manner, through
both simulations and real experiments.

First, we showed that adaptation to a 45 degree rotation of all muscle pulling
vectors used to reconstruct wrist forces in our study was similar to that observed in
response to a visuomotor rotation applied to the task controlled with real forces (cf.
figure 7, de Rugy and Carroll, 2010). This is critical because visuomotor rotation
is a well-studied protocol, for which human adaptation is well characterized and
modelled(Krakauer, 2009; Krakauer et al., 2000). For instance, the typical learning
curve obtained in response to sensorimotor perturbation is reproduced by a state
space model that describes how motor intention is adjusted on a trial-by-trial basis
as a function on errors (Donchin et al., 2003; Smith et al., 2006; Thoroughman
and Shadmehr, 2000). To additionally account for the local aspect associated
with adaptation of movement direction, whereby generalization reduces away from
the trained direction (Krakauer et al., 2000), the trial-by-trial adaptation can be
implemented by updating connection weights in a network of directionally tuned
neurons (Georgopoulos et al., 1989; Tanaka et al., 2009; Taylor et al., 2013). Here,
we used a previous implementation of such network (de Rugy, 2010), in which the
width of the directionally tuned neurons and the gain of the adaptation were set so as
to reproduce the adaptation observed here and in previous study (cf figure 7). With
this model of human adaptation reproducing results observed with perturbation of
the muscle pulling vectors in our simplified context, we are well equipped to explore
various co-adaptation settings. Indeed, we can simulate concurrent adaptation with
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whatever algorithm and settings of the machine co-adaptation applied as a function
of directional error, and test the most interesting settings on real subjects.

Simulations conducted to determine the optimal gain of co-adaptation that elicits
the lowest mean squared error at the final stage of the adaptation revealed that
this gain improves performance but remains perfectible. Indeed, if applying this
relatively low gain of machine co-adaptation elicits a more complete adaptation, by
reducing the residual error that is associated with the forgetting factor in the model
of human adaptation, the rate of adaptation is only moderately improved. Four or
five cycles of 16 trials are still necessary to reduce averaged error to approximately
nil, and the persistence of an after e↵ect indicates that even after the 320 trials
of practice, the modelled adaptation of the subjects is still responsible for part of
this result. Together with experimental results that were in good agreement with
these predictions (figure 8), these features are calling for a more e�cient machine
co-adaptation. Subsequent simulations conducted with a higher gain, set to provide
the highest possible machine co-adaptation in the lowest number of trials, were able
to elicit much faster adaptation, with averaged directional error approximately nil
within the first cycle of 16 trials. However, this dramatic improvement in adaptation
rate came at a great expense in term of movement variability, which translates into
higher mean squared errors. This is because the high gain of machine co-adaptation is
amplifying the natural noise of the system, applying substantial corrections in response
to errors that might pertain more to noise in the system than to genuine errors in motor
intention. A comparable result was noted in Hahne et al. (2015), when the recursive
least square algorithm used to compute linear regressions from incoming data was
set in a way that gives too much emphases on new data, resulting in faster but also
unstable adaptation patterns.

The previous results obtained with fixed gains of machine co-adaptation are
therefore calling for a variable gain, capable of producing high corrections when needed
early in the adaptation, followed by smaller corrections to stabilize performance. This
can be e�ciently achieved with the Resilient propagation algorithm (Rprop algorithm),
where the rate of learning is adjusted according to the sign of successive errors (Igel and
Hüsken, 2003; Riedmiller and Braun, 1993). Interestingly, human sensitivity to errors
has recently been shown to also depend on the history of errors, and a memory of errors
appears critical to explain the observed faster relearning of previously encountered
perturbations (Herzfeld et al., 2014). Simulations conducted with a variable gain
set according to the Rprop confirmed that the advantages of high and low gains
can be cumulated (figure 11), but also revealed that it should be implemented in
a local manner to be able to deal with more complex perturbations. Indeed, if a
single gain modified with Rprop can elicit faster initial adaptation with little noise
amplification for a global perturbation of all pulling vectors by 45 degree in the same
direction, this method is unable to deal e�ciently with a perturbation that aligned
all pulling vectors on the vertical axis (figure 12). This is because such perturbation
elicits directional errors of di↵erent sign for di↵erent areas of the workspace, such that
the randomized presentation of targets can elicit large errors of di↵erent consecutive
signs that prematurely reduce the learning rate. Simulations conducted in this context
showed that the aligned perturbation can nevertheless be partly absorbed, but this is
only due to subjects adaptation working on a set of pulling vectors that have been
slightly deviated from vertical by the initial machine co-adaptation, before consecutive
errors of changing signs had reduced machine co-adaptation to zero. As a result, the
pattern of directional error is quite variable (i) for a large part of the adaptation,
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where only the subjects adaptation operates and takes time to absorb the pattern
of di↵erent local errors, and (ii) in the aftere↵ect, where errors of various signs and
directions initially occur when the vectors are reverted to their original directions, as
an evidence of subjects adaptation that took place in the preceding phase.

To respond to these problems, we implemented a local version of the variable gain
with two networks of directionally tuned neurons similar to that used to model subject
adaptation: a first one that locally encodes the error, and a second one that locally
encodes the gain of machine co-adaptation. As the first network enables comparing
the sign of the current error with that produced earlier in the same area of the
workspace, the second network can use this information to update and memorize the
gain of machine co-adaptation according Rprop for that specific area. Simulations and
experiments revealed that this mechanism was capable of correcting e�ciently for the
aligned perturbation that, by design, cannot be dealt with by the sole adaptation of
subjects (figure 12). The fact that the adjusted pulling vectors were close to the original
ones by the end of the adaptation indicates that this mechanism should converge
toward a sensible solution in cases where the original mapping cannot be determined,
as for instance with amputees that can no longer produce force of movement with
their missing limb.

Although promising, several limitations would have to be carefully addressed in
order to extend this approach to more complex and functional myoelectric controls.
In particular, our simplified myoelectric context concentrates on the directional error
produced by the feedforward component of movement production, and rests upon
an initial calibration of the muscle pulling vectors. Each of those aspects raises its
own concerns. While our linear decoder was biologically interpretable in terms of
muscle pulling vectors, less interpretable non-linear decoders could be used to map
EMG to movement in more complex situations. For instance, support vector regression
techniques enables myoelectric control in situations where electrodes are positioned
randomly, and where recordings are performed on moving limbs, which implies
relative displacement between surface electrodes and recorded muscles, and a more
complex EMG-movement relationship (Ameri et al., 2014). As already mentioned,
initial calibration is not always practical. Although it could be removed, or roughly
guessed and adapted as new data are coming in, this usually requires an accurate
estimate of movement intentions to be mapped onto recorded control signals. This
is for instance the case in Hahne et al. (2015), which uses a recursive least square
algorithm to update, with incoming data, a linear regression model between EMG
recordings and target positions. This strategy seems to work well for slow target
movements, for which we can reasonably assume that the ongoing movement intention
correspond to the target. However, movement intention is more di�cult to assess
for faster natural movements, which typically combine feedforward mechanisms with
visuomotor feedback corrections of varying magnitude and delay (Dimitriou et al.,
2013; Scott et al., 2015). This has been partly addressed in brain machine interface,
where before being used for decoder adaptation, the estimation of movement intention
is improved either with movement likelihood from history, using Kalman filter (Gilja
et al., 2012), or with an optimal feedback control model (Shanechi et al., 2016).
Although similar approaches could be employed for myoelectric controls, an adaptation
of the decoder dealing simultaneously with movement direction and magnitude would
require, to enable exploration of various co-adaptation settings through simulations
as was done here, a model of human adaptation also dealing with both. Indeed,
adaptation to perturbation of movement direction and extent are known to rely
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on di↵erent neural substrates, to generalize di↵erently, and even to be represented
in di↵erent coordinate systems(Davare et al., 2015; Krakauer et al., 2000; Vindras
et al., 2005; Poh et al., 2017). The model used here for direction only would therefore
be insu�cient. Biomimetic models of sensorimotor cortex are being developed for
the specific purpose of informing the development of rehabilitation strategies and
brain machine interfaces (Dura-Bernal et al., 2014, 2016). However, the important
contribution from spinal networks (Raphael et al., 2010; Tsianos et al., 2014), occurring
downstream from the brain but clearly implicated in muscle activation and movement
control, would also need to be included for the case of myoelectric control. Finally,
the two dimensional workspace used here and in most brain machine interfaces would
have to be extended to the three dimensional space of our environment, and to the
multiple degrees of freedom of a prosthesis (Wodlinger et al., 2014). In sum, while the
simplified context used here enabled to explore co-adaptation in both simulations and
experiments, and to raise important considerations, application to more complex and
functional settings will require intense research to solve some of the issues mentioned
here.
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Figure 1. Online force reconstruction from muscle virtual biomechanics and real-
time electromyograms (EMGs). Subjects produced isometric force at the wrist
joint to reach for 1 of 16 equally distributed target directions (a). In force driven
condition, the cursor moves according to the force developed at the wrist joint
(wrist force). EMGs recorded during this task are used to generate the muscle
tuning curves (b) that are used to extract the muscle pulling vectors (i.e. virtual
biomechanics, c). Online force reconstruction is then obtained by multiplying the
rectified filtered EMG signals to the pulling vector of each muscle (d). Note that
EMG signals are shown from 1 trial only, whereas EMGs from 3 consecutive trials
to each of the 16 targets are used to compute muscle tuning curves. Also note
that for the purpose of illustration, the same EMG signals are used for o✏ine
averaging and online force reconstruction, whereas in the experiments, EMG for
those 2 processes come from di↵erent acquisition blocks (i.e., in force-driven and
EMG-driven conditions, respectively). Adapted from de Rugy et al. (2012b)
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Figure 3. Experimental procedure. a. Typical learning curve obtained in
response to a visuomotor rotation by 45�, and after-e↵ect observed when the
perturbation is removed. During baseline block A, a human subject performs
the task with a mean error near to 0 (point 1). Then, the subject produces
a large initial error in response to the perturbation (block B), quickly adapts
his behavior (point 2), and stabilizes at an asymptotic level of error di↵erent
from zero (point 3). When the perturbation is removed, an after-e↵ect occurs,
and the subject re-adapts his behavior toward initial performance (point 4).
b. Experimental plan. In force-driven condition, subject’s wrist forces are
used to control the cursor movement. In EMG maximal, subject exerts maximal
forces in each direction in order to normalize EMG during EMG condition. Then
EMG/Force relationships are used to calibrate the EMGs in three consecutive
blocks (calibration). In EMG-driven condition, subject’s EMGs are used to
control the cursor movements. Subject exerts to reach all targets during 5 blocks
(baseline). Then the biomechanics is rotated (perturbation) for the next 20
blocks, and the subject adapts to this perturbation (learning). Finally the initial
biomechanics is applied again and re-adapt to this original condition for 3 blocks
(after-e↵ect)
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adaptation, and whose receptive field are defined by “Gaussian” tuning curve.
In the presented example, two receptive fields are highlighted (red “Gaussian”
curves), which results in the activity for two neighboring sensory neurons (red
and orange-filled neurons). b. The activity of sensory neurons is transmitted to
the output neuron (violet filled neuron in the center of the network) via synaptic
weights of the connections (green lines), which gives the resulting intended
movement direction (open blue circle). c. Muscles tuning curves are used to
extract the muscular activities required to reach the output intended movement
direction. In this example, FCR and FCU are recruited with muscular activities
set according to muscle tuning curves for that direction (see the two red circles).
These muscular activities (d), are then multiplied by the corresponding muscle
pulling vectors (e) to produce the resulting force vector (f), which is combined
with noise to define the reached position on the target. g, h. This final direction
(f) is then compared to the input target direction (a) to estimate the angular
error. This error is used to adapt the direction of the pulling vectors of the virtual
biomechanics (machine co-adaptation; g) and to adapt weights of the network
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Figure 5. Explicative schema of local errors and local gains networks

for the two possible issues (case 1 and 2). The same co-adaptation algorithm
was used both for human subjects and simulated subjects. We calculate a current
error (left part) that is the di↵erence between target direction (input) and subject
response direction. Then, the local errors network processes the input to obtain
the output (i.e. angle response). The sign of the error (a, f) is then calculated
(previous error sign). Depending on the similarity of previous and current error
signs, weights of the local gains network are updated in a di↵erent manner. If
error signs are identical (case 1, b) weights are increased (c) and thereby gain
value increases (d). If error signs are di↵erent (case 2, g) weights are decreased
(h) and hence gain value decreases (i). Finally, weights of local errors network
are updated in order to save sign of current error (e, j).
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Figure 6. Explanatory schema for virtual biomechanics comparison.

a, Representation of the set of virtual biomechanics vectors at three di↵erent
stages: initial calibrated stage (full arrows), perturbed stage (dashed arrows)
and final stage (dotted arrows). (b, Angular di↵erences between initial and final
states (shaded areas) and between final and perturbed states (filled areas) are
projected on a referent vector ( vertical grey arrow used as a reference for the
initial direction). Resultant vector (large black arrow) is calculated and illustrates
the di↵erence between initial and final virtual biomechanics. A persistence of this
di↵erence, such as the one illustrated here, could explain the presence of an after
e↵ect after the perturbation has been removed.
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Figure 8. Simulated and experimental results without and with fixed

gain of co-adaptation (without, optimal low gain and high gain) to a 45�

rotation. a-c, row simulated data: angular error according to trial number for
the di↵erent gain values (without co-adaptation, with optimal low gain, and with
high gain, respectively). Dotted lines represent the introduction and the removal of
the 45� perturbation. d-f, simulated average data: mean (d), standard deviation
(e) and mean squared error (MSE, f) of angular error on 5 ⇥ 3 simulations for
each block. Shaded areas represent standard deviations. g-i, real average data,
plotted in the same format as the simulated average data. j-l, virtual biomechanics
vectors comparison between initial (represented by vertical black arrow) and final
states (dotted colored arrows and the resultant vector : large black arrow) for the
di↵erent gain values (j, without co-adaptation; optimal low gain and high gain) for
simulated (k) and real (l) subjects. Angular direction of vectors represent mean
angle and length represents variability between subjects.
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Figure 11. Simulated and experimental results with fixed and variable

global gain of co-adaptation (optimal low gain, high gain and Rprop gain)
to a 45� rotation. Simulated average data (a-c) and real average data (d-f)
(same disposition as figure 8) in di↵erent conditions: with optimal low gain (red
data), with high gain (green data), and with a global variable gain (Rprop, purple
data). g-i, virtual biomechanics vectors comparison for the di↵erent gain values
(without co-adaptation and Rprop gain, same disposition as figure 8).



Model and experiments to optimize co-adaptation in a simplified myoelectric control system32

g
1

2

4

Baseline

Begin of learning After
effect

3
End of learning

1
2

4

Baseline

Begin of learning After
effect

3
End of learning

II. Simulated average data III. Real average data

d

e h

f i

−100

−50

50

100

Co-adaptation with global gain (Rprop)

Without co-adaptation

Co-adaptation with variable local gain
(simulated subjects)
Co-adaptation with variable local gain
(real subjects)

0

80 400

A
n

g
u

la
r 

E
rr

o
r 

(D
eg

re
e)

Trial number 80 400Trial number 80 400Trial number

I. Raw simulated individual data
a b c

Block Number Block Number

−40

0

40

A
n

g
u

la
r 

E
rr

o
r

(D
eg

re
e)

0

40

S
ta

n
d

ar
d

D
ev

ia
ti

o
n

−1000
0

1000

3000

1 6 16 26

M
S

E

1 6 16 26

daptation with global gain (Rprop)

Without
Co-adaptation

Simulated results
Rprop gain
Co-adaptation

Real resultsj k l
Local Var. gain
Co-adaptation

Local Var. gain
Co-adaptation

IV. Virtual biomechanics comparison

Figure 12. Simulated and experimental results from variable gain of

co-adaptation (without, with global variable gain, and with local variable gain),
in response to the vertical alignment of vectors perturbation. a-f, row
simulated and simulated average data (same disposition as figure 8) in di↵erent
conditions : without co-adaptation (blue points), with co-adaptation with a global
gain (Rprop, purple data), and with a local gain (black data). g-i, comparison
between simulated (black data) and real subjects (yellow data) obtained with a
variable local gain of co-adaptation. j-l, virtual biomechanics vectors comparison
for the di↵erent gain values and for simulated an real subjects (j, without co-
adaptation; k, simulated results for global and local variable gains and l, real
results for local variable gain only).


