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ON PROJECTIVE AND AFFINE EQUIVALENCE OF

SUB-RIEMANNIAN METRICS

FRÉDÉRIC JEAN, SOFYA MASLOVSKAYA, AND IGOR ZELENKO

Abstract. Consider a smooth connected manifold M equipped with a bracket
generating distribution D. Two sub-Riemannian metrics on (M,D) are said
to be projectively (resp. affinely) equivalent if they have the same geodesics
up to reparameterization (resp. up to affine reparameterization). A sub-
Riemannian metric g is called rigid (resp. conformally rigid) with respect to
projective/affine equivalence, if any sub-Riemannian metric which is projec-

tively/affinely equivalent to g is constantly proportional to g (resp. conformal
to g). In the Riemannian case the local classification of projectively (resp.
affinely) equivalent metrics was done in the classical work [23] (resp. [16]). In
particular, a Riemannian metric which is not rigid with respect to one of the
above equivalences satisfies the following two special properties: its geodesic
flow possesses a collection of nontrivial integrals of special type and the met-
ric induces certain canonical product structure on the ambient manifold. The
only proper sub-Riemannian cases to which these classification results were
extended so far are sub-Riemannian metrics on contact and quasi-contact dis-
tributions [27]. The general goal is to extend these results to arbitrary sub-
Riemannian manifolds. In this article we establish two types of results toward
this goal: if a sub-Riemannian metric is not conformally rigid with respect to
the projective equivalence, then, first, its flow of normal extremals has at least
one nontrivial integral quadratic on the fibers of the cotangent bundle and, sec-
ond, the nilpotent approximation of the underlying distribution at any point
admits a product structure. As a consequence we obtain two types of generic-
ity results for rigidity: first, we show that a generic sub-Riemannian metric on
a fixed pair (M,D) is conformally rigid with respect to projective equivalence.
Second, we prove that, except for special pairs (m,n), for a generic distribu-
tion D of rank m on an n-dimensional manifold, every sub-Riemannian metric
on D is conformally rigid with respect to the projective equivalence. For the
affine equivalence in both genericity results conformal rigidity can be replaced
by usual rigidity.
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1. Introduction

In Riemannian geometry, projectively (or geodesically) equivalent metrics are
Riemannian metrics on the same manifold which have the same geodesics, up to
reparameterization. The study of equivalent metrics dates back to the works of
Dini and Levi-Civita in the 19th century. The interest in this notion of equivalence
is renewed by recent applications of optimal control theory to the study of human
motor control. Indeed, finding the optimality criterion followed by a particular
human movement amounts to solve what is called an inverse optimal control problem
(see for instance [12, 13]): given a set Γ of trajectories and a class of optimal
control problems – that is, a pair (dynamical constraint, class L of infinitesimal
costs) –, identify a cost function L in L such that the elements of Γ are minimizing
trajectories of the optimal control problem associated with the integral cost

∫
L.

Being the solutions of a same inverse problem defines an equivalence between costs
in L similar to projective equivalence for Riemannian metrics. Our purpose here
is to extend and study this kind of equivalence in the context of sub-Riemannian
geometry. This is a first step in the direction of a more general goal, which is to give
a rigorous theoretical framework to the study of inverse optimal control problems.

A sub-Riemannian manifold is a triple (M,D, g), whereM is a smooth manifold,
D is a distribution on M (i.e. a subbundle of TM) which is assumed to be bracket
generating, and g is a Riemannian metric on D. We say that g is a sub-Riemannian
metric on (M,D). Riemannian geometry appears as the particular case where
D = TM . A horizontal curve is an absolutely continuous curve tangent to D, and
for such a curve γ the length and the energy are defined as in Riemannian geometry
by respectively ℓ(γ) =

∫ √
g(γ̇, γ̇) and E(γ) =

∫
g(γ̇, γ̇). A length minimizer (resp.

an energy minimizer) is a horizontal curve minimizing the length (resp. the energy)
among all the horizontal curves with the same extremities.

The length being independent on the parameterization of the curve, any time
reparameterization of a length minimizer is still a length minimizer. On the other
hand, a classical consequence of the Cauchy–Schwarz inequality is that the energy
minimizers are the length minimizers with constant velocity, i.e. such that g(γ̇, γ̇) is
constant along γ. It is then sufficient to describe the energy minimizers, the length
minimizers being any time reparameterization of the latter.
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It results from the Pontryagin Maximum Principle that energy minimizers are
projections of Pontryagin extremals, and can be of two types, normal or abnor-
mal geodesics. These geodesics play a role similar to the one of the solutions of
the geodesic equation in Riemannian geometry. We thus extend the definition of
equivalence of metrics in the following way.

Definition 1.1. Let M be a manifold and D be a bracket generating distribution
on M . Two sub-Riemannian metrics g1 and g2 on (M,D) are called projectively
equivalent at q0 ∈ M if they have the same geodesics, up to a reparameterization,
in a neighborhood of q0. They are called affinely equivalent at q0 if they have the
same geodesics, up to affine reparameterization, in a neighborhood of q0.

In the sequel the manifoldM is assumed to be connected. The trivial example of
equivalent metrics is the one of two constantly proportional metrics g and cg, where
c > 0 is a real number. We thus say that these metrics are trivially (projectively or
affinely) equivalent. Besides, affine equivalence implies projective equivalence but
in general the two notions do not coincide. For instance, on M = R, all metrics
are projectively equivalent to each other while two metrics are affinely equivalent
if and only if they are trivially equivalent.

Note that if two sub-Riemannian metrics on (M,D) have the same set of length
minimizers, then they are projectively equivalent. And if they have the same set of
energy minimizers, then they are affinely equivalent. This results from the fact that
on one hand normal geodesics are locally energy minimizers, and on the other hand
abnormal geodesics are characterized only by the distribution D. Thus projective
and affine equivalence are appropriate notions to study inverse optimal control
problems where the dynamical constraint is γ̇ ∈ D and the class L is the set of
sub-Riemannian metrics. In particular, they allow one to answer to the following
questions: givenM and D, can we recover g in a unique way, up to a multiplicative
constant, from the knowledge of all energy minimizers of (M,D, g)? And from the
knowledge of all length minimizers of (M,D, g)? The answer to these questions is
positive when the metric presents a kind of rigidity.

Definition 1.2. A metric g on (M,D) is said to be projectively rigid (resp. affinely
rigid) if it admits no non-trivially projectively (resp. affinely) equivalent metric.

We also introduce a weaker notion of rigidity associated with the concept of
conformal metrics. Remind that a metric g2 on (M,D) is said to be conformal to
another metric g1 if g2 = α2g1 for some nonvanishing smooth function α :M → R.
The trivial case of constantly proportional metrics is the particular case where α
is constant. Note that two conformal metrics are not projectively equivalent in
general (we actually conjecture that the latter situation occurs only when either
dimM = 1 or the metrics are constantly proportional to each other).

Definition 1.3. A metric g is said to be conformally projectively rigid if any metric
projectively equivalent to g is conformal to g.

It is easy to construct examples of metrics which are not projectively rigid. For
example, an Euclidean metric on a plane provides such an example. Indeed, its
geodesics consist of straight lines. Take the Riemannian metrics on the same plane
obtained by the pull-back from the round metric on a sphere placed on this plane
via the (inverse of) gnomonic projection, i.e. the stereographic projection with the
center in the center of the sphere. Obviously the geodesic of this metric are straight
lines as unparameterized curves geodesics but this metric is not constantly propor-
tional to the original metric, because it has nonzero constant Gaussian curvature
(see [21, Sect. 3.1]). Note also that by a classical theorem by Beltrami [8], the
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metrics with constant sectional curvature are the only ones projectively equivalent
to the flat ones.

If one extends the notion of equivalence to Lagrangians, then one arrives to the
variational version of Hilbert’s fourth problem in dimension 2, which was solved by
Hamel [19] and provides a very rich class of Lagrangians having straight lines as
extremals.

Affine and projective equivalence of Riemannian metrics are actually both clas-
sical. From the results of Dini [15], it follows that under natural regularity assump-
tions a two-dimensional Riemannian metric is non projectively rigid if and only if
it is a Liouville surface, i.e., its geodesic flow admits a non-trivial integral which
is quadratic with respect to the velocities. This implies that generic Riemannian
metrics on surfaces are projectively rigid. In [23], again under natural regularity
assumptions, Levi-Civita proved that the same result holds for Riemannian metrics
on manifolds of arbitrary dimensions and provided a classification of locally projec-
tively equivalent Riemannian metrics. The affinely equivalent Riemannian metrics
are exactly the metrics with the same Levi-Civita connection and the description of
the pairs of Riemannian metrics with this property can be attributed to Eisenhart
[16]. This description is also closely related to the de Rham decomposition of a
Riemannian manifold and the properties of its holonomy group [14].

These classical results in Riemannian case implies in particular that a Riemann-
ian metric that is not rigid with respect to one of the above equivalences satisfies
the following two special properties.

(1) Integrability property. Its geodesic flow possesses a collection of non-
trivial integrals quadratic on the fiber and in involution.

(2) Product structure (or separation of variables) property. Locally
the ambient manifold M is a product of at least two manifolds such that
the metric is a product of metrics on the factors in the affine case and a sort
of twisted product of Riemannian metrics on the factors in the projective
case (for a precise meaning of twisting here see formula (5.2) below).

Note that similar relations between separability of the Hamilton-Jacobi equation
on a Riemannian manifold and integrability (existence of Killing tensors) were
extensively studied by Benenti [10, 11], while a more conceptual explanation of the
integrability property, based on the modern language of symplectic geometry was
given by Matveev and Topalov [24].

In a proper sub-Riemannian case, the only complete classification of projectively
equivalent metrics was done far more recently by Zelenko [27] for contact and
quasi-contact sub-Riemannian metrics. The general goal is to extend the above
classification results to an arbitrary sub-Riemannian case. By analogy with the
Levi-Civita classification we define a wide class of pairs of sub-Riemannian metrics
that are projective equivalent, see Section 5.1 and Appendix A. We call them the
(generalized) Levi-Civita pairs. Note that the generalized Levi-Civita pairs satisfy
both integrability and product structure properties. It turns out that the result of
[27] about the contact and quasi-contact case can be actually reformulated in the
following way: under a natural regularity assumption the generalized Levi-Civita
pairs are the only pairs of projectively equivalent metrics. The natural question is
whether this is the case for arbitrary sub-Riemannian case, i.e. whether under some
natural regularity assumption the generalized Levi-Civita pairs are the only pairs of
projectively equivalent metrics.

In the present paper we make several steps toward answering this question by
proving the following two general results, which are weaker than the integrability
and product structure properties formulated above, but support them. The first
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result is the existence of at least one integral, which supports the integrability
property.

Theorem 1.4. If a sub-Riemannian metric g is not conformally projectively rigid,
then its flow of normal extremals has at least one nontrivial (i.e. not equal to the
sub-Riemannian Hamiltonian) integral quadratic on the fibers.

The second result states that the product structure properties hold at the level
of the nilpotent approximations.

Theorem 1.5. Let M be a smooth manifold, D be a distribution on M , and g1, g2
be two sub-Riemannian metrics on (M,D). If g1, g2 are projectively equivalent and
non conformal to each other, then for q in an open and dense subset of M , the
nilpotent approximation D̂ of D at q admits a product structure1, and the nilpotent
approximations ĝ1, ĝ2 of the metrics form a Levi-Civita pair with constant coeffi-
cients.

Finally we prove in Corollary 4.9 that any conformally projectively rigid metric
is affinely rigid. As a direct consequence of this and of Theorem 1.5 we obtain the
following.

Corollary 1.6. Let D be a bracket generating distribution on a connected manifold
M . If at every point of an open and dense subset of M the nilpotent approximation
of (M,D) does not admit a product structure, then any sub-Riemannian metric on
D is conformally projectively rigid and affinely rigid.

In particular, since no bracket generating rank-2 distribution admits a product
structure, we have the following consequence of Theorem 1.5.

Corollary 1.7. Any bracket generating sub-Riemannian metric on a rank-2 dis-
tribution is conformally projectively rigid and affinely rigid on each connected com-
plement of the underlying manifolds M .

Theorem 1.4 allows us to get the following rigidity property of generic sub-
Riemannian metrics on a given distribution.

Theorem 1.8. Let M be a smooth connected manifold and D be a distribution on
M . A generic sub-Riemannian metric on (M,D) is affinely rigid and conformally
projectively rigid.

Theorem 1.5 allows us to get the following rigidity results for all sub-Riemannian
metric of a generic distributions.

Theorem 1.9. Let m and n be two integers such that 2 ≤ m < n, and assume
(m,n) 6= (4, 6) and m 6= n−1 if n is even. Then, given an n-dimensional connected
manifold M and a generic rank-m distribution D on M , any sub-Riemannian met-
ric on (M,D) is affinely rigid and conformally projectively rigid.

Few words now about the main ideas behind the proofs with references to the
corresponding sections of the paper. The problem of the projective equivalence
of sub-Riemannian metrics can be reduced to the problem of existence of a fiber
preserving orbital diffeomorphism between the flows of normal extremals in the
cotangent bundle (orbital diffeomorphism means that it sends normal extremals of
one metric to the normal extremals of another one considered as unparameterized
curves). In the Riemannian case, if such diffeomorphism exists then it can be easily
expressed in terms of the metrics. It is not the case anymore in the proper sub-
Riemannian case, which is the main difficulty here. The reason is that, in contrast

1The notion of “Product structure” has a specific meaning here, see Definition 5.1
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to the Riemannian case, a sub-Riemannian geodesic is not uniquely determined by
its initial point and the velocity at this point (i.e. by its first jet at one point). The
order of jet which is needed to determine a geodesic uniquely is controlled by the
flag of the Jacobi curves along the corresponding extremal, which were introduced
in [28, 29]. In subsections 2.2 and 2.3 we collect all necessary information about
Jacobi curves in order to justify the reduction of the equivalence problem to the
existence of a fiberwise diffeomorphism in subsection 3.1.

In what follows, for shortness a function which is a polynomial or rational func-
tion on each fiber of T ∗M will be simply called a polynomial or rational function
respectively on T ∗M . The equations on a fiber preserving orbital diffeomorphism
form a highly overdetermined system of differential equations. In subsection 3.2
after certain prolongation process, we reduce this system to a system of infinitely
many linear algebraic equations with coefficients which are polynomial functions so
that if a solution of this system exists, then it is unique. We refer to this system
as the fundamental algebraic system for orbital diffeomorphism. Its solution must
be a rational function involving quadratic radicals on T ∗M .

The analysis of compatibility conditions for this system leads to a set of alge-
braic conditions. In particular, we show that one specific polynomial function on
T ∗M is divisible by another specific polynomial function on T ∗M . This divisibility
condition is equivalent to the existence of an integral for the normal extremal flow,
which proves Theorem 1.4. In Appendix B we prove that the non-existence of a
non-trivial integral for the geodesic flow of a sub-Riemannian metric is a generic
property, adapting the proof of the analogous result for the Riemannian case from
[22]. This implies Theorem 1.8.

The idea of the proof of Theorem 1.5 comes from the fact that the filtration
of the tangent bundle, generated by the iterative brackets of vector fields tangent
to the underlying distribution, induces weighted degrees for polynomial function
on T ∗M . If we replace all coefficients of the fundamental algebraic system at a
point by the components of the highest weighted degree, we will get exactly the
fundamental algebraic system for the orbital diffeomorphism related to the flow of
normal extremals of the nilpotent approximation of the first metric, see the proof
of Theorem 7.1. This and the analysis of conditions for projective equivalence for
left invariant sub-Riemannian metrics given in Theorem 6.2 are the main steps of
the proof of Theorem 1.5.

Finally, to prove Theorem 1.9 we analyse in Section 8 for which pairs (m,n) the
generic n-dimensional graded nilpotent Lie algebras generated by the homogeneous
component of weight 1 can not be represented as a direct sum of two nonzero graded
nilpotent Lie algebras.

2. Preliminaries

2.1. Sub-Riemannian manifolds. Let us recall some standard notions from sub-
Riemannian geometry. Let M be a n-dimensional smooth manifold and D be
a rank-m distribution on M , i.e., D is a subbundle of TM of rank m. We de-
fine by induction a sequence of modules of vector fields by setting D1 = {X :
X is a section of D}, and, for any integer k > 1, Dk = Dk−1 + span{[X,Y ] :
X is a section of D, Y belongs to Dk−1}, where span is taken over the smooth
functions on M . The Lie algebra Lie(D) generated by the distribution D is defined
as Lie(D) =

⋃
k≥1D

k.

For q ∈ M , we denote by Dk(q) and Lie(D)(q) respectively the subspaces
span{X(q) : X ∈ Dk} and span{X(q) : X ∈ Lie(D)} of TqM .

Definition 2.1. The distribution D is said to be bracket generating if at any point
q ∈M we have Lie(D)(q) = TqM .
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In the rest of the paper, all distributions are supposed to be bracket generating.
If D is bracket generating then for any q ∈ M there exists an integer k such that
Dk(q) = TqM . The smallest integer with this property is called the nonholonomic
order (or simply the step) of D at q and it is denoted by r = r(q).

Definition 2.2. A point q0 ∈ M is called regular if, for every integer k ≥ 1, the
dimension dimDk(q) is constant in a neighborhood of q0.

The weak derived flag of the distribution D at q is the following filtration of
vector spaces

(2.1) D(q) = D1(q) ⊂ D2(q) ⊂ · · · ⊂ Dr(q) = TqM.

For any positive integer k, we set dimDk(q) = mk(q). In particular, m1 = m and
mr = n. We call weights at q the integers w1(q), . . . , wn(q) defined by wi(q) =
s, if ms−1 < i ≤ ms, where we set m0 = 0.

Definition 2.3. A set of vector fields {X1, . . . , Xn} is called a frame of TM adapted
to D at q ∈M if for any integer i ∈ {1, . . . , n}, the vector field Xi belongs to D

wi ,
and for any integer k ∈ {1, . . . , r}, the vectors X1(q), . . . , Xmk

(q) form a basis of
Dk(q). The structure coefficients of the frame are the real-valued functions ckij ,
i, j, k ∈ {1, . . . , n}, defined near q by

[Xi, Xj ] =

n∑

k=1

ckijXk.

Such a frame can be constructed in the following way. We start by choosing
vector fields X1, . . . , Xm ∈ D1 whose values at q form a basis of D(q). Then we
choose m2 −m vector fields Xm+1, . . . , Xm2 among {[Xi, Xj], 1 ≤ i, j ≤ m} whose
values at q form a basis of D2(q). Continuing in this way we get a set of vector fields
X1, . . . , Xn such that span{X1(q), . . . , Xmk

(q)} = Dk(q) for every integer k ≤ r.
In particular, X1(q), . . . , Xn(q) form a basis of TqM . Note that if q is a regular
point, then a frame adapted at q is also adapted at any point near q.

Choosing now a Riemannian metric g on D, we obtain a sub-Riemannian mani-
fold (M,D, g). By abuse of notations we also say that g is a sub-Riemannian metric
on (M,D). As mentioned in the introduction, the geodesics of (M,D, g) are the
projections on M of the Pontryagin extremals associated with the minimization of
energy. There exist two types of geodesics, the normal and abnormal ones. Abnor-
mal geodesics depend only on the distribution D, not on g, hence they are of no
use for the study of equivalence of metrics. Normal geodesics admit the following
description.

For q ∈M , we define a semi-norm on T ∗
qM by

‖p‖q = max {〈p, v〉 : v ∈ D(q), g(q)(v, v) = 1} , p ∈ T ∗
qM.

The Hamiltonian of the sub-Riemannian metric g is the function h : T ∗M → R

defined by

h(q, p) =
1

2
‖p‖2q, q ∈M, p ∈ T ∗

qM.

Definition 2.4. A normal extremal is a trajectory λ(·) of the Hamiltonian vector

field, i.e. λ(t) = et
~hλ0 for some λ0 ∈ T ∗M . A normal geodesic is the projection

γ(t) = π(λ(t)) of a normal extremal, where π : T ∗M → M is the canonical projec-
tion.

It is useful to give the expression of ~h in local coordinates. Fix a point q0 ∈ M
and choose a frame {X1, . . . , Xn} of TM adapted to D at q0 such that X1, . . . , Xm

is a g-orthonormal frame of D. At any point q in a neighborhood U of q0, the
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basis X1(q), . . . , Xn(q) of TqM induces coordinates (u1, . . . , un) on T ∗
qM defined

as ui(q, p) = 〈p,Xi(q)〉. These coordinates in turn induce a basis ∂u1 , . . . , ∂un
of

Tλ(T
∗
qM) for any λ ∈ π−1(q). For i = 1, . . . , n, we define the lift Yi of Xi as the

(local) vector field on T ∗M such that π∗Yi = Xi and duj(Yi) = 0 ∀1 ≤ j ≤ n.
The family of vector fields {Y1, . . . , Yn, ∂u1 , . . . , ∂un

} obtained in this way is called
a frame of T (T ∗M) adapted at q0. By a standard calculation, we obtain

(2.2) h =
1

2

m∑

i=1

u2i and ~h =
m∑

i=1

uiYi +
m∑

i=1

n∑

j,k=1

ckijuiuk∂uj
.

Note that a normal geodesic γ(t) = π(et
~hλ0) satisfies g(γ̇(t), γ̇(t)) = 2h(λ(t)) =

2h(λ0), so the geodesic is arclength parameterized if h(λ0) = 1/2.

2.2. Jacobi curves. As mentioned in the introduction the notion of Jacobi curve
of a normal extremal is important for the considered equivalence problem. This
notion, introduced in [4], comes from the notion of Jacobi fields in Riemannian
geometry. A Jacobi field is a vector field along a geodesic which carries information
about minimizing properties of the geodesic. The Jacobi curve is a generalization
of the space of Jacobi fields which can be defined in sub-Riemannian geometry.

For completeness we introduce Jacobi curves and all necessary related objects
here, for more details we refer to [5, 29, 3]. Consider a sub-Riemannian manifold
(M,D, g) and a normal geodesic γ(t) ∈ M, t ∈ [0, T ]. It is the projection on M

of an extremal λ(t) = et
~hλ for some λ ∈ T ∗M such that π(λ) = γ(0). The 2n-

dimensional space Tλ(T
∗M) endowed with the natural symplectic form σλ(·, ·) is

a symplectic vector space. A Lagrangian subspace of this symplectic space is a
vector space of dimension n which annihilates the symplectic form. We denote by
Vλ(t) the vertical subspace Tλ(t)(T

∗
γ(t)M) of Tλ(t)(T

∗M), it is vertical in the sense

that π∗(Vλ(t)) = 0. Now we can define the Jacobi curve associated with the normal
geodesic γ(t).

Definition 2.5. For λ ∈ T ∗M , we define the Jacobi curve Jλ(·) as the curve of
Lagrangian subspaces of Tλ(T

∗M) given by

Jλ(t) = e−t~h
∗ Vλ(t), t ∈ [0, T ].

We introduce the extensions of a Jacobi curve as an analogue to the Taylor
expansions at different orders of a smooth curve.

Definition 2.6. For an integer i ≥ 0, the ith extension of the Jacobi curve Jλ(·)
is defined as

J
(i)
λ = span

{
dj

dtj
l(0) : l(s) ∈ Jλ(s) ∀s ∈ [0, T ], l(·) smooth , 0 ≤ j ≤ i

}
.

In other words, these spaces are spanned by all the directions generated by
derivatives at t = 0 of the standard curves lying in the Jacobi curve. By definition,

J
(i)
λ ⊂ J

(i+1)
λ ⊂ Tλ(T

∗M), so it is possible to define a flag of these spaces.

Definition 2.7. The flag of the Jacobi curve Jλ(·) is defined as

Jλ = J
(0)
λ ⊂ J

(1)
λ ⊂ · · · ⊂ Tλ(T

∗M).

In an adapted frame of T (T ∗M), the Jacobi curves can be obtained from itera-

tions of Lie brackets by ~h. Let us remind first that, for a positive integer l and a
pair of vector fields X,Y , the notation (adX)lY stands for [X, . . . , [X︸ ︷︷ ︸

l times

, Y ]].
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Lemma 2.8. Let q = π(λ). In an adapted frame {Y1, . . . , Yn, ∂u1 , . . . , ∂un
} of

T (T ∗M) at q, the extensions of the Jacobi curve take the following form:

J
(0)
λ =

{
v ∈ Tλ(T

∗M) : π∗v = 0
}
,

J
(1)
λ =

{
v ∈ Tλ(T

∗M) : π∗v ∈ D
}
= J

(0)
λ + span

{
Y1(λ), Y2(λ), . . . , Ym(λ)

}
,

J
(2)
λ = J

(1)
λ + span

{
[~h, Y1](λ), . . . , [~h, Ym](λ)

}
,

...

J
(k)
λ = J

(k−1)
λ + span

{
(ad~h)k−1Y1(λ), . . . , (ad~h)

k−1Ym(λ)
}
.

Proof. Let v ∈ J
(k)
λ , for some integer k ≥ 0. By definition, v = ds

dts
l(0) where l(·)

is a curve with l(t) ∈ Jλ(t) for any t ∈ [0, T ], and s ≤ k is an integer. Then there
exists a vertical vector field Y on T ∗M (i.e. π∗Y = 0) such that, for any t ∈ [0, T ],

l(t) = e−t~h
∗ Y (λ(t)),

and v writes as

v =
ds

dts
e−t~h
∗ Y (et

~hλ)

∣∣∣∣
t=0

= (ad~h)sY (λ).

As Y is a vertical vector field, in the adapted frame {Y1, . . . , Yn, ∂u1 , . . . , ∂un
} it

can be written as Y =
∑n

i=1 ai∂ui
. Using the expression (2.2) of ~h in this frame,

we obtain

[~h, Y ] =




m∑

i=1

uiYi +

m∑

i=1

n∑

j,k=1

ckijuiuk∂uj
,

n∑

i=1

ai∂ui




=

m∑

i=1

aiYi mod span{∂u1 , . . . , ∂un
}.

By iteration, we get

(ad~h)2Y =

m∑

i=1

ai [~h, Yi] mod span{∂u1 . . . , ∂un
, Y1, . . . , Ym}

...

(ad~h)sY =

m∑

i=1

ai (ad~h)
s−1Yi

mod span{∂u1 . . . , ∂un
, Yi, . . . , (ad~h)

s−2Yi, i = 1, . . . ,m},

which proves the result. �

2.3. Ample geodesics. Note that the dimension of the spaces J
(k)
λ for |k| > 1 may

depend on λ in general. Following [3], we distinguish the geodesics corresponding
to the extensions of maximal dimension.

Definition 2.9. The normal geodesic γ(t) = π(et
~hλ) is said to be ample at t = 0

if there exists an integer k0 such that

dim(J
(k0)
λ ) = 2n.

In that case we say that λ is ample with respect to the metric g.

Notice that if a geodesic is ample at t = 0, then it is not abnormal on any
small enough interval [0, ε] (see [3, Prop. 3.6]). It appears that normal geodesic are
generically ample in the following sense.
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Theorem 2.10 ([3], Proposition 5.23). For any q ∈M , the set of ample covectors
λ ∈ π−1(q) is an open and dense (and hence non empty) subset of T ∗

qM .

Note that, from the cited result, the set of ample covectors not only is open and
dense but it has also full measure in T ∗

qM since it contains a Zarisky set.

Remark 2.11. Two proportional covectors λ and cλ, c > 0, define the same geo-
desic, up to time reparameterization, and the corresponding extensions of Jacobi

curves J
(k)
λ and J

(k)
cλ have the same dimension. As a consequence, the statement of

Theorem 2.10 also holds in h−1(1/2). Namely, the set of ample covectors is open
and dense in π−1(q) ∩ h−1(1/2).

Ample geodesics play a crucial role in the study of equivalence of metrics because
they are the geodesics characterized by their jets. Let us precise this fact. Fix a
nonnegative integer k. For a given curve γ : I → M , I ⊂ R, denote by jkt0γ the

k-jet of γ at the point t0. Given q ∈M , we denote by Jk
q (g) the space of k-jets at

t = 0 of the normal geodesics of g issued from q and parameterized by arclength.

We set Jk(g) =
⊔

q∈U

Jk
q (g).

Define the maps P k : H 7→ Jk(g), where H = h−1(1/2), by

P k(λ) = jk0π(e
t~hλ).

The properties of the map P k near a point λ can be described in terms of the kth

extension J
(k)
λ of the Jacobi curve. Let us denote by

(
J
(k)
λ

)∠
the skew-symmetric

complement of J
(k)
λ with respect to the symplectic form σλ on Tλ(T

∗M), i.e.,
(
J
(k)
λ

)∠
=
{
v ∈ Tλ(T

∗M) : σλ(v, w) = 0 ∀w ∈ J
(k)
λ

}
.

Lemma 2.12. For any integer k ≥ 0, the kernel of the differential of the map P k

at a point λ satisfies

ker dP k(λ) ⊂
(
J
(k)
λ

)∠
.

Proof. Let λ ∈ H and fix a canonical system of coordinates on T ∗M near λ. In
particular, in such coordinates π is a linear projection.

Let v be a vector in ker dP k(λ). Then there exists a curve s 7→ λs in H such

that λ0 = λ, dλs

ds

∣∣
s=0

= v, and the following equalities holds in the fixed coordinate
system:

(2.3)
∂l+1

∂tl∂s

(
π ◦ et

~hλs

)∣∣∣∣
(t,s)=(0,0)

= dπ ◦
dl

dtl

(
et

~h
∗ v
)∣∣∣∣

t=0

= 0 ∀ 0 ≤ l ≤ k.

Consider now w ∈ J
(k)
λ . Then there exists an integer j, 0 ≤ j ≤ k, and a vertical

vector field Y (i.e., dπ ◦ Y = 0) on T ∗M such that w writes as

w =
dj

dtj

(
e−t~h
∗ Y (et

~hλ)
)∣∣∣

t=0
.

We have

σλ(v, w) = σλ

(
v,
dj

dtj

(
e−t~h
∗ Y (et

~hλ)
)∣∣∣

t=0

)
,(2.4)

=
dj

dtj

(
σλ

(
v, e−t~h

∗ Y (et
~hλ)
))∣∣∣

t=0
.

The last equality holds, because we work with the fixed bilinear form σλ on the
given vector space TλT

∗M .
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Using now that et
~h is a symplectomorphism, we obtain

σλ(v, w) =
dj

dtj

(
σ
et~hλ

(
et

~h
∗ v, Y (et

~hλ)
))∣∣∣

t=0

So far, all equalities starting from (2.4) were obtained in a coordinate-free manner.
Now use again the fixed canonical coordinate system on T ∗M near λ. In these
coordinates, the form σ is in the Darboux form. In particular, the coefficients of
this form are constants. Therefore,

σλ(v, w) =

j∑

l=1

(
j
l

)
σλ(vl, wl),

where vl =
dl

dtl

(
et

~h
∗ v
)∣∣∣

t=0
and wl =

dj−l

dtj−l

(
Y (et

~hλ)
)∣∣∣

t=0
.

By (2.3), every vector vl is vertical. The vectors wl in the chosen coordinate system
are vertical as well since the vector field Y is vertical. As a consequence, σλ(vl, wl) =
0, which implies σλ(v, w) = 0. This completes the proof. �

Remark 2.13. When the Jacobi curve is equiregular (i.e., the dimensions dim J
(−k)
λ(t) ,

k ∈ N, are constant for t close to 0), the skew-symmetric complement of the kth

extension is equal to the kth contractions J
(−k)
λ of the Jacobi curve (see [29, Lemma

1]). In that case we can show the equality ker dP k(λ) = J
(−k)
λ .

Since dim
(
J
(k)
λ

)∠
= 2n − dim J

(k)
λ , we get as a corollary of Lemma 2.12 that

ample geodesics are characterized locally by their k-jets for k large enough.

Corollary 2.14. Let λ ∈ T ∗M be ample. Then there exists an integer k0 such that
the map P k0 is an immersion at λ.

3. Orbital diffeomorphism

Projectively or affinely equivalent metrics have the same geodesics, up to the
appropriate reparameterization. But do they have the same (normal) Hamilton-
ian vector field, up to an appropriate transformation? In particular, is it possi-
ble to recover the Hamiltonian vector field of a metric from the knowledge of the
geodesics? We will see that both questions have a positive answer near ample
geodesics, for which the covector can be obtained from the jets of the geodesics (see
Corollary 2.14).

3.1. Orbital diffeomorphism on ample geodesics. Fix a manifold M and a
bracket generating distribution D on M , and consider two sub-Riemannian metrics
g1 and g2 on D. We denote by h1 and h2 the respective sub-Riemannian Hamil-
tonians of g1 and g2, and by H1 = h−1

1 (1/2) and H2 = h−1
2 (1/2) the respective

1
2 -level sets of these Hamiltonians.

Definition 3.1. We say that ~h1 and ~h2 are orbitally diffeomorphic on an open
subset V1 of H1 if there exists an open subset V2 of H2 and a diffeomorphism
Φ : V1 → V2 such that Φ is fiber-preserving, i.e. π(Φ(λ)) = π(λ), and Φ sends the

integral curves of ~h1 to the reparameterized integral curves of ~h2, i.e., there exists

a smooth function s = s(λ, t) with s(λ, 0) = 0 such that Φ
(
et

~h1λ
)
= es

~h2
(
Φ(λ)

)
for

all λ ∈ V1 and t ∈ R for which et
~h1λ is well defined. Equivalently, there exists a

smooth function α(λ) such that

(3.1) dΦ ◦ ~h1(λ) = α(λ)~h2(Φ(λ)).



12 FRÉDÉRIC JEAN, SOFYA MASLOVSKAYA, AND IGOR ZELENKO

The map Φ is called an orbital diffeomorphism between the extremal flows of g1
and g2.

Remark 3.2. In the definition above, the orbital diffeomorphism Φ is defined as a
mapping from H1 to H2. However it can be easily extended as a mapping Φ̄ from
T ∗M \ h−1

1 (0) to itself by rescaling, i.e.,

Φ̄(λ) =
√

2h1(λ)Φ

(
λ√

2h1(λ)

)
.

This mapping sends the level sets h−1
1 (C2/2) of h1 to the level sets h−1

2 (C2/2) of

h2, and the integral curves of ~h1 to the ones of ~h2. In particular (3.1) holds with a

function ᾱ(λ) = α(λ/
√

2h1(λ)).

Proposition 3.3. If ~h1 and ~h2 are orbitally diffeomorphic on a neighborhood of
H1∩π−1(q0), then g1, g2 are projectively equivalent at q0. If in addition the function

α(λ) in (3.1) satisfies ~h1(α) = 0, then g1, g2 are affinely equivalent.

Proof. The first property is obvious. Indeed, if ~h1 and ~h2 are orbitally diffeomor-

phic, then the relation Φ
(
et

~h1λ
)
= es

~h2
(
Φ(λ)

)
implies that any normal geodesics

of g2 near q0 satisfies

π(es
~h2λ) = π ◦ Φ

(
et

~h1
(
Φ−1(λ)

))
= π ◦ et

~h1
(
Φ−1(λ)

)
,

and thus coincides with a normal geodesic of g1. Since on the other hand abnormal
geodesics always coincide, the metrics g1, g2 have the same geodesics near q0, and
thus are projectively equivalent at q0.

Note that s = s(λ, t) is the reparameterization of time and that α(λ) = ds
dt
(λ, 0).

If ~h1(α) = 0, then the function α is constant along the geodesics and the time-
reparameterization is affine, which implies that the metrics are affinely equivalent.

�

We have actually a kind of converse statement near ample geodesics.

Proposition 3.4. Assume that the sub-Riemannian metrics g1 and g2 are projec-
tively equivalent at q0. Then, for any covector λ1 ∈ H1∩π−1(q0) ample with respect

to g1, ~h1 and ~h2 are orbitally diffeomorphic on a neighborhood V1 of λ1 in T ∗M .
If moreover g1 and g2 are affinely equivalent at q0, then the function α(λ) in (3.1)

satisfies ~h1(α) = 0.

Proof. Assume that U is a neighborhood of q0 such that g1 and g2 have the same
geodesics in U , up to a reparameterization. Then g1 and g2 have the same ample

geodesics in U , up to a reparameterization. Indeed, a geodesic γ(t) = π(et
~h1λ)

of g1 which is ample at t = 0 is a geodesics of g2 as well by assumption, and
moreover a normal one since ample geodesics are not abnormal. The conclusion
follows then from the fact that being ample at t = 0 with respect to g1 is a property

of γ(t) = π(et
~h1λ) as an admissible curve (see [3, Proposition 6.15]), and does not

depend neither on the time parameterization nor on the Hamiltonian vector field.
Fix a nonnegative integer k. As in Subsection 2.3, for q ∈ U and i = 1, 2, we

denote by Jk
q (gi) the space of k-jets at t = 0 of the normal geodesics of gi issued from

q and parameterized by arclength parameter with respect to the sub-Riemannian

metric gi. We set Jk(gi) =
⊔

q∈U

Jk
q (gi) and we define P k

i : Hi 7→ Jk(gi) by

P k
i (λ) = jk0π(e

t~hiλ).
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Let λ1 ∈ H1 ∩ π−1(q0) be an ample covector with respect to g1. Then by
Corollary 2.14 for a large enough integer k there exists a neighborhood V1 of λ1
in H1 such that the map P k

1 |V1 is a diffeomorphism on its image. Up to reducing
V1 we assume that π(V1) ⊂ U and that every λ ∈ V1 is ample. As a consequence,

every geodesic π(et
~h1λ) with λ ∈ V1 is an ample geodesic with respect to g2.

Let λ2 ∈ π−1(q0) ∩ H2 be the covector such that the curves π(et
~h1λ1) and

π(et
~h2λ2) coincide up to time reparameterization (λ2 is unique since an ample

geodesic is not abnormal). Since λ2 is ample with respect to g2, the same argument
as above shows that there exists a neighborhood V2 of λ2 in H2 such that P k

2 |V2

is a diffeomorphism on its image. Up to reducing V1 and V2 if necessary, the
reparameterization of the geodesics from the arclength parameter with respect to
g1 to the arclength parameter with respect to g2 induces naturally a diffeomorphism
Ψk : P k

1 (V1) ⊂ Jk(g1) → P k
2 (V2) ⊂ Jk(g2). Thus the map Φ which completes the

following diagram into a commutative one,

V1 ⊂ H1
Φ

> V2 ⊂ H2

P k
1 (V1) ⊂ Jk(g1)

Pk
1 ∨

Ψk
> P k

2 (V2) ⊂ Jk(g2)

Pk
2∨

defines an orbital diffeomorphism between V1 and V2. Due to Remark 3.2 V1 can
be extended to a neighborhood of λ1 in the whole T ∗M , which completes the proof
of the first part of the proposition.

Assume now that g1 and g2 are affinely equivalent at q0. Then the map Φ

satisfies Φ
(
et

~h1λ
)
= es

~h2
(
Φ(λ)

)
, where s = s(λ, t) is the reparameterization of time

and ds
dt
(λ, 0) = α(λ). Since g1 and g2 are affinely equivalent, s(λ, t) must be affine

with respect to t, which implies that α(et
~h1λ) is constant, and thus ~h1(α) = 0. �

Remark 3.5. We have seen in the proof just above that two projectively equivalent
metrics have the same set of ample geodesics. In the same way, one can prove that
they have the same set of strictly normal geodesics. However we can not affirm
that they have the same normal geodesics: a geodesic could be both normal and
abnormal for g1 and only abnormal for g2.

3.2. Fundamental algebraic system. Let M be a smooth manifold and D be
a bracket generating distribution on M . Let us fix two sub-Riemannian metrics
g1, g2 on (M,D).

Definition 3.6. The transition operator at a point q ∈ M of the pair of metrics
(g1, g2) is the linear operator Sq : Dq → Dq such that g1(q)(Sqv1, v2) = g2(q)(v1, v2)
for any v1, v2 ∈ Dq.

Obviously Sq is a positive g1-self-adjoint operator and its eigenvalues α2
1(q), . . . ,

α2
m(q) are positive real numbers (we choose α1(q), . . . , αm(q) as positive numbers

as well). Denote by N(q) the number of distinct eigenvalues of Sq.

Definition 3.7. A point q ∈ M is said to be stable with respect to g1, g2 if q is a
regular point and N(·) is constant in some neighborhood of q.

The set of regular points and the set of points where N(q) is locally constant are
both open and dense in M , and so is the set of stable points.

Let us fix a stable point q0. In a neighborhood U of q0 we can choose a g1-
orthonormal frame X1, . . . , Xm of D whose values at any q ∈ U diagonalizes
Sq, i.e. X1(q), . . . , Xm(q) are eigenvectors of Sq associated with the eigenvalues
α2
1(q), . . . , α

2
m(q) respectively. Note that 1

α1
X1, . . . ,

1
αm

Xm form a g2-orthonormal
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frame of D. We then complete X1, . . . , Xm into a frame {X1, . . . , Xn} of TM
adapted to D at q0. We call such a set of vector fields {X1, . . . , Xn} a (local) frame
adapted to the (ordered) pair of metrics (g1, g2).

Let u = (u1, . . . , un) be the coordinates on the fibers T ∗
qM induced by this

frame, i.e. ui(q, p) = 〈p,Xi(q)〉. The Hamiltonian functions h1 and h2 associated
respectively with g1 and g2 write as

h1 =
1

2

m∑

i=1

u2i , h2 =
1

2

m∑

i=1

u2i
α2
i

.

In the corresponding frame {Y1, . . . , Yn, ∂u1 , . . . , ∂un
} of T (T ∗M), ~h1 has the form

(2.2), i.e.,

(3.2) ~h1 =

m∑

i=1

uiYi +

m∑

i=1

n∑

j,k=1

ckijuiuk∂uj
,

and a simple computation gives

(3.3) ~h2 =

m∑

i=1

ui
α2
i

Yi +

m∑

i=1

n∑

j,k=1

ckij
α2
i

uiuk∂uj
−

m∑

i=1

n∑

j=1

1

αi

Xj(
1

αi

)u2i ∂uj
.

Assume now that ~h1 and ~h2 are orbitally diffeomorphic near λ0 ∈ H1 ∩ π−1(q0)
and let Φ be the corresponding orbital diffeomorphism. Following Remark 3.2, we
assume that Φ is defined on a neighborhood V of λ0 in the whole T ∗M . Let us
denote by Φi, i = 1, . . . , n, the coordinates ui of Φ on the fiber, i.e. u ◦ Φ(λ) =
(Φ1(λ),Φ2(λ), . . . ,Φn(λ)).

Using (3.2) and (3.3), we can write in coordinates the identity (3.1), i.e. dΦ ◦
~h1(λ) = α(λ)~h2(Φ(λ)), and deduce from there some conditions on the coordinates
Φi. This computation has been made in [27], we just give the result here (our
equations look a bit different than the ones of [27] because we use the structure
coefficients ckij here instead of the c̄kji).

Lemma 3.8 ([27], Lemmas 1 and 2). A smooth fiber-preserving map Φ from an
open subset V1 of H1 to an open subset V2 of H2 satisfies (3.1) if and only if the
following conditions are satisfied:

• the function α(λ) is given by

(3.4) α =

√
α2
1u

2
1 + · · ·+ α2

mu
2
m

u21 + · · ·+ u2m
,

• for k = 1, . . . ,m,

(3.5) Φk =
α2
kuk
α

,

• for j = 1, . . . ,m,

(3.6)

n∑

k=m+1

qjkΦk =
Rj

α
,

where qjk =
∑m

i=1 c
k
ijui and

Rj = ~h1(α
2
j )uj + α2

j
~h1(uj)−

1

2
α2
juj

~h1(α
2)

α2

−
1

2

m∑

i=1

Xj(α
2
i )u

2
i −

∑

1≤i,k≤m

ckijα
2
kuiuk,
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• for k = m+ 1, . . . , n,

(3.7) ~h1(Φk) =

n∑

l=m+1

qklΦl +
1

α

m∑

i=1

ui

(
α2
i qki +

Xk(α
2
i )

2
ui

)
.

Remark 3.9. The spectral size N is equal to 1 if and only if g2 is conformal to g1
near q0. In that case g2 = α2g1 and α1 = · · · = αm = α. In particular the function
α does not depend on u, i.e. α(λ) depends only on π(λ).

This lemma gives directly the values of the first m components of Φ. The diffi-
culty now is to find the other components from (3.6) and (3.7). It is more conve-
nient to replace the differential equations (3.7) by infinitely many linear algebraic
equations, forming the fundamental algebraic system as described by the following
proposition.

Proposition 3.10. Let Φ be an orbital diffeomorphism between the extremal flows

of g1 and g2 with coordinates (Φ1, . . . ,Φn). Set Φ̃ = (Φm+1, . . . ,Φn). Then Φ̃
satisfies a linear system of equations,

(3.8) AΦ̃ = b,

where A is a matrix with (n −m) columns and an infinite number of rows, and b
is a column vector with an infinite number of rows. These infinite matrices can be
decomposed in layers of m rows as

(3.9) A =




A1

A2

...
As

...




and b =




b1

b2

...
bs

...



,

where the coefficients asjk of the (m × (n −m)) matrix As, s ∈ N, are defined by
induction as

(3.10)





a1j,k = qjk, 1 ≤ j ≤ m, m < k ≤ n,

as+1
j,k = ~h1(a

s
j,k) +

n∑

l=m+1

asj,lqlk, 1 ≤ j ≤ m, m < k ≤ n,

(note that the columns of A are numbered from m+1 to n according to the indices

of Φ̃) and the coefficients bsj, 1 ≤ j ≤ m, of the vector bs ∈ Rm are defined by

(3.11)






b1j =
Rj

α
,

bs+1
j = ~h1(b

s
j)−

1

α

n∑

k=m+1

asj,k

m∑

i=1

ui

(
α2
i qki +

Xk(α
2
i )

2
ui

)
.

Note that A is a function of u and this function only depends on the choice of the
local frame {X1, . . . , Xn}. On the other hand the vector-valued function b depends
on {X1, . . . , Xn} and on {α1, . . . , αm}.

Proof. We have to prove that, for every s ∈ N, the coordinates Φ̃ satisfy

(3.12) AsΦ̃ = bs.

Observe first that (3.6) is exactly A1Φ̃ = b1, so (3.12) holds for s = 1. Assume by
induction that it holds for a given s. Thus we have, for j = 1, . . . ,m,

n∑

k=m+1

asj,kΦk = bsj .
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Taking the Lie derivative of these expressions by ~h1, we get
n∑

k=m+1

~h1(a
s
j,k)Φk +

n∑

k=m+1

asj,k
~h1(Φk) = ~h1(b

s
j).

Replacing every term ~h1(Φk) by its expression in (3.7) and reorganizing, we obtain
a new linear equation,

n∑

k=m+1

(
~h1(a

s
j,k) +

n∑

l=m+1

asj,lqlk

)
Φk =

~h1(b
s
j)−

1

α

n∑

k=m+1

asj,k

m∑

i=1

ui

(
α2
i qki +

Xk(α
2
i )

2
ui

)
,

which is exactly the jth row of As+1Φ̃ = bs+1. This ends the induction and then
the proof of the proposition. �

3.3. Injectivity of the fundamental algebraic system. The matrix A appears
to be strongly related to the Jacobi curves, and we will use the properties of the
latter to deduce the non degeneracy of A. Let us denote by u(λ) the coordinates
of λ ∈ T ∗M .

Proposition 3.11. If λ ∈ T ∗M \ h−1
1 (0) is ample with respect to g1, then A(u(λ))

is injective. As a consequence, there exists at least one (n−m)× (n−m) minor of
the matrix A(u) which is a non identically zero function of u.

This proposition results directly from the following lemma combined with The-
orem 2.10.

Lemma 3.12. Let s be a positive integer. Denote by As the sm× (n−m) matrix
formed by the first s layers of A. Then

rankAs(u) = dim J
(s+1)
λ − n−m.

Proof. We begin by proving that, for any positive integer s,

(3.13) (ad~h)sYj =
n∑

k=m+1

asj,kYk mod J
(s)
λ , 1 ≤ j ≤ m.

Remark first that, for k = 1, . . . , n,

[~h1, Yk] =




m∑

i=1

uiYi +
m∑

i=1

n∑

j,l=1

clijuiul∂uj
, Yk



 =
m∑

i=1

ui[Yi, Yk] mod Jλ,

=
m∑

i=1

ui

n∑

l=1

clikYl mod Jλ,

which writes as

(3.14) [~h1, Yk] =

n∑

l=1

qklYl mod Jλ.

Let us prove (3.13) by induction on s. The case s = 1 is a direct consequence of
(3.14) since the latter implies that, for j = 1, . . . ,m,

[~h1, Yj ] =

n∑

k=m+1

qjkYk +

m∑

k=1

qjkYk mod Jλ =

n∑

k=m+1

a1j,kYk mod J
(1)
λ .
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Assume now that (3.13) is satisfied for a given s. Using the induction hypothesis,
we write

(ad~h1)
s+1Yj =

[
~h1, (ad~h1)

sYj

]
=

[
~h1,

n∑

k=m+1

asj,kYk

]
mod J

(s+1)
λ ,

since [~h1, J
(s)
λ ] ⊂ J

(s+1)
λ . The last bracket above expands as

[
~h1,

n∑

k=m+1

asj,kYk

]
=

n∑

k=m+1

~h1(a
s
j,k)Yk +

n∑

k=m+1

asj,k

[
~h1, Yk

]
,

=

n∑

k=m+1

~h1(a
s
j,k)Yk +

n∑

k=m+1

asj,k

n∑

l=1

qklYl mod Jλ,

thanks to (3.14). Splitting and renumbering the second sum above, we obtain

(ad~h1)
s+1Yj =

n∑

k=m+1

(
~h1(a

s
j,k) +

n∑

l=m+1

asj,lqlk

)
Yk +

m∑

l=1

n∑

k=m+1

asj,kqklYl mod J
(s+1)
λ ,

=

n∑

k=m+1

as+1
j,k Yk mod J

(s+1)
λ ,

which ends the induction and proves (3.13).

Now, from Lemma 2.8, for any positive integer s there holds J
(s+1)
λ = J

(1)
λ +

span{(ad~h1)
kYj(λ) | 1 ≤ k ≤ s, 1 ≤ j ≤ m}. Thus it results from (3.13) that

dim J
(s+1)
λ = dim J

(1)
λ + rankAs(u(λ)), where As =




A1

A2

...
As


 .

Since dim J
(1)
λ = n+m for any λ, the lemma is proved. �

A first consequence of the injectivity of A is that the system of equations AΦ̃ = b
is a sufficient condition for Φ to be an orbital diffeomorphism.

Proposition 3.13. Consider a local frame {X1, . . . , Xn} of D on an open sub-
set U ⊂ M , and smooth positive functions α1, . . . , αm on U . Let A and b be
the associated matrices defined by (3.10) and (3.11), and denote by g1 and g2 the
sub-Riemannian metrics defined locally by the orthonormal frames X1, . . . , Xm and
X1

α1
, . . . , Xm

αm
respectively.

Assume that λ ∈ T ∗U is ample with respect to g1, and that there exists a solution

Φ̃ = (Φm+1, . . . ,Φn) to AΦ̃ = b near λ. Let Φ1, . . . ,Φm be defined by (3.5). Then
the local smooth fiber-preserving map Φ : H1 → H2 defined by ui ◦ Φ = Φi, i =
1, . . . , n, satisfies (3.1).

Proof. Following Lemma 3.8, it is sufficient to prove that Φ̃ satisfies (3.6) and (3.7)

near λ. The equations of the first layer, i.e. A1Φ̃ = b1, are exactly (3.6), hence we

are left with the task of proving that Φ̃ satisfies (3.7).
Fix a positive integer s and j ∈ {1, . . . ,m}. Let us write the jth row of the

system AsΦ = bs,
n∑

k=m+1

asj,kΦk = bsj ,
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and differentiate this expression in the direction ~h1. We thus obtain
n∑

k=m+1

~h1(a
s
j,k)Φk +

n∑

k=m+1

asj,k
~h1(Φk) = ~h1(b

s
j).

Write now the jth row of the system As+1Φ = bs+1, replacing the coefficients by
their recurrence formula,

n∑

k=m+1

~h1(a
s
j,k)Φk +

n∑

k,l=m+1

asj,lql,kΦk

= ~h1(b
s
j)−

1

α

n∑

k=m+1

asj,k

m∑

i=1

ui

(
α2
i qki +

Xk(α
2
i )

2
ui

)
,

and take the difference between the last two formulas. Rearranging the order of
summation we obtain

(3.15)

n∑

k=m+1

asj,k

(
~h1(Φk)−

n∑

l=m+1

qk,lΦl +
1

α

m∑

i=1

ui

(
α2
i qki +

Xk(α
2
i )

2
ui

))
= 0.

Denote by Ψk the terms inside the bracket above, and set Ψ = (Ψm+1, . . . ,Ψn).

Formula (3.7) for Φ̃ is exactly Ψ = 0. From (3.15), the vector Ψ satisfies the system
AΨ = 0. Moreover, by Proposition 3.11 the matrix A(u) has full rank at u = u(λ),
and hence in a neighborhood of u(λ) in T ∗M . On this neighborhood Ψ must be

identically zero, which implies that Φ̃ satisfies (3.7). The statement is proved. �

4. First divisibility and consequences

4.1. First divisibility. In [27], Zelenko introduced an algebraic condition called
first divisibility condition, which implies interesting conditions on the eigenvalues
α2
i and on the structure coefficients.
Consider two sub-Riemannian metric g1, g2 on (M,D), a stable point q0 with

respect to these metrics, and introduce as in Section 3.2 a frame {X1, . . . , Xn}
adapted to (g1, g2) and the associated coordinates (u1, . . . , un) on the fibers of
T ∗M .

Set P = α2
1u

2
1+· · ·+α2

mu
2
m, where α2

1, . . . , α
2
m are the eigenvalues of the transition

operator. Note that P and its Lie-derivative ~h1(P) are polynomial functions on the
fiber, i.e. polynomial functions of u (see [27, Eq. (2.30)] for an intrinsic definition
of P). We say that the ordered pair of sub-Riemannian metrics (g1, g2) satisfies the

first divisibility condition if the polynomial ~h1(P) is divisible by P .

Proposition 4.1 ([27], Proposition 6). If (g1, g2) and (g2, g1) satisfy the first di-
visibility condition in a neighborhood U of a stable point q0, then for any q ∈ U the
following properties hold:

• for any 1 ≤ i, j ≤ m, [Xi, Xj ](q) /∈ D(q) ⇒ αi(q) = αj(q);

• Xi

(
α2

j

α2
i

)
= 2cjij

(
1−

α2
j

α2
i

)
for any 0 ≤ i, j ≤ m;

• Xi

(
α2

j

αi

)
= 0, αj 6= αj;

• Xi

(
αj

αk

)
= 0, αi 6= αj , αi 6= αk.

It appears actually that this condition is always fulfilled by pairs of metrics whose
Hamiltonian vector fields are orbitally diffeomorphic.

Proposition 4.2. If ~h1,~h2 are orbitally diffeomorphic near some λ ∈ π−1(q0),
then (g1, g2) and (g2, g1) satisfy the first divisibility condition near q0.
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Proof. Let Φ be the orbital diffeomorphism between the extremal flows of g1, g2.

From Proposition 3.10, the n−m last coordinates of Φ satisfy AΦ̃ = b. Let us give
first some algebraic properties of the components Φi.

Notice that

α2 =
P

h1
,

which implies that

(4.1)
~h1(P)

P
=
~h1(α

2)

α2
.

Using this remark, a simple induction argument shows that, for any positive integer
s, there exists a constant Cs > 0 and polynomial functions pols,j(u) on the fiber
such that

(4.2) bsj =
Csα

2
juj

α

(
~h1(P)

P

)s

+
1

αPs−1
pols,j(u), j = 1, . . . ,m.

From Proposition 3.11, the matrix A admits at least one nonzero maximal minor
δ. Since all coefficients of A are polynomial functions of u, δ is in turn polynomial
in u. Using Cramer’s rule, we deduce from (4.2) that there exists an integer S such
that, for i = m+ 1, . . . , n,

(4.3) Φi =
1

αδPS
× polynomial in u.

Let us prove now the divisibility of ~h1(P) by P . Choose an arbitrary large integer
s (s > S) and j ∈ {1, . . . ,m}, and consider the jth equation of the sth layer of the
system (3.8),

asj,m+1Φm+1 + · · ·+ asj,n−mΦn−m = bsj .

Recall that all coefficients asi,j are polynomial functions of u. Substituting expres-

sions (4.2) and (4.3) for bsj and the Φi’s respectively, we get,

Csα
2
juj

α

(
~h1(P)

P

)s

+
1

αPs−1
pols,j(u) =

1

αδPS
× polynomial in u.

Multiplying by αPs, we obtain finally,

(4.4) Csα
2
juj

~h1(P)s = Ppols,j(u) +
Ps−S

δ
× polynomial in u.

Assume by contradiction that ~h1(P) is not divisible by P . Let k be the maximal
nonnegative integer such that δ is divisible by Pk. Set δ = Pkδ1 and take s =
k + S + 1. Then (4.4) writes as

(4.5) Csα
2
juj

~h1(P)s = Ppols,j(u) + P
pol(u)

δ1
,

which implies that Ppol(u)/δ1 is polynomial in u. Taking into account that P is a
positive quadratic form, and thus it is irreducible over R, we obtain that pol(u)/δ1
is polynomial. Therefore the right-hand side of (4.5) is divisible by P and ~h1(P)s

is also divisible by P . We have a contradiction, which completes the proof.
�

This proposition has several consequences. The first one is an obvious corollary
of Propositions 4.1 and 4.2. Let us introduce first some notations. Let N = N(q0)
be the number of distinct eigenvalues of the transition operator Sq for q near q0.
We assume that the eigenvalues α2

i , i = 1, . . . ,m, are numbered in such a way that
α2
1, . . . , α

2
N are the N distinct ones. For ℓ = 1, . . . , N , we denote by Iℓ the set of

indices i ∈ {1, . . . ,m} such that αi = αℓ.
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Corollary 4.3. Assume ~h1,~h2 are orbitally diffeomorphic near some λ ∈ π−1(q0).
Then, for any ℓ, ℓ′ ∈ {1, . . . , N}, ℓ 6= ℓ′,

(i) [Xℓ, Xℓ′ ] ∈ D1;

(ii) if X ∈ Lie{Xi : i ∈ Iℓ}, then X
(

α2
ℓ′

αℓ

)
= 0;

(iii) if X ∈ Lie{Xi : i ∈ Iℓ} and ℓ′′ 6= ℓ, then X
(

αℓ′

αℓ′′

)
= 0.

The second consequence results directly from the definition of first-divisibility.

Lemma 4.4. If ~h1,~h2 are locally orbitally diffeomorphic, then

(4.6) ~h1(P) = QP , where Q =

m∑

i=1

Xi(α
2
i )

α2
i

ui.

Proof. From Proposition 4.2, the third degree polynomial ~h1(P) is divisible by the
quadratic polynomial P . Hence there exists a linear function Q =

∑n
j=1 pjuj such

that

~h1(P) = QP =
( n∑

j=1

pjuj
)( m∑

i=1

α2
i u

2
i

)
.

On the other hand, using the expression (3.2) of ~h1, we get

~h1(P) =

m∑

i,j=1

Xi(α
2
j)uiu

2
j +

m∑

i,j=1

n∑

k=1

2ckijα
2
juiujuk.

Identifying the coefficients of the monomials u3i and u2iuj, 1 ≤ i ≤ m, m < j ≤ n,
in the two expressions above, we obtain respectively

pi =
Xi(α

2
i )

α2
i

for 1 ≤ i ≤ m, pi = 0 for m < i ≤ n.

�

4.2. Existence of first integrals. An important consequence of the first-divisibility
property is the existence of quadratic first integrals for the Hamiltonian flow. Let
g1, g2 be two sub-Riemannian metrics on (M,D), and q0 be a stable point w.r.t.
g1, g2. Proceeding as above, we assume that the eigenvalues α2

i , i = 1, . . . ,m, are
numbered in such a way that α2

1, . . . , α
2
N are the N distinct ones. We introduce also

a frame {X1, . . . , Xn} adapted to (g1, g2), the associated coordinates (u1, . . . , un)
on the fibers of T ∗M , and the polynomial

P =

m∑

i=1

α2
iu

2
i .

Proposition 4.5. If ~h1 and ~h2 are orbitally diffeomorphic near some λ ∈ π−1(q0),
then the function

F =
( N∏

ℓ=1

α2
ℓ

)− 2
N+1

P

is a first integral of the normal extremal flow of g1, i.e.

~h1(F ) = 0.

Note that, in the Riemannian case (i.e. D = TM), the existence of this quadratic
first integral was shown by Levi-Civita in [23] (see also [24], where this integral is
attributed to Painlevé).



ON PROJECTIVE AND AFFINE EQUIVALENCE OF SUB-RIEMANNIAN METRICS 21

Proof. Set f =
(∏N

ℓ=1 α
2
ℓ

)− 2
N+1

. Using Lemma 4.4 we get

(4.7) ~h1(F ) = ~h1(fP) =
(
~h1(f) + fQ

)
P .

Further, using the expression (3.2) of ~h1, we have

~h1(f) = −
2

N + 1

m∑

i=1



( N∏

ℓ=1

α2
ℓ

)− 2
N+1−1

ui

N∑

ℓ=1

(∏

k 6=ℓ

α2
k

)
Xi(α

2
ℓ )




= −
2

N + 1
f

m∑

i=1

ui

N∑

ℓ=1

Xi(α
2
ℓ)

α2
ℓ

.(4.8)

Notice now that Corollary 4.3, (ii), implies that,

if αj 6= αi, then Xi(α
2
j ) =

α2
jXi(α

2
i )

2α2
i

.

Plugging this into (4.8), we get

~h1(f) = −
2

N + 1

(N − 1

2
+ 1
)
f

m∑

i=1

Xi(α
2
i )

α2
i

ui = −fQ.

By (4.7) we obtain ~h1(F ) = 0, which completes the proof. �

The normal extremal flow of g1 already admits h1 as a quadratic first integral,
and F is not proportional to h1 except when N = 1, which corresponds to the
case where g1 and g2 are conformal to each other. This proves Theorem 1.4. The
existence of several quadratic first integrals appears to be a strong condition on the
metric.

Proposition 4.6. Let (M,D) be fixed. The normal extremal flow of a generic sub-
Riemannian metric on (M,D) admit no other non-trivial quadratic first integral
than its Hamiltonian.

One can find a rigorous proof of this result in [22] for the case D = TM (Rie-
mannian case), and we show in Appendix B that the same arguments can be applied
to any bracket-generating distribution on M .

Theorem 1.8 is a direct consequence of this proposition, Proposition 4.5, and
Corollary 4.9 below.

4.3. Consequences on affine equivalence.

Proposition 4.7. If two sub-Riemannian metrics g1, g2 on (M,D) are affinely
equivalent on an open connected subset U ⊂M , then all the eigenvalues α2

1, . . . , α
2
m

of the transition operator are constant.

Proof. Let g1, g2 be two affinely equivalent metrics on U , and let q0 ∈ U be a stable

point with respect to g1, g2. From Proposition 3.4, ~h1 and ~h2 are locally orbitally

diffeomorphic and ~h1(α) = 0. Using equality (4.1) we get that ~h1(P) = 0.

From Lemma 4.4, ~h1(P) = QP . Hence Q = 0, which implies that Xi(α
2
i ) = 0 for

i = 1, . . . ,m. Using Corollary 4.3 (ii), we obtain Xi(α
2
j ) for any i, j ∈ {1, . . . ,m},

and since the vector fields X1, . . . , Xm are bracket-generating, we finally get that
α2
1, . . . , α

2
m are constant near q0.

Thus the eigenvalues α2
1, . . . , α

2
m are continuous functions on U which are locally

constant near stable points. Since the set of stable points is dense in U , we conclude
that all eigenvalues are constant. �
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Remark 4.8. It results from (4.6) that, if all αi’s are constants, then ~h1(P) = 0,

which in turn implies ~h1(α) = 0 by (4.1). Combining this remark with Propositions
3.4 and 3.3, we obtain the following result: if two metrics are projectively equivalent
and the transition operator has constant eigenvalues, then the metrics are affinely
equivalent.

Corollary 4.9. If a sub-Riemannian metric is conformally projectively rigid, then
it is affinely rigid.

Proof. Let g1 be a conformally projectively rigid sub-Riemannian metric. If a metric
g2 is affinely equivalent to g1, then it is also projectively equivalent to g1, and by
hypothesis g2 = α2g1. Hence α

2 is the unique eigenvalue of the transition operator
and is constant by Proposition 4.7, which implies that g2 is trivially equivalent to
g1. �

5. Levi-Civita pairs

5.1. Definition and the main open question. Let us introduce a special case
of non-trivially projectively and affinely equivalent metrics. First we define a dis-
tribution which admits a product structure.

Fix positive integers N , n1, . . . , nN , and set n = n1 + · · · + nN . We denote
the canonical coordinates on Rn = Rn1 × · · · × RnN by x = (x̄1, . . . , x̄N ), where
x̄ℓ = (x1ℓ , . . . , x

nℓ

ℓ ). For any ℓ ∈ {1, . . . , N}, let Dℓ be a Lie bracket generating
distribution on Rnℓ . We define the product distribution D = D1 × · · · ×DN on Rn

by

(5.1) D(x) =
{
v ∈ TxR

n : (πℓ)∗(v) ∈ Dℓ

(
πℓ(x)

)
, ℓ = 1, . . . , N

}
,

where πℓ : R
n → R

nℓ , ℓ = 1, . . . , N , are the canonical projection.

Definition 5.1. We say that a distribution D on a n-dimensional manifold M
admits a nontrivial product structure at q ∈M if there is a local coordinate system
in a neighborhood of q in which D takes the form of a product distribution with
N ≥ 2 factors.

Note that the case N = 1 is trivial since any distribution can be written in local
coordinates as a product distribution with one factor.

Remark 5.2. Regarding the notion of distribution admitting a product structure
one can have in mind the following different notion, which is weaker than the one
we use: a distribution D admits a weak product structure if there are two sub-
distributions D1 and D2 of D satisfying the following two properties:

(1) D(q) = D1(q)⊕D2(q) for any q ∈M ,
(2) there are local frames (X1, . . . , Xm1) of D1 and (Y1, . . . , Ym2) of D2 such

that [Xi, Yj ] = 0,

and in this case D is said to be a weak product of D1 and D2. We stress that in our
Definition 5.1 we require much more: if D = D1×D2 in our sense, then D is clearly
a weak product of D1 and D2. Moreover if, for some j > 1, Dj , Dj

1, and D
j
2 are

still distributions, then Dj must be a weak product of Dj
1 and Dj

2. For example, a
contact distribution D does not admit a product structure in our sense, but it does
admit a weak product structure if rankD ≥ 4.

Given a product distribution D = D1× · · ·×DN on Rn, we choose for every ℓ ∈
{1, . . . , N} a sub-Riemannian metric ḡℓ on (Rnℓ , Dℓ) and a function βℓ depending
only on the variables x̄ℓ such that βℓ is constant if nℓ > 1 and βℓ(0) 6= βℓ′(0) for
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ℓ 6= ℓ′. We define two sub-Riemannian metrics g1, g2 on (Rn, D) by

(5.2)





g1(x)(ẋ, ẋ) =

N∑

ℓ=1

γℓ(x) ḡℓ(x̄ℓ)( ˙̄xℓ, ˙̄xℓ),

g2(x)(ẋ, ẋ) =

N∑

ℓ=1

α2
ℓ(x)γℓ(x) ḡℓ(x̄ℓ)( ˙̄xℓ, ˙̄xℓ),

where

(5.3) α2
ℓ (x) = βℓ(x̄ℓ)

N∏

ℓ′=1

βℓ′(x̄ℓ′), γℓ(x) =
∏

ℓ′ 6=ℓ

∣∣∣
1

βℓ′(x̄ℓ′)
−

1

βℓ(x̄ℓ)

∣∣∣.

Definition 5.3. Let D be a distribution on an n-dimensional manifoldM . We say
that a pair (g1, g2) of sub-Riemannian metrics on (M,D) form a (generalized) Levi-
Civita pair at a point q ∈M , if there is a local coordinate system in a neighborhood
of q, in which D takes the form of a product distribution and the metrics g1 and
g2 have the form (5.2). We say that such a pair has constant coefficients if the
coordinate system can be chosen so that the functions βℓ, ℓ = 1, . . . , N , are constant
(and so all functions α2

ℓ and γℓ are constant too).

This definition is inspired by the classification in the Riemannian case appearing
in [23]. Note however that, in the Riemannian case, the distribution D = TM
takes the form of a product in any system of coordinates, so that Levi-Civita pairs
always exist locally.

Remark 5.4. A Levi-Civita pair with N = 1 is a pair of conformal metrics, g2 =
α2
1g1. If moreover n > 1, two such metrics are actually constantly proportional.

Thus, when n > 1, the metrics of a Levi-Civita pair are constantly proportional if
and only if N = 1.

Proposition 5.5. The two metrics of a Levi-Civita pair are projectively equivalent.
They are affinely equivalent if and only if the pair has constant coefficients.

The proof of this proposition requires some tedious computations and has been
postponed to Appendix A. We can however give here a short proof of the second
statement. Indeed, note that in a Levi-Civita pair with constant coefficients, the
metrics are actually of the form of product metrics, i.e. each of them is a linear
combination of metrics ḡℓ and each of the sub-Riemannian manifolds (M,D, g1)
and (M,D, g2) is locally a product of some sub-Riemannian manifolds (Mℓ, Dℓ, ḡℓ).
Assume for simplicity that N = 2 in (5.2) (the general case can be treated in the
same way). Then a trajectory x(·) = (x̄1, x̄2)(·) is an energy minimizer of g1 if and
only if x̄1(·) and x̄2(·) are energy minimizers of ḡ1 and ḡ2 respectively. The same
holds for g2. As a consequence, the metrics g1 and g2 are affinely equivalent (and
not proportional if α2

1 6= α2
2).

The main open question is whether under some natural regularity assumption
the generalized Levi-Civita pairs are the only pairs of the projectively equivalent
metrics.

5.2. Levi-Civita theorem and its generalizations. The preceding question has
a positive answer in the Riemannian case, that is when D = TM . Indeed, in that
case the local classification of projectively equivalent metrics near generic points has
been established by [23] in any dimension. The classification of affinely equivalent
metrics is a consequence of [16, Th. p. 303]. We summarize all these results in the
following theorem.
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Theorem 5.6. Assume dimM > 1. Then two Riemannian metrics on M are
non-trivially projectively equivalent in a neighborhood of a stable point q if and only
if they form a Levi-Civita pair at q. They are moreover affinely equivalent if and
only if the pair has constant coefficients.

We can actually give a rather short explanation of the classification of affinely
equivalent Riemannian metric based on the de Rham decomposition theorem, [14].
Indeed, a simple analysis of the geodesic equation implies that two Riemannian
metrics are affinely equivalent if and only if they have the same Levi-Civita con-
nection. Since the Levi-Civita connection is parallel with respect to the metric, a
metric with given Levi-Civita connection on a connected manifold is determined by
its value at one point q. Besides, it must be invariant with respect to the holonomy
group (or the reduced holonomy group for the local version of the problem). If
the action of the holonomy group on TqM is irreducible, the Riemannian metric
is uniquely determined by its Levi-Civita connection, i.e. it is affinely rigid. On
the other hand, if the action of the holonomy group is reducible, then by the de
Rham decomposition theorem the Riemannian metric becomes the direct product
of Riemannian metrics and any metric which is affinely equivalent to it is such that
the metrics can be represented as in (5.2) with all functions βℓ being constant.

Our main open question has a positive answer as well for sub-Riemannian metrics
on contact and quasi-contact distributions, which are typical cases of corank 1
distributions (i.e. m = n − 1). Recall that a contact distribution D on a (2k + 1)-
dimensional manifold M , k > 0, is a rank-2k distribution for which there exists
a 1-form ω such that at every q ∈ M , D(q) = kerω(q) and dω(q)|D(q) is non-

degenerate. A quasi-contact distribution D on a 2k-dimensional manifoldM , k > 1,
is a rank-(2k− 1) distribution for which there exists a 1-form ω such that at every
q ∈ M , D(q) = kerω(q) and dω(q)|D(q) has a one-dimensional kernel. The main

result of [27] can be formulated in the following way.

Theorem 5.7 ([27]). Two sub-Riemannian metrics on a contact or a quasi-contact
distribution are non-trivially projectively equivalent at a stable point q if and only
if they form a Levi-Civita pair at q.

Remark 5.8. This theorem and Proposition 4.7 imply that, in the contact and
quasi-contact cases, two affinely equivalent metrics form a Levi-Civita pair with
constant coefficients.

Since contact distributions are never locally equivalent to a non-trivial product
distribution, they admit only Levi-Civita pairs with N = 1.

Corollary 5.9. On a contact distribution, every sub-Riemannian metric is projec-
tively rigid.

For a generic corank one distribution D on an odd dimensional manifold M ,
there is an open and dense subset of M where D is locally contact. By continuity
we obtain the following result.

Corollary 5.10. Let M be an odd-dimensional manifold. Then, for a generic
corank one distribution on M , all metrics are projectively rigid.

6. Left-invariant metrics on Carnot groups

Let us study the particular case of affine and projective equivalence of left-
invariant sub-Riemannian metrics on Carnot groups. This case plays an important
role in sub-Riemannian geometry since Carnot groups appear as tangent cones to
sub-Riemannian manifolds near generic points.
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Definition 6.1. A Carnot group G of step r ≥ 1 is a connected and simply con-
nected nilpotent Lie group whose Lie algebra g admits a step r grading

g = V 1 ⊕ · · · ⊕ V r,

and is generated by its first component, that is, [V j , V 1] = V j+1 for 1 ≤ j ≤ r− 1.
A graded Lie algebra satisfying the last property is called fundamental.

A Carnot group is canonically endowed with a bracket generating distribution
DG: identifying g with the tangent space TeG to G at the identity e, DG is the
distribution spanned by the left-invariant vector fields whose value at the identity
belongs to V 1. Hence Dk

G
(e) = V 1 ⊕ · · · ⊕ V k for k ≤ r, and the step r of the

Carnot group is exactly the step of the distribution.
Given an inner product on V 1, we can extend it to a Riemannian metric on

DG by left-translations. Such a sub-Riemannian metric on (G, DG) is called a left-
invariant sub-Riemannian metric on G.

Theorem 6.2. Let g1, g2 be two left-invariant sub-Riemannian metrics on a Carnot
group G. If g1 and g2 are non-trivially projectively equivalent, then DG admits a
non-trivial product structure and (g1, g2) is a Levi-Civita pair with constant coeffi-
cients.

Proof. Let g1, g2 be two left-invariant sub-Riemannian metrics on G which are non-
trivially projectively equivalent. Set D = DG. Since both metrics g1 and g2 are
obtained by left-invariant extensions of inner products on V 1, it is clear that the
eigenvalues α2

1, . . . , α
2
m of the transition operator are constant. Thus the number

N of distinct eigenvalues is constant and every point of G is stable. Note that N
is necessarily greater than one, otherwise the metrics would be proportional, i.e.
trivially equivalent.

We choose the numbering of the eigenvalues α2
i , i = 1, . . . ,m, in such a way that

α2
1, . . . , α

2
N are the N distinct ones. Let X1, . . . , Xm be a g1-orthonormal basis of

V 1 such that 1
α1
X1, . . . ,

1
αm

Xm is orthonormal with respect to g2. For ℓ = 1, . . . , N ,

we denote by Iℓ the set of indices i ∈ {1, . . . ,m} such that αi = αℓ, and by V 1
ℓ the

linear subspace of V 1 generated by the vectors Xi, i ∈ Iℓ. We get

(6.1) V 1 = V 1
1 ⊕ · · · ⊕ V 1

N .

Each subspace V 1
ℓ , ℓ = 1, . . . , N , generates a graded Lie subalgebra of g,

gℓ = V 1
ℓ ⊕ · · · ⊕ V r

ℓ , where V k+1
ℓ = [V k

ℓ , V
1
ℓ ].

Moreover, from Corollary 4.3 (i), we have

[V 1
ℓ , V

1
ℓ′ ] = 0 for all ℓ 6= ℓ′ ∈ {1, . . . , N}.

Using the Jacobi identity, this relation can be generalized as

(6.2) [V k
ℓ , V

s
ℓ′ ] = 0 for ℓ 6= ℓ′ ∈ {1, . . . , N}, k, s ∈ {1, . . . , r}.

Hence each homogeneous component V k, k = 1, . . . , r, admits a decomposition into
a sum V k = V k

1 + · · ·+ V k
N , and the Lie algebra g writes as

(6.3) g = g1 + · · ·+ gN .

Note that, if the sum (6.3) is a direct one, then (6.1) implies that the distribution
D admits a product structure D = D1 × · · · ×DN , where Dℓ, ℓ = 1, . . . , N , is the
distribution spanned by the left-invariant vector fields whose value at the identity
belongs to V 1

ℓ . Thus, in order to prove that D admits a non-trivial product struc-
ture, it is sufficient to prove that the sum (6.3) is a direct sum, i.e. gℓ∩gℓ′ is reduced
to zero when ℓ 6= ℓ′.

The first step is to complete {X1, . . . , Xm} into a basis of g adapted to the
grading g = V 1 ⊕ · · · ⊕ V r. For k = 2, . . . , r, we construct a basis of V k =
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V k
1 +· · ·+V k

N as follows. Fix first a basis of ∩1≤ℓ≤NV
k
ℓ ; then complete it into a basis

of span{∪1≤i≤N

(
∩ℓ 6=iV

k
ℓ

)
} with vectors from ∪1≤i≤N

(
∩ℓ 6=iV

k
ℓ

)
; then to a basis of

span{∪1≤i≤N

(
∪1≤j≤N

(
∩ℓ 6=i,ℓ 6=jV

k
ℓ

))
} with vectors from ∪1≤i≤N

(
∪1≤j≤N

(
∩ℓ 6=i,ℓ 6=jV

k
ℓ

))

and so on. At the last step, complete the obtained set of vectors into a basis of V k.
By collecting the basis of V 1, V 2, . . . , V r, we obtain a basis {X1, . . . , Xn} of

g. By abuse of notations, we keep the notation Xi to denote the left-invariant
vector field whose value at identity is Xi. We have constructed in this way a frame
{X1, . . . , Xn} of TG with the following properties:

• it is by construction a frame adapted to (g1, g2);
• it contains a basis of every Dk

ℓ , k = 1, . . . , r, ℓ = 1, . . . , N ; for ℓ = 1, . . . , N ,
we denote by L(Iℓ) the set of indices such that {Xi, i ∈ L(Iℓ)} is a basis
of Dr

ℓ ;
• from (6.2), [Xi, Xj ] = 0 if i and j belong to two different sets L(Iℓ); this

implies the following property of the structure coefficients:

(6.4) if i, j, k do not belong to the same L(Iℓ), then c
k
ij = 0;

• all structure coefficients are constant since the vector fields are left-invariant;
moreover,

(6.5) if wk 6= wi + wj , then c
k
ij = 0,

where as usual wi is the smallest integer l such that Xi ∈ Dl.

The property gℓ ∩ gℓ′ = {0} is equivalent to L(Iℓ)∩L(Iℓ′ ) = ∅, so we have to prove
that the latter holds for any ℓ 6= ℓ′.

Now, Proposition 3.4 implies that the Hamiltonian vector fields of g1 and g2 are
orbitally diffeomorphic near any ample covector. And, from Proposition 3.10, in
the coordinates (u1, . . . , un) associated with the frame {X1, . . . , Xn}, the orbital

diffeomorphism satisfies the fundamental algebraic system AΦ̃ = b.
Let us compute first the matrix b. Fix ℓ ∈ {1, . . . , N} and j ∈ Iℓ. Using (6.5)

and the fact that the αi’s are constant, there holds

b1j =
α2
ℓ

α
~h1(uj) =

α2
ℓ

α

n∑

k=m+1

a1j,kuk, and bs+1
j = ~h1(b

s
j) for s ≥ 1.

An easy induction argument gives the value

bsj =
α2
ℓ

α

n∑

k=m+1

asj,kuk, s ∈ N.

Thus the system of equations AΦ̃ = b can be rewritten as
n∑

k=m+1

asj,kΦk =
α2
ℓ

α

n∑

k=m+1

asj,kuk for every j ∈ Iℓ, ℓ ∈ {1, . . . , N}, s ∈ N.

In other terms, AΦ̃ = b splits into N systems of equations indexed by ℓ = 1, . . . , N
of the form

(6.6)

n∑

k=m+1

asj,k

(
Φk −

α2
ℓ

α
uk

)
= 0 for every j ∈ Iℓ, s ∈ N.

Let us have a closer look to the coefficients asj,k. Fix as before ℓ ∈ {1, . . . , N}
and j ∈ Iℓ. First we have

a1j,k = qjk =

m∑

i=1

ckijui =
∑

i∈Iℓ

ckijui,
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due to (6.4). Using again the latter relation and the other properties of the structure
coefficients, an easy induction argument shows that the recurrence formula for asj,k,
s ∈ N, is

as+1
j,k =

∑

i∈Iℓ

ui~ui(a
s
j,k) +

∑

l∈L(Iℓ)

asj,l
∑

i∈Iℓ

ckilui.

As a consequence of this formula:

• if k 6∈ L(Iℓ), then asj,k = 0; hence, for a fixed ℓ ∈ {1, . . . , N}, the sys-

tem (6.6) writes as

(6.7)
∑

k∈L(Iℓ)

asj,k

(
Φk −

α2
ℓ

α
uk

)
= 0 for every j ∈ Iℓ, s ∈ N;

• if k ∈ L(Iℓ), then asj,k is the corresponding coefficient of the matrix A

associated with the family of vector fields {Xi, i ∈ L(Iℓ)}; from Proposi-
tion 3.11, the latter matrix has maximal rank for almost every u, thus (6.7)
implies

(6.8) Φk =
α2
ℓ

α
uk for every k ∈ Iℓ.

Now, assume that there exists two indices ℓ, ℓ′ in {1, . . . , N} such that the inter-
section L(Iℓ) ∩ L(Iℓ′) is non empty. For k ∈ L(Iℓ) ∩ L(Iℓ′), we have from (6.8)

Φk =
α2
ℓ

α
uk =

α2
ℓ′

α
uk,

which implies ℓ = ℓ′. Hence L(Iℓ)∩L(Iℓ′ ) = ∅ for any ℓ 6= ℓ′, which implies that g is
decomposed into a direct sum g = g1⊕· · ·⊕gN . We conclude that the distribution
D admits a product structure D = D1× · · ·×DN which is non-trivial since N > 1.
This proves the first part of the theorem.

It remains to prove that (g1, g2) form a Levi-Civita pair on D. Set nℓ = dim gℓ

for ℓ = 1, . . . , N and define coordinates x = (x̄1, . . . , x̄N ) on G, where x̄ℓ =
(x1ℓ , . . . , x

nℓ

ℓ ), by

x 7→ exp



∑

i∈L(I1)

xi1Xi


 · · · exp




∑

i∈L(IN )

xiNXi


 .

In these coordinates, a vector field Xi with i ∈ L(Iℓ), ℓ = 1, . . . , N , depends only on
the coordinates x̄ℓ and can be considered as a vector field on Rnℓ (with coordinates
x̄ℓ). Thus Dℓ can be identified with a distribution on Rnℓ . Let ḡℓ be the sub-
Riemannian metric on (Rnℓ , Dℓ) for which the vector fields Xi, i ∈ Iℓ, form an
orthonormal frame. We have the following expressions in coordinates:





g1(x)(ẋ, ẋ) =

N∑

ℓ=1

ḡℓ(x̄ℓ)( ˙̄xℓ, ˙̄xℓ),

g2(x)(ẋ, ẋ) =

N∑

ℓ=1

α2
ℓ ḡℓ(x̄ℓ)( ˙̄xℓ, ˙̄xℓ).

Hence g1, g2 form a Levi-Civita pair onD with constant coefficients and the theorem
is proved. �

Remark 6.3. Note that we use the hypothesis of projective equivalence between
g1 and g2 only to deduce the existence of a solution to the fundamental algebraic
system. So we have actually proved a stronger result than Theorem 6.2, namely:
if g1 and g2 are non proportional and if the corresponding fundamental algebraic
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system AΦ̃ = b admits a solution near some λ ∈ T ∗M , then DG admits a nontrivial
product structure and (g1, g2) is a Levi-Civita pair with constant coefficients.

7. Nilpotent approximation of equivalent metrics

7.1. Nilpotent approximation. Let (M,D, g) be a sub-Riemannian manifold
and q0 ∈ M be a regular point. The nilpotent approximation of (M,D, g) at

q0 is another sub-Riemannian manifold, denoted by (M̂, D̂, ĝ), which has a partic-

ular structure: M̂ is a Carnot group, D̂ = DM̂ is the canonical distribution on M̂ ,

and ĝ is a left-invariant sub-Riemannian metric on (M̂, D̂).
Below we briefly recall the construction of the nilpotent approximation in a form

convenient for us here, following the foundational paper [25] in nilpotent differential
geometry. For equivalent description using privileged coordinates or metric tangent
space approach see [7, 20].

Let V 1 = D(q0) and, for an integer i > 1, V i = Di(q0)/D
i−1(q0). The graded

space

g =
r⊕

i=1

V i

associated with the filtration (2.1) at q0 is endowed with the natural structure of
a fundamental graded Lie algebra: if X ∈ V i and Y ∈ V j , then for any vector

fields X̃ and Ỹ tangent to Di and Dj respectively in a neighborhood of q0 and

such that X̃(q0) = X , Ỹ (q0) = Y , the vector [X̃, Ỹ ](q0) is well-defined modulo

Di+j−1(q0), i.e. [X,Y ] := [X̃, Ỹ ](q0) is a well-defined element of V i+j . The graded
Lie algebra g is called the Tanaka symbol of the distribution D at q0. Note that since
D generates the weak derived flag (2.1), the space V 1 generates the Lie algebra g.
Therefore, g is a fundamental graded Lie algebra. As a consequence, the connected
simply-connected Lie group M̂ with Lie algebra g is a Carnot group.

Let us denote by D̂ the left-invariant distribution on M̂ such that D̂(e) = V 1,

where e is the identity of M̂ . The metric g on D induces an inner product g(q0)

on V 1, and so a left-invariant sub-Riemannian metric ĝ on (M̂, D̂). The con-

structed sub-Riemannian manifold (M̂, D̂, ĝ) is called the nilpotent approximation
of (M,D, g) at q0.

Consider a frame {X1, . . . , Xn} of TM adapted to D at q0 ∈ M and such that
X1, . . . , Xm are g-orthonormal. For every i ∈ {1, . . . , n}, Xi(q0) can be identified
by the construction above to an element of g, which defines a left-invariant vector
field X̂i on M̂ . Then X̂1, . . . , X̂m are ĝ-orthonormal and {X̂1, . . . , X̂n} is a frame

of TM̂ adapted to D̂ at any point of M̂ . The structure coefficients ĉkij of this frame
satisfy:

(7.1)

{
ĉkij ≡ ckij(q0) if wi + wj = wk;
ĉkij ≡ 0 if wi + wj 6= wk.

7.2. Equivalence for nilpotent approximations. Let (M,D, g1) and (M,D, g2)
be two sub-Riemannian manifolds. We fix a point q0 which is stable with respect
to g1, g2 and we denote by (M̂, D̂, ĝi), i = 1, 2, the nilpotent approximation of
(M,D, gi) at q0.

Theorem 7.1. If g1, g2 are projectively equivalent and not conformal to each other
near q0, then D̂ admits a product structure and (ĝ1, ĝ2) is a Levi-Civita pair with
constant coefficients.

To prove this result we need first some technical results.
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Let g1, g2 be two non-trivially projectively equivalent metrics. By Proposi-
tion 3.4, their Hamiltonian vector fields are orbitally diffeomorphic near any am-
ple covector. We choose a frame {X1, . . . , Xn} adapted to (g1, g2) near q0. It

induces (see subsection 7.1) a frame {X̂1, . . . , X̂n} of TM̂ adapted to D̂ which

has by construction the following properties: X̂1, . . . , X̂m is ĝ1-orthonormal and
1

α1(q0)
X̂1, . . . ,

1
αm(q0)

X̂m is ĝ2-orthonormal, where α2
1(q), . . . , α

2
m(q) are the eigen-

values of the transition operator at q between g1 and g2. Note that the transition
operator between ĝ1 and ĝ2 has the same eigenvalues α2

1(q0), . . . , α
2
m(q0) at any

point of M̂ .

Remark 7.2. The metrics ĝ1 and ĝ2 are proportional if and only if all α2
i (q0)’s are

equal, i.e. if g1, g2 are conformal to one another near q0 (recall that q0 is stable).
The hypothesis of the theorem rules out this possibility.

Recall that the data of a frame {X1, . . . , Xn} of TM and of eigenvalues α2
1, . . . , α

2
m

allows to construct infinite matrices A and b by the formulas (3.9)–(3.11). Each
element of these matrices A = A(q)(u) and b = b(q)(u) is a function of q in a

neighborhood of q0 and of u ∈ Rn. Similarly, denote by Â and b̂ the matrices
constructed by using {X̂1, . . . , X̂n} as a frame and α2

1(q0), . . . , α
2
m(q0) as eigenval-

ues in the formulas (3.9)–(3.11). Each element of Â = Â(q̂)(u) and b̂ = b̂(q̂)(u)

is a function of q̂ in M̂ and of u ∈ R
n. Finally, the elements of the matrices A,

b, Â and b̂ are denoted by asj,k, b
s
j , â

s
j,k and b̂sj respectively. Let us introduce the

notion of weighted degree degw for a polynomial with n variables. For a monomial

m = uβ1

1 · · ·uβn
n , we set degw(m) =

∑n
i=1 βiwi. Then the weighted degree degw(P )

of a polynomial function P = P (u1, . . . , un) is the largest weighted degree of the
monomials of P . A polynomial is said to be w-homogeneous if all its monomials
are of the same weighted degree.

Lemma 7.3. For any s ∈ N, 1 ≤ j ≤ m, and m+ 1 ≤ k ≤ n, there hold:

• for every q ∈ M near q0, the element asj,k(q) is a polynomial in u1, . . . , un
of weighted degree

degw(a
s
j,k(q)) ≤ 2s− wk + 1;

• the function âsj,k does not depend on q̂ ∈ M̂ and is a w-homogeneous poly-
nomial in u1, . . . , un of weighted degree

degw(â
s
j,k) = 2s− wk + 1;

• the homogeneous term of highest weighted degree in asj,k(q0) is â
s
j,k, that is,

asj,k(q0)(u) = âsj,k(u) + poly(u1, . . . , un),

with degw(poly) < degw(â
s
j,k).

Proof. Notice first that a structure coefficient clij is zero if wl > wi+wj ; and second
that, for any polynomial P ,

degw
(
~h1(P )

)
≤ degw(P ) + 2.

An easy induction argument based on (3.10) allows then to prove the first item. The
second and the third item are proven in the same way by using moreover (7.1). �

Lemma 7.4. For any s ∈ N and 1 ≤ j ≤ m, there hold:

• for every q ∈ M near q0, αb
s
j is a polynomial in u1, . . . , un of weighted

degree

degw(αb
s
j) ≤ 2s+ 1;
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• the function α(q0)b̂
s
j does not depend on q̂ ∈ M̂ and is a w-homogeneous

polynomial in u1, . . . , un of weighted degree

degw(α(q0)b̂
s
j) = 2s+ 1;

• the homogeneous term of highest weighted degree in bsj(q0) is b̂
s
j, that is,

αbsj(q0)(u) = αb̂sj(u) + poly(u1, . . . , un),

with degw(poly) < degw(b̂
s
j).

Proof. Note first that, by (4.1) and Lemma 4.4, ~h1(α
2)/α2 = Q. Thus it is a

polynomial function of u of weighted degree 1. As a consequence, the terms Rj ,
j = 1, . . . ,m, are polynomials of weighted degree 3. Using then the recurrence
formula (3.11) and the fact that

α~h1(
1

α
) = −

1

2

~h1(α
2)

α2
= −

Q

2
,

an easy induction argument shows the first item.
The second and the third item are proven in the same way by using moreover

(7.1). �

Lemma 7.5. Assume that a minor of the matrix Â (resp. of the matrix
(
Â α(q0)b̂

)
)

is nonzero. Then the corresponding minor - same rows and columns - of A (resp.
of
(
A αb

)
) is nonzero as well near q0.

Proof. An arbitrary (l × l) minor m(A) of the matrix A has the form

m(A) =
∑

σ∈Sl

sgn(σ) as1j1,kσ(1)
· · ·asljl,kσ(l)

.

As a consequence of Lemma 7.3, each term in this sum is a polynomial function of
u of weighted degree ≤ 2

∑
i si −

∑
iwki

+ l. Moreover, the homogeneous part of
m(A(q0)) of weighted degree 2

∑
i si −

∑
i wki

+ l is equal to

m(Â) =
∑

σ∈Sl

sgn(σ) âs1j1,kσ(1)
· · · âsljl,kσ(l)

.

Hence, if m(Â) 6= 0, then m(A(q0)) is nonzero and so is m(A(q)) for q near q0.

The same argument holds for the minors of
(
Â α(q0)b̂

)
and

(
A αb

)
by using

Lemma 7.4. �

Lemma 7.6. The algebraic system ÂΦ̂ = b̂ admits a solution Φ̂ near any ample
covector in π−1(q0).

Proof. Since ~h1 and ~h2 are locally orbitally diffeomorphic near an ample covector,
there exists an orbital diffeomorphism Φ between the extremal flows of (g1, g2)
with coordinates (Φ1, . . . ,Φn) in the system of coordinates associated with the

frame {X1, . . . , Xn}. Then from Proposition 3.10 Φ̃ = (Φm+1, . . . ,Φn) satisfies

AΦ̃ = b. Introducing the nonzero function α defined by (3.4), this can be rewritten

as AαΦ̃− αb = 0, i.e.
(
A αb

)(αΦ̃
−1

)
= 0.

Thus
(
A b

)
is not of full rank, or equivalently, any maximal minor of the latter

matrix is zero. The contraposition of Lemma 7.5 implies that any maximal minor
of
(
Â α(q0)b̂

)
is zero as well, thus this matrix is not of full rank.

Any element of ker
(
Â α(q0)b̂

)
is a function of u ∈ Rn with values in Rn−m×R.

Since Â is of full rank by Proposition 3.11, and since α(q0) is nonzero, there exists
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Ψ ∈ ker
(
Â α(q0)b̂

)
of the form Ψ = (α(q0)Φ̂,−1). In other terms, Φ̂ satisfies

ÂΦ̂ = b̂. �

Proof of Theorem 7.1. The metrics ĝ1 and ĝ2 are left-invariant metrics on the Carnot
group M̂ and by Remark 7.2 they are not proportional. Moreover by the lemma
above, the fundamental algebraic system associated with ĝ1 and ĝ2 admits a solu-
tion. Theorem 7.1 follows then from Remark 6.3. �

8. Genericity of indecomposable fundamental graded Lie algebras

This section is dedicated to the proof of Theorem 1.9. From Theorem 7.1, the
existence of projectively equivalent and non conformal metrics implies that the
nilpotent approximation of D at generic points admits a product structure. Thus
we have to show that, under the hypothesis of the theorem on (m,n), generic
nilpotent approximations do not have a product structure.

Remark first that, when n ≥ m(m+1)
2 , generic distributions are free up to the

second step at generic points, i.e. D2 is a distribution of rank m(m+1)
2 near these

points. The nilpotent approximation of such a distribution does not admit a product
structure, therefore the statement of Theorem 1.9 holds for these values of (m,n).

Consider now a pair (m,n) such that 2 ≤ m < n ≤ m(m+1)
2 . We denote by

GNLA(m,n) the set of all n-dimensional step 2 graded Lie algebras generated by
the homogeneous component V1 of dimension m. Theorem 1.9 results directly from
the following proposition.

Proposition 8.1. Except the following two cases:

(1) m = n− 1 with even n,
(2) (m,n) = (4, 6),

a generic element of GNLA(m,n) cannot be represented as a direct sum of two
graded Lie algebras.

Proof. Let g = V1⊕V2 be a step 2 graded Lie algebra. This algebra can be described
by the Levi operator

Lq : ∧2V1 → V2,

which sends (X,Y ) ∈ ∧2V1 to [X,Y ] or, equivalently, by the dual operator L∗
q :

V ∗
2 → ∧2V ∗

1 . Denote by Ωg the image of the latter operator.
Since g is generated by V1, the space Ωg is a (n −m)-dimensional subspace of

the space ∧2V ∗
1 of all skew-symmetric forms on V1. The set GNLA(m,n) is in a

bijective correspondence with the orbits of (n−m)-dimensional subspace of ∧2V ∗
1

under the natural action of GL(V1). This reduces our question to an analysis of
orbits in Grassmannians of ∧2V ∗

1 under the natural action of GL(V1).
Given a subspace W of V1 denote by AW the space of all skew-symmetric forms

with kernel W . A graded Lie algebra g = V1 ⊕V2 is a direct sum of two graded Lie
algebras if and only if there is a splitting

(8.1) V1 = V 1
1 ⊕ V 2

1

(with each summand being nonzero) such that the corresponding subspace of ∧2V ∗
1

can be represented as

(8.2) Ωg = Ω1
g ⊕ Ω2

g, Ω1
g ⊂ AV 2

1
, Ω2

g ⊂ AV 1
1
.

In this case we will say that the space Ωg is decomposable with respect to the
splitting (8.1). The condition on Ω1

g and Ω2
g in (8.2) is equivalent to require that, in

some basis of V1, the elements of Ω1
g have the block-diagonal matrix representation(

A1 0
0 0

)
and the elements of Ω2

g have the block-diagonal matrix representation
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(
0 0
0 A2

)
, where the corresponding blocks have the same nonzero size. Note

that we do not exclude that one of the subspaces Ωi
g is equal to zero. In this case

the space Ωg itself must consist of forms with a common nontrivial kernel. This
corresponds to the situation where one of the summands in the decomposition of g
into a direct sum is commutative.

We will distinguish several cases, depending on the value of the corank n −m
and on the parity of m.

1. The case n−m = 1. In this case the space Ωg is a line in the space ∧2V ∗
1 . It is

decomposable if and only if Ωg is generated by a degenerate skew-symmetric form,
one of the subspaces Ωi

g being zero. The latter condition is satisfied by a generic

line in ∧2V ∗
1 if and only if dimV1 is odd, or equivalently, when n is even.

2. The case n−m = 2. In this case Ωg is a plane in the space ∧2V ∗
1 . The orbits

of planes of ∧2V ∗
1 under the natural action of GL(V1) are in bijective correspon-

dence with the equivalence classes of pencils of skew-symmetric 2-forms, which are
linear combinations λA + µB of two skew-symmetric 2-forms A,B with real pa-
rameters λ, µ. The classification of these pencils is classical, we give here some
basic definitions and results and we refer the reader to [18] (based on [17]) for more
details.

Let us consider a pencil of skew-symmetric 2-forms λA + µB, identified to a
pencil of skew-symmetric matrices in some basis of the space V1. The pencil is called
regular if its determinant is a non-zero polynomial, it is called singular otherwise.
A regular pencil is characterized by its elementary divisors, defined as follows.
Consider the greatest common divisor of all rank-k minors of the pencil for the
integers k for which it makes sense. The elementary divisors of the pencil are
the simple factors (with their multiplicity) of these greatest common divisors for all
possible k. In case of skew-symmetric pencils, all elementary divisors come in pairs.
A singular pencil is characterized by its elementary divisors and its minimal indices
(also called Kronecker indices in [18]). The special property of a singular pencil
is that there exists a nonzero homogeneous polynomial branch of kernels λ, µ 7→
v(λ, µ), i.e. for any λ, µ ∈ R, the vector v(λ, µ) is a nonzero element of ker(λA+µB).
The first minimal index is the minimal possible degree of a polynomial v(λ, µ). We
do not need the other indices here, so we do not define them.

The pencils defined in different basis of V1 and associated to different elements
of the same GL(V1)-orbit of a skew-symmetric form are called equivalent. The
following result give the normal forms of skew-symmetric pencils.

Theorem 8.2 ([18]). A skew-symmetric pencil λA + µB with minimal indices
m1 ≤ m2 ≤ · · · ≤ mp and elementary divisors (µ + a1λ)

l1 , (µ + a1λ)
l1 , . . . , (µ +

aqλ)
lq , (µ+ aqλ)

lq , (λ)f1 , (λ)f1 , . . . , (λ)fs , (λ)fs is equivalent to the skew-symmetric
pencil Q of the following form,

Q =

(
M 0
0 F

)
,

where the singular part M and the regular part F satisfy

M =



M1

. . .

Mq


 , F =




E1(a1)
. . .

Eq(aq)
F1

. . .

Fs




,
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all blocks Mi, Ei, Fi being skew-symmetric, Mi of size (2mi + 1)× (2mi +1), Ei of
size 2li × 2li and Fi of size 2fi × 2fi.

Remark 8.3. Note that the only possible zero blocks are the blocks Ei(ai) with
µ
λ
= −ai and li = 1, and Fj with λ = 0 and fj = 1.

Let us return to the plane Ωg considered as a pencil. The cases of odd-dimensional
and even-dimensional V1 are treated again separately.

2(a) The subcase when dimV1 is odd, dimV1 = 2k+1. In this case all forms in
the pencil Ωg are degenerate, so the pencil is singular. From the dimension of the
blocks in the normal form, we see that the first minimal index is not greater than
k. Moreover, for generic pencils this first minimal index has its maximal possible
value, thus it is equal to k.

On the other hand, if the pencil Ωg is decomposable, then its first minimal index
must be equal to zero, i.e. all forms of the pencil have a common nontrivial kernel.
Indeed, assume that Ωg is decomposable with respect to the splitting (8.1) with
decomposition (8.2). The statement is clear if one of the spaces Ωi

g in (8.2) is zero.

The remaining possibility is that the spaces Ωi
g are both one-dimensional. Without

loss of generality we assume that V 1
1 is odd-dimensional. Then all forms on the line

Ω1
g have a nontrivial kernel in V 1

1 and this kernel is common for all forms in Ωg.
Since k > 0 (dimV1 ≥ 2), we conclude that generic pencils are not decomposable.

2(b) The subcase when dimV1 is even. In this case generic pencils are regular.
Generic regular pencils of skew-symmetric forms have only simple elementary divi-
sors, i.e. linear and not nontrivial powers of linear, such that each divisor appear
only twice.

Now consider a decomposable regular pencil Ωg with respect to the splitting
(8.1) with decomposition (8.2). Then

(8.3) Ωg = {λω1 + µω2 : λ, µ ∈ R},

where the form ωi generates Ωi
g, i = 1, 2. One can see by the normal form in

Theorem 8.2 that the elementary divisors of this pencil can be only of the form λ
or µ of multiplicity one. The pencil satisfy the genericity property of the previous
paragraph if and only if the set of elementary divisors is {λ, λ, µ, µ}, i.e. when
m = 4. Consequently n = 6. So, decomposibility on an open set can occur
only if (m,n) = (4, 6). Conversely, if (m,n) = (4, 6) and Ωg is as in (8.3), then
Pfaffian

(
λω1+µω2

)
is a quadratic form in λ and µ and the pencil Ωg is decomposible

if and only if this form is sign-indefinite, which implies that decomposibility occurs
on an open set in this case.

Remark 8.4. In the case m = 4, if the pencil Ωg = {λω1 + µω2 : λ, µ ∈ R} is
decomposable, then the subspaces V 1

1 and V 2
1 in the splitting (8.1) are uniquely

defined. Indeed, in this case there are exactly two degenerate forms: these are the
lines on which Pfaffian(λω1 + µω2) = 0 and the subspaces V j

i are kernels of these
forms. We will call this splitting V1 = V 1

1 ⊕V 2
1 the canonical splitting corresponding

to the decomposable pencil Ωg.

3. The case n−m > 2. We will reduce this case to the case n−m = 2.

3(a) The subcase when dimV1 is odd, i.e. dim V1 = 2k + 1. Assume that Ωg

is decomposable with respect to the splitting (8.1) and, without loss of generality,
that dimV 1

1 is odd and equal to 2l+ 1, l < k. Then it is easy to see on the normal
form that the first minimal index of any plane in Ωg is not greater than l. On the
other hand, a generic plane in a generic (n−m)-dimensional subspace of ∧2V ∗

1 has
first minimal index k. This proves the statement of the theorem in this case.
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3(b) The subcase when dimV1 is even. First, assume that m = dimV1 >
4. Then by item 2(b) a generic (n − m)-dimensional subspace of ∧2V1 contains
an indecomposable plane, therefore the original (n − m)-dimensional subspace is
indecomposable.

Now assume thatm = dimV1 = 4. Then a generic (n−m)-dimensional subspace
of ∧2V1 either contains an indecomposable plane or contains two planes such that
the canonical decomposition of V1 corresponding to these planes, as defined in Re-
mark 8.4, do not coincide. This implies that generic (n−m)-dimensional subspaces
of ∧2V1 are indecomposable. This case ends the proof. �

Appendix A. Proof of Proposition 5.5 on projective equivalence of

Levi-Civita pairs

Let (g1, g2) be a Levi-Civita pair on a distribution D of a manifold M , and
fix a point q0 ∈ M . In local coordinates, the metrics g1, g2 take the form (5.2)
and the distribution D is the product distribution D = D1 × · · · × DN on Rn =
Rn1 × · · · × RnN defined by (5.1).

Let us construct a frame adapted to (g1, g2). For any integer 1 ≤ ℓ ≤ N , we
choose vector fields Y ℓ

1 , . . . , Y
ℓ
kℓ
, where kℓ = dimDℓ, of the form Y ℓ

i =
∑nℓ

j=1 a
ℓ
ij(x

ℓ)∂xℓ
j

such that {Y ℓ
1 , . . . , Y

ℓ
kℓ
} is a frame of Dℓ and is orthonormal with respect to ḡℓ. We

complete {Y ℓ
1 , . . . , Y

ℓ
kℓ
} into a frame adapted to the flag Dℓ ⊂ D2

ℓ ⊂ · · · ⊂ TRnℓ by

adding vector fields Xℓ
kℓ+1, . . . , X

ℓ
nℓ

of the form [Y ℓ
i1
, . . . , [Y ℓ

ik−1
, Y ℓ

ik
]]. Moreover, set-

ting Xℓ
i = 1√

γℓ
Y ℓ
i for i = 1, . . . , kℓ, we obtain a g1-orthonormal frame {Xℓ

1, . . . , X
ℓ
kℓ
}

of Dℓ.
Grouping all together, we have obtained a frame {Xℓ

i , 1 ≤ ℓ ≤ N, i = 1, . . . , kℓ}
of D which is g1-orthonormal and g2-orthogonal, and a frame {Xℓ

i , 1 ≤ ℓ ≤ N, i =
1, . . . , nℓ} of TRn which is adapted to the pair (g1, g2). To simplify the notations
we denote by {X1, . . . , Xm} the frame of D and by {X1, . . . , Xn} the frame of TRn.
For i = 1, . . . , n, we denote by ℓ(i) the integer in {1, . . . , N} such that Xi is of the

form X
ℓ(i)
j .

The special form of the constructed adapted frame and the form of (5.3) imply
the following properties of the structure coefficients ckij :

• if ℓ(i) 6= ℓ(j), then ckij = 0 if k 6= i or j; moreover,

(A.1) cjij =





α2
ℓ(j)Xi(α

2
ℓ(i))

4α2
ℓ(i)

(
α2

ℓ(j)
−α2

ℓ(i)

) , if j ≤ m;

0, if j > m;

• if ℓ(i) = ℓ(j) ≤ ℓ(k), then ckij = 0.

Notice also that we can obtain the following relationship from (5.3),

(A.2) Xi(α
2
ℓ(j)) =

α2
ℓ(j)

2α2
ℓ(i)

Xi(α
2
ℓ(i)), if ℓ(i) 6= ℓ(j).

These formulas permit us to simplify the equations (3.6) and (3.7) which char-
acterize an orbital diffeomorphism. To simplify (3.6), we have to compute Rj .
For this, we first show that the first divisibility condition holds for our choice of
adapted frame (it results directly from the use of (A.1) and (A.2) in the computation



ON PROJECTIVE AND AFFINE EQUIVALENCE OF SUB-RIEMANNIAN METRICS 35

of ~h1(P)). Then we use the following formula (see [27, Lemma 3]),

Rj =

m∑

i=1

(1− δij)

(
(α2

j − α2
i )c

i
ji −

Xj(α
2
i )

2

)
u2i +

m∑

i=1

(1− δij)
α2
i

2α2
j

Xi

(
α4
j

α2
i

)
uiuj

+
m∑

i=1

m∑

k=1

(1 − δik)(α
2
j − α2

k)c
k
jiuiuk + α2

j

m∑

i=1

n∑

k=m+1

ckjiuiuk.

We substitute the structure coefficients by the expressions shown above and use the
property of functions βℓ(x̄ℓ) to be constant if xℓ is of dimension more then one. We
get Rj = α2

j

∑m
i=1

∑n
k=m+1 c

k
ijuiuk. We finally obtain a simplified form of (3.6),

n∑

k=m+1

qjkΦk =
α2
j

α

n∑

k=m+1

qjkuk 1 ≤ j ≤ m.

To simplify (3.7), it is sufficient to notice that Xs
i (α

2
i ) = 0 if |Is| > 1. Setting

Φi =
α2

iui

α
for i = 1, . . . ,m as in (3.5), we obtain

~h1(Φs) =

n∑

k=1

qskΦk.

To summarize, there exists an orbital diffeomorphism between ~h1 and ~h2 if the
following equations have a solution:

n∑

k=m+1

qjkΦk =
α2
j

α

n∑

k=m+1

qjkuk 1 ≤ j ≤ m,

~h1(Φs) =

n∑

k=1

qskΦk m+ 1 ≤ s ≤ n.

It appears that Φk =
α2

kuk

α
, k = m+1, . . . , n, obviously satisfy this system. Thus ~h1

and ~h2 are orbitally diffeomorphic and, by Proposition 3.3, g1, g2 are projectively
equivalent.

In the case of a pair with constant coefficients, all αi are constant and thus
~h1(α

2) = 0. Applying again Proposition 3.3, we deduce that the metrics of a
Levi-Civita pair with constant coefficients are affinely equivalent. Conversely, if
the metrics of a Levi-Civita pair are affinely equivalent, then by Proposition 4.7 all
factors αi are constant, which implies that all βi are constant. Thus the pair has
constant coefficients. This ends the proof of Proposition 5.5.

Appendix B. Proof of Proposition 4.6 on quadratic first-integrals

Proposition 4.6 is the generalization to sub-Riemannian metrics of a result stated
for Riemannian metrics in [22], namely Corollary 3 of Theorem 1. It is then suf-
ficient to show the following result, which is the exact generalization to the sub-
Riemannian case of that Theorem 1 (in the case of polynomials of degree d = 2).

Proposition B.1. Let D be a Lie-bracket generating distribution on an open ball
B ⊂ Rn and g be a smooth metric on D. Then, for any ε > 0 there exists a metric
g̃ on D which is ε-close to g in the C∞-topology, and ε′ > 0 such that for any C2

metric g′ on D which is ε′-close to g̃ in the C2-topology, the normal extremal flow
of g′ does not admit a non-trivial quadratic first-integral (non-trivial means non
proportional to the Hamiltonian hg′ associated with g′).
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Note that we work on an open subset of Rn and not in a general manifold since,
as noticed in [22], it is sufficient to prove the result locally. Thus we identify T ∗B
to B × Rn and we write a covector λ ∈ T ∗B as a pair (x, p), where x = π(λ).

The proof of Theorem 1 in [22] goes as follows. Choose k sets of N points2 in B,
Sℓ = {xℓ,1, . . . , xℓ,N}, ℓ = 1, . . . , k, where N = n(n+1)/2 and k is an integer larger
than 4. Then consider the initial covectors associated with all the geodesics joining
the points in different sets. The existence of a quadratic first-integral implies strong
constraints on these covectors. If the points are in “general” position, small and
localized perturbations of the metric along the geodesics make these constraints
incompatible, which prevents the existence of a quadratic first-integral.

This argument is very general, it is not specific to Riemannian geometry. It only
requires the following assumption on the kN points:

(H.1): no three of the points x1,1, . . . , xk,N lie on one normal geodesic;
(H.2): for every sets Si 6= Sj and every point x ∈ Si, there exists a 2-decisive

set (see below) p1, . . . , pN ∈ T ∗
xB ≃ Rn such that

Sj = {π ◦ e
~hg(x, p1), . . . , π ◦ e

~hg (x, pN )};

(H.3): for every pair of sets Si 6= Sj and every pair of points x ∈ Si and

y ∈ Sj , let p ∈ T ∗
xB ≃ R

n be the covector such that y = π ◦ e
~hg(x, p); then

perturbations g̃ of the metric g localized near one point of the geodesic

π ◦ et
~hg (x, p), t ∈ (0, 1), generate a neighborhood of e

~hg(x, p) in T ∗B, i.e.
the map

g̃ 7→ e
~hg̃(x, p)

is a submersion at g̃ = g.

As a consequence, if any sub-Riemannian metric g admits kN points satisfying
(H.1)–(H.3), then Proposition B.1 can be proved in the same way as [22, Theorem
1]. Thus we are reduced to proving the existence of such sets of points.

Remark B.2. A set of N = n(n+1)/2 vectors of Rn is called 2-decisive if the values
of any quadratic polynomial on this set determine the polynomial. Clearly, the set
of 2-decisive sets is open and dense in the set of N -tuples of vectors of Rn.

Let us first study the perturbation property of (H.3). We denote by G the set
of sub-Riemannian C2 metrics on D. Locally G can be identified with an open
subset of the Banach space S of C2 maps from B to the set of symmetric (m×m)
matrices.

Lemma B.3. Let g be a sub-Riemannian metric and λ0 ∈ T ∗B be an ample
covector with respect to g. Then the map

ψ : g̃ ∈ G 7→ e
~hg̃ (λ0) ∈ T ∗B

is a submersion at g̃ = g.

Proof. From standard results on the dependance of differential equations with re-
spect to a parameter, the differential of ψ at g can be written as

Dgψ : g̃ ∈ S 7→ e
~hg

∗

∫ 1

0

e
−s~hg

∗

(
∂~hg(λ(s))

∂g
(g) · g̃

)
ds,

2In [22], the sets of points are labelled A = {A1, . . . , AN}, Bℓ = {Bℓ,1, . . . , Bℓ,N}, ℓ = 1, . . . , κ,

C = {C1, . . . , CN}, with κ = k − 2 greater than 2.
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where λ(s) = es
~hgλ0, s ∈ [0, 1]. Now, we can easily verify that, for a given λ ∈ T ∗B,

the image of the partial differential of ~hg with respect to g is

Im

(
∂~hg(λ)

∂g
(g)

)
= {v ∈ Tλ(T

∗B) : π∗v ∈ D} = J
(1)
λ ,

where the last equality comes from Lemma 2.8. As a consequence, the image of the
linear map Dgψ satisfies

ImDgψ = e
~hg

∗

∫ 1

0

e
−s~hg

∗ J
(1)
λ(s)ds,

and ψ is a submersion at g if and only if

(B.1) span
{
e
−s~hg

∗ J
(1)
λ(s) : s ∈ [0, 1]

}
= Tλ0(T

∗B).

Assume by contradiction that (B.1) does not hold. Then there exists p ∈

T ∗
λ0
(T ∗B) such that 〈p, e

−s~hg

∗ J
(1)
λ(s)〉 = 0 for all s ∈ [0, 1]. Note that Jλ0(s) ⊂

e
−s~hg

∗ J
(1)
λ(s) (see Definition 2.5). Hence, for all smooth curve l(·) such that l(s) ∈

Jλ0(s) for all s ∈ [0, 1], we have 〈p, l(s)〉 ≡ 0. Taking the derivatives with respect
to s at 0, we get

〈p,
dj

dtj
l(0)〉 = 0 for all integer j.

From Definition 2.2 this implies 〈p, J
(k)
λ0

〉 = 0 for any integer k, which contradicts

the fact that λ0 is ample. Thus (B.1) holds and ψ is a submersion at g. �

As a direct consequence of this lemma, if (H.2) is satisfied with ample covectors
pi, then (H.3) is satisfied as well.

Let x be a point in B and expx be the exponential mapping at x, expx : p ∈

T ∗
xB → π◦e

~hg (x, p) ∈ B. Since conjugate times are isolated from 0 along a geodesic
which is ample at t = 0 (see for instance [2, Cor. 8.47]), for any ample covector
p the map expx is locally open near tp for t small enough. Let us denote by Ax

the set of N -tuples of ample covectors (p1, . . . , pN) in (T ∗
xB)N which are 2-decisive,

and set

S(x) = {(expx(p1), . . . , expx(pN )) ∈ BN : (p1, . . . , pN ) ∈ Ax}.

By Remark B.2 and Theorem 2.10, the set Ax is open and dense in (T ∗
xB)N . It

results then from the local openness of the exponential map that S(x) has a non

empty interior with (x, . . . , x) ∈ intS(x).
We are now in a position to give the construction of sets of N points Sℓ, ℓ =

1, . . . , k, satisfying (H.1)–(H.3). The properties above ensure that we can choose
S1 = {x1,1, . . . , x1,N} ∈ BN such that no three points are aligned and such that
the intersection

N⋂

i=1

intS(x1,i)

is non empty. We then choose S2 = {x2,1, . . . , x2,N} in this intersection such that
no three points in S1 ∪ S2 are aligned and such that the intersection of all sets
intS(x1,i) ∩ intS(x2,i) is non empty. Iterating this construction we obtain k sets of
N points satisfying (H.1)–(H.3). This together with the argument in [22] shows
Proposition B.1 and then Proposition 4.6.
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Frédéric Jean, Unité de Mathématiques Appliquées, ENSTA ParisTech, Université
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