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Inverse optimal control problem: the linear-quadratic case

Frédéric Jean and Sofya Maslovskaya

Abstract— A common assumption in physiology about human
motion is that the realized movements are done in an optimal
way. The problem of recovering of the optimality principle
leads to the inverse optimal control problem. Formally, in
the inverse optimal control problem we should find a cost-
function such that under the known dynamical constraint the
observed trajectories are minimizing for such cost. In this paper
we analyze the inverse problem in the case of finite horizon
linear-quadratic problem. In particular, we treat the injectivity
question, i.e. whether the cost corresponding to the given data
is unique, and we propose a cost reconstruction algorithm. In
our approach we define the canonical class on which the inverse
problem is either unique or admit a special structure, which
can be used in cost reconstruction.

I. INTRODUCTION

Inverse optimal control problem is a promising tool to
understand better the mechanisms underlying the human
movements and to implement them in humanoid robots.
Indeed, the most common assumption in physiology about
human motion is that each movement is chosen as the
optimal one from all possibilities. In other terms, realized
movements are solutions of some optimal control problem.
The inverse optimal control problem concerns the reverse
question, namely which cost function is minimized in such
a movement? (See for instance [2], [3], [4], [6]).

In an inverse optimal control problem, the dynamics is
supposed to be known and the data is a set of registered
trajectories. The goal is to recover a cost function such that
the given trajectories minimize that cost under the dynamical
constraint. This can be formalized as the inversion of the
operator which maps a cost function to the corresponding
set of minimizing trajectories. Besides the cost reconstruction
itself, a standard issue in such an inverse problem is the well-
posedness: is there any cost for which the given trajectories
are minimizing (existence problem)? If there is one, is it
unique (injectivity problem)? And is the inverse application
continuous, i.e. stable with respect to perturbations of the
data (stability problem)?

As for the reconstruction of the cost, several numerical
methods have been developed, based for instance on nu-
merical optimal control [15], occupation measures [18], or
Markov decision processes [16]. We rather focus here on
the well-posedness of the inverse problem, since this is a
critical issue for the use of inverse problem in modelling
of biological systems (see [5] for instance). In this kind of
applications we rely on the assumption that the registered
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trajectories are optimal, so the next problems we face are
the problems of injectivity and of stability.

Some partial studies of well-posedness exist in different
context [1], [7], [11]. We propose here to work with linear-
quadratic models which are well-adapted for applications. In
this framework the inverse optimal control formulation has
been introduced by Kalman [13] and then extensively studied
(see for instance [10], [9], [14], [19]). However, these studies
are different from the one we present, since they consider in
general infinite-horizon problems, take as a data a feedback
control, and/or treat the existence issue.

Our approach is the following. First, we consider the
standard finite horizon linear-quadratic (LQ) problems. Next,
we reduce the considered class of quadratic costs to the class
of canonical costs and we prove that (i) any quadratic cost is
equivalent to a canonical cost (i.e., has the same minimizers);
(ii) the inverse optimal control problem reduced to this class
is injective except when the problem has a product structure.
Finally, we propose a cost reconstruction method taking as
data the registered trajectories themselves, not the control
law. Note that the inverse problem on the reduced class was
already solved in [17] in the case of single input systems.
Besides, the definition of product structure and the method
of proof based on orbital diffeomorphism are inspired by a
previous paper on inverse optimal control problem in sub-
Riemannian geometry [12].

The paper is organized as follows. In Section II we for-
malize the inverse optimal LQ problem. Section III presents
the reduction to the canonical class. The main results on
injectivity are contained in Section IV and Section V presents
the reconstruction algorithm.

II. INVERSE OPTIMAL CONTROL PROBLEMS

A. Direct problem

Fix a linear control system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, (1)

where the pair (A,B) is controllable and the matrix B is of
rank m. Every real-valued function

J(x, u) = x>Qx+ 2x>Su+ u>Ru (2)

defines a family of linear-quadratic optimal control problems:
given a time T > 0, an initial point x0 and a final point xF ,
minimize the quadratic cost∫ T

0

J(x(t), u(t))dt

among all trajectories (x, u)(·) of (1) satisfying x(0) = x0
and x(T ) = xF .



We make the following assumption on the quadratic cost.
Assumption 1: The matrices (Q,S,R) defining the cost J

satisfy:
• Q = Q> ≥ 0, R = R> > 0, Q− SR−1S> ≥ 0;
• the matrix(

A−BR−1S> BR−1B>

Q− SR−1S> −A> + SR−1B>

)
has no eigenvalues on the imaginary axis.

Under this assumption on J , every corresponding linear-
quadratic problem admits a unique minimizing solution. We
will use the characterization of this solution given in [8].
Consider the algebraic Riccati equation

PA+A>P − (S + PB)R−1(S> +B>P ) +Q = 0. (3)

This equation admits a unique solution P+ ≥ 0 and a unique
solution P− ≤ 0 such that the matrices

A+ = A−BK+ and A− = A−BK−, (4)

where K+ = R−1(S> + B>P+) and K− = R−1(S> +
B>P−), are asymptotically stable and asymptotically anti-
stable respectively. Then the minimizing solution x(t) of the
optimal LQ control problem defined by (1)-(2) is given by

x(t) = etA+y+ + etA−y−, t ∈ [0, T ], (5)

where the vectors y−, y+ are the unique solution of the
system {

xF = eTA+y+ + eTA−y−,

x0 = y+ + y−.
(6)

B. Inverse problem

Formally, an inverse linear-quadratic optimal control prob-
lem is posed as follows. The linear system (1) being fixed,
let Γ be an optimal synthesis, i.e., Γ is the set of all the
minimizing solutions, for all x0, xF and T , of the optimal LQ
control problems defined by some cost J . Then the inverse
problem is to recover J .

Two questions have to be addressed: the injectivity, if there
exists a cost J associated with a given optimal synthesis, is
J unique? And the reconstruction itself: how to recover J
from the data?

On the class of costs satisfying Assumption 1, the injec-
tivity can not hold. Indeed, the form (5) of the minimizing
solutions implies that an optimal synthesis is completely
characterized by a pair of (n × m) matrices K+,K−.
Whereas a cost is defined by a triple of matrices (Q,S,R). A
simple count of dimensions shows that there are many more
costs than optimal synthesis. This leads us to the following
definition.

Definition 2.1: We say that two costs J and J̃ are equiv-
alent, and we write J ∼ J̃ , if they define the same optimal
synthesis.
For instance, two proportional costs are trivially equivalent.
To address the problem of injectivity, we have first to reduce
the inverse problem to a special class of canonical costs
containing a representative of each class of equivalence.

III. REDUCTION OF THE INVERSE PROBLEM

A. Characterization of the optimal synthesis

We have seen that an optimal synthesis is completely
characterized by the pair of (n ×m) matrices K+,K−, or
equivalently by the pair (A+, A−) since the matrix B is
injective. We prove now that this characterization is univocal.

Lemma 3.1: Two equivalent costs define the same pair
of matrices (A+, A−). In other terms, given an optimal
synthesis, there exists a unique pair of matrices (A+, A−)
such that any trajectory in the synthesis satisfies (5).

Proof: Consider two equivalent costs J defined by
the matrices (Q,S,R) and J̃ by (Q̃, S̃, R̃). Thus, the two
corresponding pairs (A+, A−) and (Ã+, Ã−) define the same
minimizing solutions.

Fix T > 0. For i = 1, . . . , n, let xi(·) be the minimizing
solution between ei and eTA+ei, where ei denotes the ith
vector of the canonical basis of Rn. By uniqueness of the
solutions of system (6), xi(t) = etA+ei. In matrix form
X(t) = (x1(t) · · ·xn(t)) = etA+ , t ∈ [0, T ].

Now, since J ∼ J̃ , there exists (n × n) matrices Y+, Y−
such that X(t) = etA+ = etÃ+Y+ + etÃ−Y− for t ∈ [0, T ].
By analyticity, there holds

‖etA+‖ = ‖etÃ+Y+ + etÃ−Y−‖ for any t ∈ [0,+∞) .

As t → ∞, ‖eA+t‖ → 0 since A+ is stable, and hence
Y− = 0. As a consequence, etA+ = etÃ+Y+. Now it is
sufficient to notice that X(0) = Y+ = I , hence

A+ = Ã+.

By exchanging the role of A+ and A− and taking t→ −∞,
we obtain in the same way that A− = Ã−.

B. Canonical classes

Let us define a more restrictive class of costs which
satisfies Assumption 1 and such that each cost associated
with a triple (Q,S,R) will have an equivalent cost in the
constructed class. The idea of restriction to some smaller
classes was proposed first in [17].

Lemma 3.2: The cost (2) is equivalent to

J̃ = (u+K+x)>R(u+K+x).

Proof: Given T, x0, xF , let x∗(·) be the solution of
min

∫ T
0
J(x, u) between x0 and xF . Clearly, x∗(·) mini-

mizes as well the cost∫ T

0

J(x(t), u(t))dt+ x>FP+xF − x>0 P+x0.

Since the constant term in the cost above can be written in
integral form as

x>FP+xF − x>0 P+x0 =

∫ T

0

2xTP+(Ax+Bu)dt,

x∗(·) minimizes
∫ T
0
J̃(x, u), where

J̃ = x>(P+A+ATP+ +Q)x+ 2x>(S +P+B)u+ uTRu.



Using the fact that P+ is a solution of the Riccati equation
we get S + P+B = K>+R and

P+A+ATP+ = (S + P+B)R−1(S> +BTP+)−Q
= K>+RK+ −Q.

Putting all together we obtain

J̃ = (u+K+x)>R(u+K+x).

We conclude that any minimizer of J is also a minimizer of
J̃ , which ends the proof.

This result leads us to introduce the following class of
quadratic costs.

Definition 3.3: A canonical cost is a quadratic cost J of
the form

J = (u+Kx)>R(u+Kx),

where R is a symmetric positive definite matrix with deter-
minant equal to 1 and K is a stabilizing matrix, i.e., A−BK
is asymptotically stable.

Proposition 3.4: Any cost J satisfying Assumption 1 is
equivalent to a canonical cost J̃ . Moreover the matrix K+

associated with J̃ is K+ = K (equivalently, A+ = A−BK).
Proof: From Lemma 3.2, any cost J satisfying As-

sumption 1 is equivalent to a cost (u + Kx)>R(u + Kx),
where R is a symmetric positive definite matrix and K is a
stabilizing matrix. Since two proportional cost are equivalent
and detR > 0, we can assume moreover that detR = 1,
which proves the first statement of the lemma.

We are left to prove that the matrix A+ associated with
J̃ is equal to A − BK. Fix T > 0. For i = 1, . . . , n, the
minimizing solution between ei and eT (A−BK)ei is equal
to xi(t) = et(A−BK)ei, since the corresponding control
ui = −Kxi satisfies J̃(xi(t), ui(t)) ≡ 0 and the minimizing
solution is unique. Let us write in matrix form X(t) =
(x1(t) · · ·xn(t)) = et(A−BK), t ∈ [0, T ]. Now, from (5)
there exists (n × n) matrices Y+, Y− such that X(t) =
etA+Y+ + etA−Y− for t ∈ [0, T ]. Arguing as in the proof of
Lemma 3.1 we conclude that A+ = A − BK, which ends
the proof.

C. Reduced inverse problem

We formulate a reduced inverse optimal control problem
as follows: given a linear-quadratic optimal synthesis Γ, find
a canonical cost J such that Γ is the optimal synthesis of J .

Proposition 3.4 ensures that this problem always has a
solution, hence we concentrate now on this reduced problem.
What about the uniqueness of solutions?

Lemma 3.5: Let J and J̃ be two canonical costs associ-
ated with (R,K) and (R̃, K̃) respectively. If J and J̃ are
equivalent, then K = K̃.

Proof: If J ∼ J̃ , then they define the same optimal
synthesis Γ. From Lemma 3.1, Γ determines in a unique
way the pair of matrices (K+,K−) corresponding to J and
J̃ . And Proposition 3.4 implies that K+ = K = K̃.

Corollary 3.6: Let Γ be an optimal synthesis and
(K+,K−) the associated pair of matrices. The corresponding
reduced inverse optimal control problem admits a unique

solution if and only if there exists a unique matrix R such
that Γ is the optimal synthesis of the canonical cost defined
by (R,K+).

Note that, by a simple feedback change of the control
v = u+K+x, we obtain that Γ is also the optimal synthesis
of the optimal control problem with cost J = u>Ru and
control system ẋ = A+x + Bu. Thus solving the problem
can be decomposed in two steps:

• identify the matrices (A+, A−) associated with the
given synthesis Γ,

• find R such that Γ is the optimal synthesis of the optimal
control problem with cost J = u>Ru and control
system ẋ = A+x+Bu,

the injectivity of the problem depending on the uniqueness
of the solution to the second step.

IV. INJECTIVITY

As it was noted in the previous section we can reduce the
analysis of injectivity to optimal LQ problems of the form

min
u

∫ T

0

u>Ru s.t.
{

ẋ = Ax+Bu,
x(0) = x0, x(T ) = xF ,

(7)

where A is an asymptotically stable matrix and R is a
symmetric positive definite matrix with detR = 1 (as
usual, the pair (A,B) is assumed to be controllable and
rankB = m). In this context, we write R ∼ R̃ if the two
canonical costs J = u>Ru and J̃ = u>R̃u are equivalent.
The inverse optimal control problem associated with (7) has
a unique solution if R ∼ R̃ implies R = R̃.

A. Product structure

It appears that a cost J = u>Ru may admit non trivial
equivalent costs. Let us construct such an example.

Choose a positive integer N and N pairs of positive
integers mi ≤ ni, i = 1, . . . , N . Set m =

∑
imi and

n =
∑
i ni. For i = 1, . . . , N , choose a controllable linear

system

ẋi = Aixi +Biui, xi ∈ Rni , ui ∈ Rmi ,

with Ai asymptotically stable and Bi of rank mi, and a
canonical cost Ji = u>i Riui. We define a linear-quadratic
problem on Rn with control in Rm of the form (7) by setting

A =

A1

. . .
AN

 , B =

B1

. . .
BN

 ,

and J =

N∑
i=1

u>i Riui, i.e., R =

R1

. . .
RN

 .

(8)
Obviously, a trajectory x(t) minimizes the cost J if and only
if x(t) = (x1(t), . . . , xN (t)), where each xi(t) is a minimiz-
ing solution of the problem associated with Ai, Bi, Ri. As a



consequence, the cost J is equivalent to any cost

Jλ =

N∑
i=1

λiu
>
i Riui, i.e., Rλ =

λ1R1

. . .
λNRN

 ,

where λ1, . . . , λN are positive real numbers satisfying
detRλ =

∏
i(λi)

mi = 1.
We can extend this construction through changes of vari-

ables.
Definition 4.1: We say that a LQ optimal control problem

defined by ẋ = Ax + Bu and J = (u + Kx)>R(u + Kx)
admits a product structure if there exists an integer N > 1
and a linear change of coordinates x̃ = Px, ũ = Mu+Kx,
such that in the new coordinates the problem has the form
(8) (note that the matrix Ã is conjugate to A − BK in the
new coordinates).
We have seen that, if a problem admits a product structure,
then the corresponding inverse problem has many solutions.
We will see in Section IV-C that the product structure
is actually a necessary and sufficient condition for non
uniqueness.

B. Orbital diffeomorphism

Let us introduce the Hamiltonian characterization of min-
imizing solutions of linear-quadratic problems. By the Pon-
tryagin Maximum Principle (PMP), for every minimizing
solution x(·) of (7), there exists a curve p(·) in Rn such
that, for any t ∈ [0, T ],{

ẋ(t) = Ax(t) +BR−1B>p(t),

ṗ(t) = −A>p(t).
(9)

Equivalently, (x(·), p(·)) is a trajectory in R2n of the Hamil-
tonian vector field

~h(x, p) =

(
A BR−1B>

0 −A>
)(

x
p

)
.

Such a trajectory is called an extremal and each minimizing
solution x(·) admits a unique extremal lift.

We will show that the equivalence of costs implies a rela-
tion on extremals of the corresponding Hamiltonian systems.
This relation may be expressed in terms of so-called orbital
diffeomorphisms.

Definition 4.2: Let J = u>Ru and J̃ = u>R̃u be
two canonical costs. An orbital diffeomorphism between
the extremals of R and R̃ is a diffeomorphism Φ defined
on Rn × Rn which preserves the first component, i.e.,
Φ : (x, p) 7→ (x,Φ2(x, p)), and which sends the extremals
(x(·), p(·)) of the optimal control problem (7) defined by R
to the extremals (x̃(·), p̃(·)) of the optimal control problem
defined by R̃, i.e.

Φ(x(t), p(t)) = (x̃(t), p̃(t)). (10)
Note that, by definition of the extremals, (10) implies the
following expression on the differential of Φ

DΦ ◦ ~h(x(t), p(t)) =
~̃
h(x̃(t), p̃(t)). (11)

Proposition 4.3: If J = u>Ru and J̃ = u>R̃u are
equivalent, then there exists an isomorphism D : Rn → Rn
such that Φ : (x, p) 7→ (x,Dp) is an orbital diffeomorphism
between the extremals of R and R̃.

Proof: Since R ∼ R̃, the respective minimizers x(·) and
x̃(·) are equal, and so ẋ(t) ≡ ˙̃x(t). Using (9), the respective
extremal lifts p(·) and p̃(·) satisfy

Ax+BR−1B>p = Ax+BR̃−1B>p̃,

which implies

BR−1B>p ≡ BR̃−1B>p̃.

Taking derivatives and using the second equation of (9), we
obtain for k ∈ N

BR−1B>(A>)kp = BR̃−1B>(A>)kp̃.

Then a multiplication by R̃(B>B)−1B> on the left gives

R̃R−1B>(A>)kp = B>(A>)kp̃.

Hence, from the first n derivatives we obtain a system of
linear equations


R̃R−1B>p = B>p̃,

R̃R−1B>A>p = B>A>p̃,
...

R̃R−1B>(A>)n−1p = B>(A>)n−1p̃.

(12)

Let C =
(
B AB · · · An−1B

)
be the controllability

matrix. By controllability assumption, C is of rank n.
Denote by M the block-diagonal (nm × nm) matrix that
has n copies of R̃R−1 on the diagonal. System (12) can
be written as C>p̃ = MC>p, and thus p̃ = Dp with
D = (CC>)−1CMC>. This matrix D is invertible and the
map (x, p) 7→ (x,Dp) sends the extremals of the optimal
control problem defined by R to the extremals of the one
defined by R̃. Therefore, Φ(x, p) = (x,Dp) is an orbital
diffeomorphism between the extremals of R and R̃.

C. Injectivity condition

Proposition 4.4: The cost J associated with (7) admits a
nonequal equivalent cost if and only if the optimal control
problem (7) admits a product structure.

Proof: Let J = u>Ru and J̃ = u>R̃u be two nonequal
equivalent costs. Since R and R̃ are symmetric positive
definite, there exists a change of coordinates u 7→ v = Pu
on Rm such that in the new coordinates J(v) = v>v
corresponds to the identity matrix I and J̃(v) =

∑
i λiv

2
i

corresponds to the diagonal matrix Λ with positive diagonal
coefficients λi. Hence, up to replacing B by BP , we can
assume that Λ ∼ I .

By Proposition 4.3, there exists a linear orbital diffeomor-
phism (x, p) 7→ (x,Dp) between the extremals of I and Λ.
This diffeomorphism satisfies (11), which writes as(
I 0
0 D

)(
A BB>

0 −A>
)(

x
p

)
=

(
A BΛ−1B>

0 −A>
)(

x
Dp

)
.



This implies the following equations on D

AD> = D>A and D>B = BΛ. (13)

Let b1, . . . , bm be the column vectors of B. The second
equality in (13) writes as D>bi = λibi for i = 1, . . . ,m.
Applying iteratively the first equality in (13) we obtain, for
any k ∈ N,

D>Akbi = λiA
kbi i = 1, . . . ,m.

Thus Akbi is an eigenvector of D> associated with the
eigenvalue λi. From the controllability of the pair (A,B),
the set {b1, . . . , bm, . . . , Anb1, . . . , Anbm} is of dimension
n, and so D> is diagonalizable.

Let E1, . . . , EN be the eigenspaces of D>. Note that N
is the number of different eigenvalues λi of Λ, therefore we
have N > 1 since Λ 6= I . The first equality in (13) implies
that the matrix A preserves every Ej . Moreover, every vector
bi belongs to one of the eigenspaces. Thus, in a basis of Rn
adapted to the decomposition Rn = E1 ⊕ · · · ⊕ EN , the
matrices A and B (up to a reordering of the coordinates u)
have block form

Ā =

A1

. . .
AN

 B =

B1

. . .
BN

 ,

while the costs J, J̃ are

J =

N∑
i=1

u>i ui J̃ =

N∑
i=1

λiu
>
i ui.

Thus, the optimal control problems defined by J and J̃ have
a product structure in the chosen basis.

Since the number N of elements in a product structure
satisfies 1 < N ≤ m, we recover in particular the result of
[17].

Corollary 4.5: In the single input case (m = 1), the
reduced inverse optimal control problem is injective.

V. RECONSTRUCTION

Let us consider now the problem of the reconstruction
of the cost in a reduced inverse LQ optimal problem. In this
setting the controllable pair (A,B) is fixed, B being assumed
to be of rank m. The problem is: given an optimal synthesis
Γ, recover the matrices (R,K) of a canonical cost such that
Γ is the optimal synthesis of the family of LQ optimal control
problems,

min
u

∫ T

0

(u+Kx)>R(u+Kx) s.t. ẋ = Ax+Bu, (14)

with fixed extremities x(0) = x0, x(T ) = xF .
From Lemma 3.1, a unique pair (A+, A−) is associated

with the set Γ, and thus, a unique K = K+. However
knowing this pair is not sufficient to determine R in a unique
way since the problem may have a product structure and thus
many equivalent costs. This issue will be addressed thanks
to the following proposition.

Proposition 5.1: The problem (14) admits a product struc-
ture if and only if there exists a decomposition Rn =
E1 ⊕ · · · ⊕ EN with N > 1 which is invariant by both
A+ and A−.

Proof: Note first that, if the problem admits a product
structure, then in appropriate coordinates it splits into N > 1
sub-problems, and so do the minimizing solutions and the
matrices A+ and A−. This gives the decomposition and
proves the only if part.

Now, assume that the A+, A− associated with (14) leave
invariant a decomposition Rn = E1⊕· · ·⊕EN . Up to a linear
feedback change of coordinates x̃ = Px, ũ = u + Kx, we
assume on the one hand that A+ = A, and on the other hand
that the matrices A+, A− admit a block diagonal form: for
i = 1, . . . , N , the ith diagonal blocks are (ni×ni) matrices
Ai+, A

i
− respectively, where the integers n1, . . . , nN satisfy

n1 + · · ·+ nN = n.
From the expression (4) of A− and the Riccati equa-

tion (3), there exists a matrix P− (the unique anti-stabilizing
solutions of the Riccati equation) which satisfies

A+ = −P−1− A>−P−.

As a consequence, P− preserves the decomposition, thus
P− is itself block diagonal with (ni × ni) blocks P i−,
i = 1, . . . , N . Moreover, since we assume A = A+, a simple
computation using (4) shows that the matrices A−, P− can
be expressed in terms of B and R as

BR−1B> = (A−A−)P−1− .

Since all matrices in the right-hand side above are block
diagonal, the matrix BR−1B> is block diagonal as well.
We deduce that there exists a block diagonal (n×m) matrix
Q of rank m such that

BR−1B> = QQ>.

Now, set G =
(
B>B

)−1
B>Q and R̃ = GG>. Since

A+, A− depend only on BR−1B> = QQ> = BR̃−1B>,
the matrix R̃ defines a problem (14) whose associated
matrices are A+, A−. The linear change of coordinates u 7→
Gu transform the matrix R̃ into the identity and B into
BG = Q̃, which is diagonal by blocks. Thus the optimal
control problem admit the product structure. This ends the
proof.

From (A+, A−) we can deduce either the uniqueness of
the cost R, or the existence of several costs but with a
particular structure in the optimal control problem. Indeed, in
the latter case the decomposition Rn = E1⊕· · ·⊕EN allows
to split the problem into several sub-problems of the same
form with a smaller number of inputs. Iterating eventually
the decomposition (Corollary 4.5 ensures that the iteration
will stop), we can assume that each sub-problem is injective.
We propose a cost reconstruction method which includes the
following steps.

1) Reconstruct A+, A− from the trajectories in Γ: this
can be done by identification of parameters in (5)–(6),
taking A+, A− as the unknown parameters.



2) Set

K+ =
(
B>B

)−1
B> (A−A+) .

3) Check whether A+, A− leave invariant a decomposition
of Rn; if it is the case, determine the smallest such
decomposition and separate the optimal control problem
into N independent sub-problems.

4) For each sub-problem, find BRi
= BiR

−1
i Bi as the

unique symmetric positive semi-definite solution of the
linear equation

(
Ai− −Ai+

) ∫ ∞
0

etA
i
+BRie

t(Ai
+)>dt = BRi . (15)

5) In a basis of RN adapted to the above decomposition,
recover R from BR1

, . . . , BRN
as follows

R−1 =
(
B>B

)−1
B>

BR1

. . .
BRN

B
(
B>B

)−1
The method gives as an output the matrices R and K such

that the optimal synthesis of (14) is Γ.
In practice, we expect that the matrices A+, A− obtained

in the first step will be in general position, and thus will not
admit an invariant decomposition. This will eliminate Step 3,
which can be difficult from a practical point of view. And the
matrix R−1 can be obtained directly from the linear equation
(15). The method will then provide a stable solution to the
reduced inverse optimal control problem.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we defined a class of canonical quadratic
costs and showed that it is well adapted for the inverse linear-
quadratic problem. For this class we described the structure
of the non-injective cases and designed a reconstruction
method which allow us to recover a cost function in this
class even in the non-injective case.

In the future we intend to apply this method to modelling
of human motion. In particular, it will be interesting to study
pointing arm motions with 2 or 3 degrees of freedom and to
couple this study with the reconstruction of the cost of time,
as in [5]. From a theoretical point of view, we will study in a
forthcoming paper the genericity of the problems that do not
admit any product structure and give a better description of
the set of pairs (A+, A−) of stabilizing and anti-stabilizing
matrices parameterizing the optimal synthesis.
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