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Abstract— This paper presents a dual receding horizon out-
put feedback controller for a general non linear stochastic sys-
tem with imperfect information. The novelty of this controller
is that stabilization is treated, inside the optimization problem,
as a negative drift constraint on the control that is taken from
the theory of stability of Markov chains. The dual effect is then
created by maximizing information over the stabilizing controls
which makes the global algorithm easier to tune than our
previous algorithm. We use a particle filter for state estimation
to handle nonlinearities and multimodality. The performance
of this method is demonstrated on the challenging problem of
terrain aided navigation.

I. INTRODUCTION

Stochastic model predictive control (SMPC) is a
widespread technique to deal with control problems where
the state is subject to stochastic disturbances, a hard con-
straint on the input and sometimes soft constraints on the
state . Its principle is to solve a finite horizon stochastic
optimal control problem and to apply the optimal control in
a receding horizon way. Although, when only partial and
noisy information on the state is available through some
observations, classic SMPC combined with a state estimator
may lead to overcautious controls or even destabilizing ones.
It is due to the fact that, in general, the control influences the
observations and then state estimation. It is called the dual
effect property of the control.

Stochastic optimal control problems with imperfect in-
formation are much harder than their counterpart in the
perfect information case. The main reason is that to be
optimal with partial information, one needs to anticipate the
information that will be available, in addition to guiding
the system in a standard way. Consequently, the optimal
control possesses the property of dual effect but as they
are computationally intractable, suboptimal outputfeedback
control laws are computed instead, with the idea to keep the
guiding property and the dual effect property. Consequently,
they are called dual controllers.

Usually, dual controllers are either implicit or explicit. In
implicit dual control, one tries to approximate the Bellman
equation of the problem. Implicit dual control is not treated
in this paper. See [1] for a review on implicit dual control
and [2] for an example of use of particle filter in implicit dual
control. On the contrary, in explicit dual control, one modifies
the original problem to incorporate an explicit excitation of
the system to maintain the dual effect. Explicit dual effect can
be included in the optimization problem as a constraint or in
the cost. Including it as a constraint generally leads to con-
trollers with persistent excitation, constraints on information
or approximation with scenario trees. Including it in the cost

leads to integrated experiment design, where a measure of
information is added to the original cost. In [3], a persistent
excitation controller is presented but it is supposed that the
system is linearizable which is not a suitable assumptions in
our framework. Controllers with constraints on the informa-
tion may lead to infeasibilty problems that are also hard to
anticipate in nonlinear cases. In [4], this infeasibility problem
is addressed but for deterministic dynamics. Scenario tree
methods are computationally demanding and usually use
Kalman filters inside the optimization problem, like in [5],
[6] which are not adapted to multimodal cases.

In integrated experiment design, a new term based on the
Fisher information matrix (FIM) is added to the original
cost as classically done in optimal design [7]. However,
if the original cost to minimize conditions the stability of
the system, then the resulting trade off may destabilize the
system.

That’s why, in this paper, we propose an output feedback
dual SMPC based on integrated experiment design for infor-
mation probing and on a Lyapunov constraint for nonlinear
system on the control to ensure stability. Output feedback is
obtained by setting the initial condition of the optimization
problem as particles from a particle filter that is able to deal
with state estimation for arbitrary systems.

The paper is organized as follows. Section II defines
some important probabilistic notations. Section III recalls the
bases of SMPC with imperfect information and describes
our approach. Section IV recalls the principle of particle
filtering and section V describes the particular optimization
problem that is solved in a receding horizon manner. In
[8] and [9], stochastic output feedback stability is proved
but a separation principle was assumed. Actually, proving
stochastic output feedback stability in the general case, when
observability depends on the control, and when the only
efficient estimators are particle filters, has never been proved
to the best of our knowledge. However, we demonstrate the
efficiency of our method on a challenging application in
section VI.

II. NOTATION

Let (Ω,F , P ) be a probability space. In the following,
random variables refer to F-measurable functions defined on
Ω. For i ∈ N, B(Ri) denotes the set of Borel sets of Ri. For
a random variable X and a probability distribution, X ∼ p
means that p is the probability law of X . P (·|·) and E(·|·)
denotes conditional probability and expectation. Px and Ex
denotes especially probability and expectation conditionally



to X0 = x, for x ∈ Ri. Pp and Ep denotes probability and
expectation conditionally to X0 ∼ p.

III. PROBLEM SETUP

A. Description of the system

We consider a discrete-time controlled stochastic dynami-
cal system (Xk)k∈N valued in Rnx described by the follow-
ing equation, ∀k ∈ N:

Xk+1 = f(Xk, Uk, ξk), (1)
X0 ∼ p0,

where:

• p0 is a probability density.
• (Uk)k∈N is the control process valued in Rnu .
• (ξk)k∈N are i.i.d. random variables valued in Rnξ dis-

tributed according to pξ. For each k ∈ N, ξk represents
an external disturbance on the dynamics.

• f : Rnx × Rnu × Rnξ −→ Rnx is measurable.

We also assume that the state of the system is only avail-
able through some observations represented by a stochastic
process (Yk)k∈N valued in Rny which verifies, ∀k ∈ N:

Yk = h(Xk, ηk), (2)

where:

• (ηk)k∈N are i.i.d. random variables valued in Rnη dis-
tributed according to pη . For each k ∈ N, ηk represents
an external disturbance on the observations.

• h : Rnx × Rnη −→ Rny is measurable.

For k ∈ N, we define the information vector Ik as follow:

Ik = (Y0, U0, . . . , Yk−1, Uk−1, Yk), (3)

or equivalently, for k ∈ N:

I0 = Y0,

Ik+1 = (Ik, Uk, Yk+1). (4)

From Ik, one can derive two important quantities in
stochastic control with imperfect information that are
the conditional distribution of Xk given Ik denoted
by µk and the conditional distribution of Xk+i given
(Ik, Uk, . . . , Uk+i−1) for any i ∈ N∗, denoted by µk+i|k.

Moreover, we denote by K the Markov kernel defined by
equation (1) and we assume that the conditional distribution
defined by equation (2) has a density with respect to the
Lebesgue measure such that there exists a likelihood function
denoted by ρ. Therefore, for k ∈ N, A ∈ B(Rnx) and B ∈
B(Rny ) :

P (Xk+1 ∈ A|Xk = xk, Uk = uk) = K(A, xk, uk),

P (Yk ∈ B|Xk = xk) =

∫
B

ρ(yk, xk)dyk.

µ0 is supposed to be known. Thus, ∀(k, i) ∈ N2, and
∀A ∈ B(Rnx), µk and µk+i|k verify the following nonlinear

filtering equations

µk+1|k(A) =

∫
Rnx

K(A, xk, Uk)µk(dxk), (5)

µk+1|k+1(A) =

∫
A
ρ(Yk+1, xk+1)µk+1|k(dxk+1)∫

Rnx ρ(Yk+1, xk+1)µk+1|k(dxk+1)
, (6)

µk+i+1|k(A) =

∫
Rnx

K(A, xk+i, Uk+i)µk+i|k(dxk+i).

(7)

One can sum up equations (5) to (7), in the following way,
∀(k, i) ∈ N2:

µk+1 = F pµk, Yk+1, Ukq , (8)

µk+i+1|k = G
`

µk+i|k, Uk+i
˘

, (9)

A control policy at time k is then a map, denoted by πk,
that maps a conditional distribution µk to a control Uk. We
denote a sequence of control policies by:

πi:j := (πi, . . . , πj), for i ≤ j.

B. Dual stochastic model predictive control

Stochastic model predictive control is a widely used
method for the design of a controller in the presence of
possibly unbounded disturbances in nonlinear dynamics as
the one described in equation (1). It consists in solving a
finite-horizon discrete stochastic optimal problem, to only
apply the first control policy of the optimal sequence and to
solve the problem again starting from the new state of the
system. See [10] for a review on general stochastic MPC.

A MPC scheme is generally defined by the following
features:
• A time horizon, T ∈ N∗
• A family of set of constraints on the control, Ui ⊂ Rnu ,
∀i = 0, .., T − 1.

• ∀i = 0, .., T −1, an instantaneous cost gi: Rnx×Rnu×
Rnξ −→ R and a final cost gT : Rnx −→ R.

The choice of the objective functions gi and gT and of
the control constraints Ui is a matter of modelling. Indeed,
in receding horizon control, one often has an economic cost
to minimize that comes from practical considerations, like
a price or a fuel consumption, for example. Moreover, the
control must be designed to attain some target in the state
space, it is the guiding problem. There are two classical ways
to address this issue in MPC:
• Adding a new term to the cost to enforce stability in

some sens. In this case, the general cost is decomposed
in the following way, for i = 0, .., T :

gi = gstab
i + geco

i , (10)

Thus, gi and gT realize a compromise between conver-
gence and economic costs. For instance, in the LQG
case, gi(x, u, ξ) = xTMxx + uTMuu where Mx and
Mu are positive definite matrices. The first term drives
the state of the system to zero and the second term
penalizes high controls, that can be expensive. The
compromise is dealt with by tuning the matrices Mx



and Mu.
• Adding a drift constraint on the first control, U0, that

enforces decreasing of some Lyapunov-like function,
during the first time step only, such that, for i = 0, .., T :

gi = geco
i , (11)

a negative drift condition on U0.

Actually, since only U0 is applied on the system, the
Lyapunov function decreases along the whole trajectory
and then stability is obtained. It is also known as
Lyapunov Economic MPC, see [11] for a review in
the deterministic setting. In the stochastic setting, it has
been applied with output feedback for continuous-time
nonlinear systems in [9] and for a discrete-time linear
system with bounded controls in [8].

In the presence of partial information represented by
equation (2), the theoretical receding horizon problem to
solve is more complex than in the perfect information case,
as the the new state of the system is µk [12], and it evolves
according to equation (8). Thus, the problem to solve at each
time k denoted by (P kC) can generally be written as follow:

min
π0:T−1

Eµk

”∑T−1
i=0 E[gi(Xi, Ui, ξi)|Ii] + E[gT (XT )|IT ]

ı

s.t. µ̃i+1 = F pµ̃i, Yi+1, Uiq ,
Ui = πi(µ̃i),
Ui ∈ Ui, ∀i = 0, .., T − 1,
µ̃0 = µk.

In (P kC), we make appear explicitly the conditional expec-
tation w.r.t. the available information Ii to emphasize the fact
that the information vectors, and notably the observations,
are propagated from k to k + T and that they must depend
on the control. Therefore, as recalled in [1] and [13], one
can see from the Dynamic Programming Principle that the
optimal control policies of (P kC) generally influence the
future observations. The control is then said to have the dual
effect property [14]. As optimal policies are intractable in the
general nonlinear case due to the curse of dimensionality,
suboptimal policies are constructed instead. To mimic the
properties of the optimal policies, suboptimal policies are
designed to have two roles:

• controlling the system in the standard way defined by
equation (10) or (11).

• actively probing information to improve the quality of
the observations i.e. keeping the dual effect property.

Such policies are also called dual controllers. In this article,
we focus on explicit dual controllers that take information
into account inside a new cost. This technique is called
integrated experiment design. In fact, the new cost denoted
by gex

i realizes a trade off between the original costs gi and
gT and a measure of information denoted by ginfo

i such that,
for i = 0, .., T :

gex
i = gi + ginfo

i , (12)

Integrated experiment design is, a priori, adapted to our

framework. However, an important issue appears, when,
additionally, the guiding objective is incorporated in the cost
as described in equation (10). Consequently, (12) represents
the sum of three terms that usually contain weights that must
be tuned. By construction, the weights affect the convergence
of the system to the guiding goal which makes their tuning
difficult. Indeed, if too much importance is given to ginfo

i

then probing will be efficient but the system may get stuck
far from the target. On the contrary, if too much importance
is given to gstab

i then the probing effect will not be sufficient
and output feedback performance may be poor. It is difficult
to know which case will occur a priori depending of the value
of the weights because the optimal costs are not known at
first sight.

That’s why, in this paper, we present a new output-
feedback explicit dual controller based on the minimization
of the Fisher information matrix subject to a negative mean
drift condition for nonlinear discrete-time systems coupled
with a particle filter for state estimation. In other words, we
have chosen to model our problem with equations (11) and
(12).

Furthermore, in explicit dual control, one does not have to
propagate the information inside the dynamics with equation
(8) anymore because it is dealt with in a different way. It
is sufficient to propagate µi|0 with equation (9) which is
much simpler. Besides, one wants to solve in practice a
finite dimensional optimization problem so one looks for
control values and not policies anymore. Then, the general
optimization problem associated with our method, denoted
by (P kex), can be written as follows:

min
u0:T−1

Eµk

”

E[
∑T−1
i=0 gex

i (Xi, ui, ξi) + gex
T (XT )|I0]

ı

s.t. µ̃i+1|0 = G
`

µ̃i|0, ui
˘

,
ui ∈ Ui, ∀i = 0, .., T − 1,
µ̃0 = µk.

negative drift condition on u0,

IV. STATE ESTIMATION

From the definition of the (P kC) and (P kex), it is clear that
dual SMPC requires the computation of µk. However, in the
general nonlinear case, µk cannot be computed explicitly so
approximations are needed. Kalman filters are widespread
and easy-to-compute approximations of the posterior distri-
bution but they may fail in the presence of high nonlinearities
and multimodality. That’s why we use particle filters that
are known to handle these difficulties at the price of a
higher computational cost. A particle filter approximates the
posterior distribution µk by a set of N particles,

`

xlk
˘

l=1,..,N
valued in Rnx , associated with nonnegative and normalized
weights

`

ωlk
˘

l=1,..,N
. The approximate distribution, denoted

by, µNk , is then defined as follow:

µNk =

N∑
l=1

ωlkδxlk , (13)



Like a Kalman filter, a particle filter can be computed
recursively following two steps: prediction and correction.
During the prediction step, the particles are propagated using
an importance distribution that is often chosen as the Markov
kernel from the dynamics, K. During the correction step, the
weights are updated thanks to the last observation and the
particles are resampled from the updated weights. Actually,
resampling is not needed at each time step and criteria
have been developed to decide whether or not resampling
is needed. These steps defines a particle filter with adaptive
resampling and are summed up in Algorithm 1.

Furthermore, we define the conditional expectation of the
state, denoted by x̂k w.r.t. the information Ik and its particle
approximation, the empirical mean of the filter x̂Nk i.e:

x̂k = E[Xk|Ik],

x̂Nk =
1

N

N∑
l=1

ωlkx
l
k.

These will be useful in the definition of the finite horizon
optimization problem.

Algorithm 1 Particle filter with adaptive resampling
1: Create a sample of N particles xl0 according to the law
µ0 and initialize the weights ω(l)

0 with 1
N

2: for i = 0, 1, 2 . . . do
3: Prediction:
4: Given a control ui and a set of particles

`

xli
˘

l=1,..,N
,

compute the predicted particles by drawing samples from
K i.e.

xli+1|i ∼ K(dxi+1|i, x
l
i, ui), for l = 1, .., N.

5: Correction:
6: Get the new observation Yi+1

7: Compute the updated weights
`

ω̃li
˘

l=1,..,N
thanks to

the likelihood function ρ:

ω̃li = ωli ∗ ρ(Yi+1, x
l
i+1|i)

8: if Resampling then
9: Draw the a posteriori particles

`

xli+1

˘

l=1,..,N

from the set
´

xli+1|i

¯

l=1,..,N
and

`

ω̃li
˘

l=1,..,N
using a

resampling technique and set ωli+1 = 1
N

10: else
11: Set xli+1 = xli+1|i and ωli+1 = ω̃li/

∑N
l=1 ω̃

l
i

12: end if
13: end for

V. CONTROL POLICY
The goal of this section is to present our new explicit

dual receding horizon control scheme. The main idea is to
prioritize the guiding goal by adding a stabilizing constraint
on the first control of the finite horizon optimization prob-
lem. This constraint consists in forcing the decreasing of
a Lyapunov-like function during the first time step starting
from the current estimator the state. It is equivalent to

stabilizing an estimator of the state. The success of such
a technique depends highly on the estimation error. Indeed,
if the estimation error is high or even diverges, driving the
estimator to the target does not imply driving the true state
to the target. It is a well known problem in the deterministic
setting [15]. In [9] and [8], output feedback stability is proved
but it was assumed that the estimation error could controlled
a priori uniformly on the control. This assumption is not true
anymore in dual control because the observations, and by
consequence the estimation error, do depend on the control
and can make the estimator diverge. To solve this problem,
in this paper, we have chosen to obtain the lowest estimation
error w.r.t.the Fisher information matrix over the stabilizing
controls.

A. Fisher information matrix

Intuitively, in our context, the Fisher information matrix
at time k, denoted by Jk, quantifies the information about
the state Xk that is contained in the vector of observations
(Y0, . . . , Yk). More formally, its inverse, the Cramer-Rao
bound is a lower bound on the covariance of the estimation
error for any unbiased estimator. Thus, the FIM is often
used as an empirical measure of information that is to
be maximized. It is very popular in Optimal Design [7]
and is also classic in explicit dual control. It was shown
in [16] that Jk could be computed recursively which is
very interesting in practice. For the sake of simplicity of
the recursive formulation of the FIM, we assume that the
disturbances are additive and gaussian in the dynamics and
the observation equations i.e. ∀k ∈ N:

f(Xk, Uk, ξk) = fdet(Xk, Uk) + ξk,

h(Xk, ηk) = hdet(Xk) + ηk,

pξ = N (0, Q),

pη = N (0, R),

where Q and R are covariance matrices, fdet and hdet are
differentiable w.r.t. the state. Thus, the FIM satisfies the
following recursive equation, ∀k ∈ N∗:

J0 = P−10 ,

J+
k−1 = Jk−1 + E

“

FTk−1Q
−1Fk−1

‰

, (14)

Jk = E
“

HkR
−1
k HT

k

‰

−

Q−1E rFk−1s
`

J+
k−1

˘−1
E rFk−1s

T
Q−1,

where P0 is the covariance matrix associated with the initial
distribution p0, Fk−1 = ∇xfdet(Xk−1, Uk−1) and Hk =
∇hdet(Xk).

B. Foster-Lyapunov drift in case of perfect information

Perfect information is met when full knowledge of the
state Xk is available. In that case, the control is computed
from state feedback control policies i.e. measurable maps,
denoted by αk, that maps a state Xk to a control Uk. Since
equation (1) is time homogeneous, it is sufficient to consider
a fixed control policy α. Thus, for any, α, one can define the



corresponding closed loop system as follows, ∀k ∈ N:

Xk+1 = f(Xk, α(Xk), ξk), (15)
X0 ∼ p0.

A state feedback control policy is said to be admissible if
∀x ∈ Rn, α(x) ∈ U0. Therefore, equation (15) defines also
a time-homogeneous Markov chain whose stability can be
studied via the classical theory of negative drifts conditions
discussed in [17] and recalled in [18]. In proposition 1, we
focus on geometric drifts conditions that are closely related to
Lyapunov conditions for exponential stability for continuous-
time processes.

Proposition 1: Suppose that there exist b > 0 and λmin ∈
[0, 1[, a measurable function V : Rnx −→ [0,+∞[, a
compact set C ⊂ Rnx and an admissible state feedback
control policy α such that E[V (f(x, α(x), ξ0)] ≤ λminV (x),
∀x /∈ C and supx∈CEx[V (X1)] = b

Then, ∀λ ∈ [λmin, 1[,

Ex[V (Xk)] ≤ λkV (x) + b(1− λ)−1,∀k ∈ N, ∀x ∈ Rn,

where Xk is computed with equation (15).
Proposition 1 is a slightly different reformulation of propo-

sition 1 in [18], but its proof follows from the one in [18]. In
particular, we consider that the parameter λ can be chosen
arbitrarily in [λmin, 1[. In practice, λ is a parameter to
tune that determines the convergence speed of the system.
Moreover, as explained in [18], if proposition 1 is verified
for a norm-like function V then for r > 0, Px(‖Xk‖> r)
decreases as the inverse of V so the distribution of state
concentrates itself around 0. That’s why, in the rest of the
paper, we suppose that our guiding goal is to drive the system
(1) to 0. To do that, we also suppose that the assumptions in
proposition 1 are fulfilled and notably that the system (1) can
be stabilized with perfect information with some admissible
state feedback control policy α.

C. Receding horizon policy

The purpose of our MPC scheme is to compute control that
explicitly look for information by minimizing some functions
of the FIM, gfish

i and gfish
T , over the controls that stabilize a

state estimator. This is guaranteed by the drift condition taken
from proposition 1 and, applied to x̂k only when x̂k /∈ C .
Thus, the stochastic optimization problem to solve, denoted
by, (P kCFL), can be written as follow, ∀λ ∈ [λmin, 1[:

min
u0:T−1

Eµk

”

E[
∑T−1
i=0 gex

i (Xi, ui, ξi) + gex
T (XT )|I0]

ı

s.t. µ̃i+1|0 = G
`

µ̃i|0, ui
˘

,
ui ∈ Ui, ∀i = 0, .., T − 1,
µ̃0 = µk,

Ex̂k [V (f(x̂k, u0, ξ0)] ≤ λV (x̂k), when x̂k /∈ C

where:

gex
i (Xk, Uk, ξk) = geco

i (Xk, Uk, ξk) + gfish
i (Jk), (16)

gex
T (XT ) = geco

T (XT ) + gfish
T (JT ), (17)

It is important to notice that the admissibility of the drift

constraint is guaranteed by the existence of the admissible
state feedback stabilizing α.

A good approximation technique to approach (P kCFL) in
practice is the scenario approach [19]. It appears that, in out-
put feedback MPC, there is a synergy between the scenario
approach and particle filtering. In fact, the initial condition
for each independent scenario is chosen as a particle from
the current set of particles. It improves global performance
compared to a similar technique involving a Kalman filer
in which, the initials conditions are always drawn according
to a unimodal law. This method was already used in [20]
and [13]. The approximation, denoted by

´

P k,NCFL

¯

, can be
defined, ∀λ ∈ [λmin, 1[, by:

min
u0···uT−1

∑Ns
l=1 ω

l
k

´∑T−1
i=0 gex

i

`

X l
i , ui, ξ

l
i

˘

+ gex
T

`

X l
T

˘

¯

s.t. X l
i+1 = f(X l

i , ui, ξ
l
i),

ui ∈ Ui,
X l

0 = xlk, ∀l = 1, .., Ns, ∀i = 0, .., T − 1,

1

Ndr

Ndr∑
`=1

V (f(x̂Nk , u0, ξ̃
`
0) ≤ λV (x̂Nk ), when x̂Nk /∈ C,

where:
• Ns < N is the number of scenarios considered. It

is supposed to be less than the number of particles
for computational reasons, so Ns particles must be
extracted from the original set.

• Ndr ∈ N∗ is the size of the sample used to approximate
the expectation in the drift constraint.

• (ξli)i=0,..,T−1,l=1,..,Ns
and (ξ̃`0)`=1,..,Ndr

are i.i.d. ran-
dom variables sampled from pξ.

Additionally, when x̂Nk ∈ C the drift condition is not
necessarily feasible so we decided to apply the stabilizing
policy α to x̂Nk , such that Uk = α(x̂Nk ), as it is done in
classical certainty equivalence controllers. This means that
if x̂Nk enters C there is no probing anymore. It is not a
problem as one can see C as the target set.

D. Global algorithm

The complete Output feedback algorithm is summarized
in Algorithm 2. This method has two main advantages
compared to the one we presented in [13]:
• First, In [13], both the stability properties and the

information were incorporated as two terms of the
cost. Therefore, the weights between the terms were
difficult to tune and, especially in receding horizon
control where they deeply influence the convergence of
the system. In particular, it was compulsory to decrease
the weights on gfish

i and gfish
T with time otherwise the

system converged to a point that was far from the target.
Moreover, tuning the decreasing of this weight was also
complicated a priori. In our new method, the stability
properties are much less influenced by the cost because
of the drift condition which is a constraint. The most
important parameter to tune is λ, and, in principle, it



influences only the convergence speed of the system
and not its qualitative properties of stability.

• Secondly, from a numerical point of view, as stated
in [9], the stability properties are contained in one
constraint and are easier to achieve in practice. Indeed,
the convergence of the system depends little on the
quality of the solution of the optimization problem and
much more on its admissibility which is easy to obtain
with classical solvers.

Algorithm 2 Fisher/Lyapunov Output Feedback Control
1: Create a sample of N particles xl0 according to the law
µ0 and initialize the weights ωl0 with 1

N .
2: for k = 0, 1, 2, . . . do
3: if x̂Nk /∈ C then
4: Solve (P̃ kCF ) starting from the particles xlk and

the weights ωlk.
5: Get an optimal sequence (u∗0, . . . , u

∗
T−1).

6: Set Uk = u∗0.
7: else
8: Set Uk = α(x̂Nk )
9: end if

10: Compute the a posteriori particles xlk+1 and weights
ωlk+1 given Uk according to Algorithm 1

11: end for

VI. APPLICATION AND NUMERICAL RESULTS

A. Description of the application

Algorithm 2 has been applied to the guidance and local-
ization of a drone by terrain-based navigation. Our first goal
is to drive a drone in a 3D space from an uncertain initial
condition X0 to a compact set centered around 0. If the
original target is not 0 then a translation can be made to
center the problem around 0. In the Cartesian coordinates,
we assume that the dynamics of the drone can be described
as follow:
• the state is composed of 3 positions and 3 speeds:
Xk = (xk, yk, zk, v

x
k , v

y
k , v

z
k)
T and the control of 3

accelerations Uk = (uxk, u
y
k, u

z
k)
T .(xk, yk) represents a

horizontal position and zk an altitude.
• its dynamics (1) is linear with bounded controls such

that, for k ∈ N :

Xk+1 = AXk +BUk + ξk, , (18)
‖Uk‖ ≤ Umax, (19)

where Umax > 0 and A ∈ Rnx×nx and B ∈ Rnx×nu
correspond to a discrete-time second order system with
damping on the speed. In this setting, classical linear
controllers do not lead to admissible control almost
surely so a nonlinear feedback controller must be de-
signed.

As described in section V, the guiding problem is ad-
dressed with a drift constraint for a particular drift that
depends on the dynamics. We have used the drift proposed

in proposition 8 of [18] such that V (X) = e‖X‖ and C
is a ball centered around 0 whose radius depends only on
the disturbances of the dynamics To guarantee the existence
of an admissible stabilizing state feedback policy, α, the
maximum control Umax must be sufficiently high. See [18]
for the precise definition of α, Umax and C. Although
it applies only to orthonormal dynamics, we suppose that
A is neutrally stable in the sens that, after a change of
coordinates, it can be decomposed in a Shur-stable block
and an orthonormal block. The drift is then considered only
on the last block as the first one already ensures stability.

We assume that the dynamics has a relatively simple form
because the main difficulty of this application is the nature
of the observations. Indeed, we suppose that the speed is
measured but that the only information on position is a
measure of the difference between the altitude of the drone,
zk, and the altitude of the corresponding vertical point on
the ground. We also suppose that the ground is represented
by a map, hmap : R × R −→ R that maps a horizontal
position (x, y) to the corresponding height of the terrain.
In practice, hmap is determined by a smooth interpolation
of data points so it is highly nonlinear. Therefore, in this
case, hdet(Xk) = (zk − hmap(xk, yk), vxk , v

y
k , v

z
k)
T . Thus

our second goal is to estimate the state of the system. It
is not very restrictive to suppose that the whole speed vector
is measured because the speed on its own is not enough to
reconstruct the whole state so the altitude measure is still
required. The use of particle filters is totally justified by
the particular definition of hdet. Actually, the conditional
distribution, µk is multimodal and its modes are closely
related to the level set of the map of the terrain, hmap so
Kalman filters cannot accurately deal with this problem.

Moreover, it appears very naturally that dual control
is required in this application. Indeed, the quality of the
observations depends on the control and more precisely on
the area that is flied over by the drone. Let us assume
that the drone flies over a flat area with constant altitude
then one measurement of height matches a whole horizontal
area and the estimation error on (xk, yk) is of the order of
magnitude of the size of the area which can be very large.
On the contrary, if the drone flies over a rough terrain,
then one measurement of height correspond to a smaller
area on the ground and the estimation error is reduced. Our
last goal is then to probe information by avoiding to fly
over uninformative areas on the ground. It is dealt with by
selecting the controls that minimizes some loss function of
the FIM inspired from Optimal Design, among the controls
that verifies the drift constraint.

B. Numerical results

Figure 1 represents the horizontal projection of a trajec-
tory obtained by algorithm 2 with the terrain map in its
background. The scenario has been chosen such that, if the
system goes in straight line to the target then it flies over
a flat area and then the estimation error will be high. We
can see that in figure 1 that, as expected, the system makes
a detour to avoid the flat area, so that the particles tighten



Fig. 1. Plot of one trajectory obtained by Fisher/Lyapunov particle control
and of the particles from the particle filter

around the true position, and finally reaches the target. In this
run, the algorithm has been stopped when the target enters
the compact C.

Figure 2 and 3 shows RMSE respectively in horizontal
position and altitude after 30 Monte Carlo simulations of
three different policies: a policy with no information probing,
the policy described in this article and the policy described
in [13] where stability was forced by the minimization of the
distance to the target. The setup in figure 1 is less favourable
for estimation that the one in figures 2 and 3 that’s why the
error diminishes faster in figures 2 and 3 than what appears
in figure 1.

It is clear that the horizontal estimation error is reduced
with information probing. It is actually due to the fact that
the filter diverges in 30% of the cases without the FIM and
15% with the FIM. Our new method also seems slightly
better than the previous one. Moreover, in [13], the crucial
parameters that regulated the convergence of the system were
actually the weights on the FIM and on the distance to
the target. In particular, the drone could get stuck over a
mountain if the weight on the FIM was too high because
mountains are very informative in this application. Therefore,
it was compulsory to make this weight decrease over time or
tune it dynamically to give more importance to the distance
to the target and force the system to go to it eventually. We
claim that this kind of complicated tuning is not necessary
with our new method because the system cannot get stuck
due to the drift constraint that compel it to go toward the
target set at each time step. We only choose the convergence
speed of the drone through the parameter λ of proposition
1 and, in practice, it affects only marginally the qualitative
property of stability.

The simulations were run in MATLAB and the optimza-
tion problems were solved using the modelling language
AMPL and the solver Ipopt. Besides, compared to [13],

thanks to user-defined functions in AMPL and a library in C
for interpolation, we have managed to deal efficiently with
the interpolation of a real map in AMPL that is necessary for
the computation of the FIM inside the optimization problem
(P k,NCFL).

Fig. 2. Plot of the RMSE in horizontal position for 3 policies: without the
FIM (blue), with the FIM and the drift (red), with the FIM and the distance
to the target (green)

Fig. 3. Plot of the RMSE in altitude for 3 policies: without the FIM (blue),
with the FIM and the drift (red), with the FIM and the distance to the target
(green)

VII. CONCLUSION

In this paper, we have presented a new explicit dual outout
feedback stochastic MPC for nonlinear systems. Its principle
is to choose at each time step the controls that maximizes the
information over the control that forces the mean decreasing
of some Lyapunov-like function for discrete-time nonlinear



stochastic systems. In particular it does not involve penal-
ization of the guiding goal in the cost which is a classical
feature of MPC. Output feedback is obtained by coupling the
resolution of an optimization problem with a particle filter.
The method is applied to terrain aided navigation and appears
to be easier to tune that one of our previous method.
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