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Abstract. We prove the C1 regularity for a class of abnormal length-minimizers in
rank 2 sub-Riemannian structures. As a consequence of our result, all length-minimizers
for rank 2 sub-Riemannian structures of step up to 4 are of class C1.
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1. Introduction

The question of regularity of length-minimizers is one of the main open problems in
sub-Riemannian geometry, cf. for instance [Mon02, Problem 10.1] or [Agr14, Problem II]
and the survey [Mon14a].

Length-minimizers are solutions to a variational problem with constraints and satisfy a
first-order necessary condition resulting from the Pontryagin Maximum Principle. With
every length-minimizer γ : [0, T ] → M we can associate a lift λ : [0, T ] → T ∗M in the
cotangent space, satisfying a Hamiltonian equation. This lift can be either normal or
abnormal, although a length-minimizer γ can actually admit several lifts, each of them
being either normal or abnormal.

If a length-minimizer admits a normal lift, then it is smooth, i.e., C∞, since normal
lifts are solutions of smooth autonomous Hamiltonian systems in T ∗M . Note that we
assume length-minimizers to be parametrized by arclength and their regularity is meant
with respect to this time parametrization. The question of regularity is then reduced to
length-minimizers that are strictly abnormal, i.e., those which do not admit normal lifts.
For such length-minimizers, from the first order necessary condition (and actually from
the second order one as well) it is a priori not possible to deduce any regularity other than
Lipschitz continuity.

In this paper we investigate the following.

Open Problem. Are all length-minimizers in a sub-Riemannian manifold of class C1?

If the sub-Riemannian structure has step 2, there are no strictly abnormal length-
minimizers, see e.g. [AS95, ABB17], thus every length-minimizer admits a normal lift,
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and is hence smooth. For step 3 structures, the situation is already more complicated
and a positive answer to the above problem is known only for Carnot groups (where,
actually, length-minimizers are proved to be C∞), see [LDLMV13, TY13]. When the sub-
Riemannian structure is analytic, more is known on the size of the set of points where a
length-minimizer can lose regularity [Sus14], regardless of the rank and of the step of the
distribution.

To state our main result, we introduce some notations. We refer the reader to Section 2
for precise definitions. Recall that a sub-Riemannian structure (D, g) on M is defined by
a bracket generating distribution D endowed with a metric g. Hence D defines a flag of
subspaces at every point x ∈M

Dx = D1
x ⊂ D2

x ⊂ D3
x ⊂ · · · ⊂ Dr

x = TxM,

where Di
x is the subspace of the tangent space spanned by Lie brackets of length at most

i between horizontal vector fields. This induces a dual decreasing sequence of subspaces
of T ∗xM

0 = (Dr
x)⊥ ⊂ · · · ⊂ (D4

x)⊥ ⊂ (D3
x)⊥ ⊂ (D2

x)⊥ ⊂ (D1
x)⊥ ⊂ T ∗xM,

where perpendicularity is considered with respect to the duality product. By construction,
any abnormal lift satisfies λ(t) ∈ (D1)⊥ for every t. If the lift is strictly abnormal, then
by Goh conditions λ(t) ∈ (D2)⊥ for every t.

When the distribution has rank 2, it is known that if λ(t) does not cross (D3)⊥, then the
length-minimizer is C∞ [LS95, Sect. 6.2, Cor. 4]. Our main result pushes this analysis fur-
ther and establishes that the answer to the Open Problem is positive for length-minimizers
whose abnormal lift does not enter (D4)⊥.

Theorem 1. Let (D, g) be a rank 2 sub-Riemannian structure on M . Assume that
γ : [0, T ] → M is an abnormal minimizer parametrized by arclength. If γ admits a lift
satisfying λ(t) /∈ (D4)⊥ for every t ∈ [0, T ], then γ is of class C1.

If the sub-Riemannian manifold has rank 2 and step at most 4, the assumption in
Theorem 1 is trivially satisfied by every abnormal minimizer γ and we immediately obtain
the following corollary.

Corollary 2. Assume that the sub-Riemannian structure has rank 2 and step at most 4.
Then all length-minimizers are of class C1.

It is legitimate to ask whether the C1 regularity in the Open Problem can be further
improved. Indeed, the argument behind our proof permits to obtain C∞ regularity of
length-minimizers under an additional nilpotency condition on the Lie algebra generated
by horizontal vector fields.

Proposition 3. Assume that D is generated by two vector fields X1, X2 such that the
Lie algebra Lie{X1, X2} is nilpotent of step at most 4. Then for every sub-Riemannian
structure (D, g) on M , the corresponding length-minimizers are of class C∞.

The above proposition applies in particular to Carnot groups of rank 2 and step at most
4. In this case we recover the results obtained in [LM08, Example 4.6].

The strategy of proof of Theorem 1 is to show that, at points where they are not of
class C1, length-minimizers can admit only corner-like singularities. This is done by a
careful asymptotic analysis of the differential equations satisfied by the abnormal lift,
which exploits their Hamiltonian structure. We can then conclude thanks to the following
result.

Theorem 4 ([HL16]). Let M be a sub-Riemannian manifold. Let T > 0 and let γ :
[−T, T ] → M be a horizontal curve parametrized by arclength. Assume that, in local
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coordinates, there exist

γ̇+(0) := lim
t↓0

γ(t)− γ(0)
t

, γ̇−(0) := lim
t↑0

γ(t)− γ(0)
t

.

If γ̇+(0) 6= γ̇−(0), then γ is not a length-minimizer.

We observe that the proof contained in [HL16] requires a previous result stated in
[LM08]. A complete argument for the latter, addressing some issues raised in [Rif17, p.
1113-15], is provided in [MPV17]. For sub-Riemannian structures of rank 2 and step at
most 4 (and indeed also for higher step, under an additional condition on the Lie algebra
generated by horizontal vector fields), the fact that corners are not length-minimizers is
already contained in [LM08].

We notice that the answer to the Open Problem is known to be positive also in a class
of rank 2 Carnot groups (with no restriction on the step, but satisfying other additional
conditions). For this class of structures in [Mon14b], it is proved the C1,α regularity for
some suitable α > 0 (depending on the step).

We also refer to [MPV18, HL18] for recent results regarding these issues.

1.1. Structure of the paper. In Section 2 we recall some notations and preliminary
notions. Section 3 is devoted to a desingularization and nilpotentization argument. Section
4 contains a preliminary analysis on the dynamics of abnormal extremals. To illustrate
our approach in a simpler case, we discuss in Section 5 the proof of the main result for a
nilpotent structure of step up to 4. Then in Sections 6 and 7 we complete our analysis to
prove the general result. Appendix A contains a technical lemma.

Acknowledgments. We thank Ugo Boscain, Paolo Mason, Ludovic Rifford, and Luca
Rizzi for many stimulating discussions. This work was supported by the Grant ANR-15-
CE40-0018 SRGI “Sub-Riemannian geometry and interactions” and by a public grant as
part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx
LMH, in a joint call with Programme Gaspard Monge en Optimisation et Recherche
Opérationnelle.

2. Notations and preliminary notions

Let M be a smooth n-dimensional manifold. A sub-Riemannian structure of rank m on
M is a triplet (E, gE , f) where E is a vector bundle of rank m over M , gE is an Euclidean
metric on E, and f : E → TM is a morphism of vector bundles such that f(Ex) ⊆ TxM
for every x ∈ M . Fix such a structure and define a family of subspaces of the tangent
spaces by

Dx = {X(x) | X ∈ D} ⊆ TxM, ∀x ∈M,

where D = {f ◦ Y | Y smooth section of E} is a submodule of the set of vector fields on
M . We assume that the structure is bracket generating, i.e., the tangent space TxM is
spanned by the vector fields in D and their iterated Lie brackets evaluated at x.

The sub-Riemannian structure induces a quadratic form gx on Dx by
gx(v, v) = inf{gEx (u, u) | f(u) = v, u ∈ Ex}, v ∈ Dx.

In analogy with the classic sub-Riemannian case and to simplify notations, in the sequel
we will refer to the sub-Riemannian structure as the pair (D, g) rather than (E, gE , f).
This is justified since all the constructions and definitions below rely only on D and g.
The triplet (M,D, g) is called a sub-Riemannian manifold.

Remark 5. Usually, a sub-Riemannian manifold denotes a triplet (M,D, g), where M is a
smooth manifold, D is a subbundle of TM , and g is a Riemannian metric on D (see, e.g.,
[Bel96]). This corresponds to the case where f(Ex) is of constant rank. The definition
given above follows, for instance, [ABB17].
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A horizontal curve γ : [0, T ] → M is an absolutely continuous path such that γ̇(t) ∈
Dγ(t) for almost every (a.e. for short) t ∈ [0, T ]. The length of a horizontal curve is defined
by

`(γ) =
∫ T

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

The sub-Riemannian distance between two arbitrary points x, y in M is then

d(x, y) = inf{`(γ) | γ(0) = x, γ(T ) = y, γ horizontal}.

A length-minimizer is a horizontal curve γ which realizes the distance between its ex-
tremities, that is, `(γ) = d(γ(0), γ(T )). Note that any time-reparametrization of a length-
minimizer is a length-minimizer as well.

A generating frame of the sub-Riemannian structure is a family of smooth vector fields
X1, . . . , Xk such that D is generated by X1, . . . , Xk as a module and

gx(v, v) = inf
{

k∑
i=1

u2
i |

k∑
i=1

uiXi(x) = v

}
, x ∈ U, v ∈ Dx.

There always exists a global generating frame (see [ABB17, Corollary 3.26]), with, in
general, a number k of elements greater than the rank m of the structure. However, every
point x ∈M admits a neighborhood on which there exists a (local) generating frame with
exactly k = m elements, e.g., by taking the image via f of a local orthonormal frame of
(E, gE).

Fix now a (local or global) generating frame X1, . . . , Xk of (D, g). For any horizontal
curve γ of finite length, there exists u ∈ L∞([0, T ],Rk) satisfying

(1) γ̇(t) =
k∑
i=1

ui(t)Xi(γ(t)), for a.e. t ∈ [0, T ].

The curve is said to be parametrized by arclength if gγ(t)(γ̇(t), γ̇(t)) = 1 for a.e. t ∈ [0, T ],
i.e., if there exists u ∈ L∞([0, T ],Sk−1) satisfying (1). In that case `(γ) = T .

To state the first order necessary conditions, let us first introduce some notations. For
λ ∈ T ∗M and x = π(λ), where π : T ∗M → M is the canonical projection, we set
hi(λ) = 〈λ,Xi(x)〉, for i = 1, . . . , k (here 〈λ, ·〉 denotes the dual action of covectors on
vectors). Recall also that, for a function H : T ∗M → R, the corresponding Hamiltonian
vector field ~H is the unique vector field such that σ(·, ~H) = dH, where σ is the canonical
symplectic form on the cotangent bundle.

Applying the Pontryagin Maximum Principle to the sub-Riemannian length minimiza-
tion problem yields the following theorem.

Theorem 6. Let (M,D, g) be a sub-Riemannian manifold with generating frame X1, . . . , Xk

and γ : [0, T ] → M be a length-minimizer. Then there exists a nontrivial absolutely con-
tinuous curve t 7→ λ(t) ∈ T ∗γ(t)M such that one of the following conditions is satisfied:

(N) λ̇(t) = ~H(λ(t)) for all t ∈ [0, T ], where H(λ) = 1
2
∑k
i=1 h

2
i ,

(A) λ̇(t) =
∑k
i=1 ui(t)~hi(λ(t)) for almost every t ∈ [0, T ], with u1, . . . , uk ∈ L1([0, T ]).

Moreover, λ(t) ∈ (Dγ(t))⊥ for all t, i.e., hi(λ(t)) ≡ 0 for i = 1, . . . , k.

In case (N) (respectively, case (A)), λ is called a normal (respectively, abnormal) ex-
tremal. Normal extremals are integral curves of ~H. As such, they are smooth. A length-
minimizer is normal (respectively, abnormal) if it admits a normal (respectively, abnormal)
extremal lift. We stress that both conditions can be satisfied for the same curve γ, with
different lifts λ1 and λ2.
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3. Desingularisation and nilpotentization

3.1. Desingularisation. Let (M,D, g) be a sub-Riemannian manifold. We define recur-
sively the following sequence of submodules of the set of vector fields,

D1 = D, Di+1 = Di + [D,Di].

At every point x ∈M , the evaluation at x of these modules induces a flag of subspaces of
the tangent space,

D1
x ⊂ D2

x ⊂ · · · ⊂ Dr
x = TxM.

The smallest integer r = r(x) satisfying Dr
x = TxM is called the step of D at x. A point is

said to be regular if the dimensions of the subspaces of the flag are locally constant in an
open neighborhood of the point. When every point in M is regular, the sub-Riemannian
manifold is said to be equiregular.

In general a sub-Riemannian manifold may admit non-regular points. However, for
our purposes, we can restrict ourselves with no loss of generality to equiregular manifolds
thanks to a desingularisation procedure.

Lemma 7. Fix an integer m ≥ 2. Assume that for every rank m equiregular sub-
Riemannian structure the following property holds: every arclength parametrized abnormal
minimizer admitting a lift λ(t) /∈ (D4)⊥ is of class C1. Then the same property holds true
for every rank m sub-Riemannian structure.

Proof. Let (M,D, g) be a non-equiregular sub-Riemannian manifold of rank m and γ be an
abnormal length-minimizer of (M,D, g) which admits an abnormal extremal lift such that
λ(t) /∈ (D4)⊥ for every t ∈ [0, T ]. Assume moreover that γ is parametrized by arclength.
We have to prove that γ is of class C1.

Fix t0 ∈ [0, T ] and a generating frame X1, . . . , Xm on a neighborhood of γ(t0). By
[Jea14, Lemma 2.5], there exists an equiregular sub-Riemannian manifold (M̃, D̃, g̃) of
rank m with a generating frame ξ1, . . . , ξm and a map $ : M̃ → M onto a neighborhood
U ⊂ M of γ(t0) such that $∗ξi = Xi. Up to reducing the interval [0, T ] we assume that
γ(t) ∈ U for all t ∈ [0, T ]. Let u ∈ L∞([0, T ],Sm−1) be such that

γ̇(t) =
m∑
i=1

ui(t)Xi(γ(t)), a.e. t.

By construction, since γ is a length-minimizer, there exists a length-minimizer γ̃ in M̃
with $(γ̃) = γ associated with the same u, that is,

˙̃γ(t) =
m∑
i=1

ui(t)ξi(γ̃(t)), a.e. t,

which is parametrized by arclength as well. Hence the trajectory γ has at least the same
regularity as γ̃.

Moreover, if λ is an abnormal lift of γ in T ∗M , then γ̃ admits an abnormal lift λ̃ in T ∗M̃
such that λ̃(t) = $∗λ(t) for every t. Since $∗(D̃k)⊥ = (Dk)⊥ for any positive integer k,
the property λ(t) /∈ (D4)⊥ implies λ̃(t) /∈ (D̃4)⊥.

It results from the hypothesis that γ̃ is C1, so γ is of class C1 in an open neighborhood
of t0 ∈ [0, T ], which ends the proof. �

As a consequence of Lemma 7, we can assume in the rest of the paper that the sub-
Riemannian manifold is equiregular.
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3.2. Nilpotentization. Let us recall the construction of the nilpotent approximation (see
for instance [Bel96] for details).

Let (M,D, g) be an equiregular sub-Riemannian manifold. We fix a point x ∈ M and
a local generating frame X1, . . . , Xm in a neighborhood of x.

For i = 1, . . . , n, let wi be the smallest integer j such that dimDj
x ≥ i. We define

the dilations δν : Rn → Rn for ν ∈ R as δν(z) = (νw1z1, . . . , ν
wnzn). Let zx be a

system of privileged coordinates at x and set δxν = δν ◦ zx. Then, for i = 1, . . . ,m,
the vector field ε

(
δx1/ε

)
∗Xi converges locally uniformly as ε → 0 to a vector field X̂x

i on
Rn. The space Rn endowed with the sub-Riemannian structure having X̂x

1 , . . . , X̂
x
m as

generating frame is called the nilpotent approximation of (M,D, g) at x and is denoted by
M̂x. This nilpotent approximation M̂x is a Carnot group equipped with a left-invariant
sub-Riemannian structure.

Since (M,D, g) is equiregular, we can locally choose systems of privileged coordinates zx
depending continuously on x [Jea14, Sect. 2.2.2]. Note that the wi’s and δν are independent
of x. Thus an easy adaptation of the proof of [AGM15, Prop. 3.4] (see also [ABB17, Sect.
10.4.1]) shows that, for i = 1, . . . ,m, the vector field ε

(
δx1/ε

)
∗Xi converges locally uniformly

to X̂x0
i as ε→ 0 and x→ x0.

Lemma 8. Let (an)n∈N, (bn)n∈N ⊂ [0, T ], ā ∈ [0, T ], be such that an, bn → ā and an < bn
for any n ∈ N. Given u ∈ L∞([0, T ],Sm−1) and n ∈ N, define un ∈ L∞([0, 1], Sm−1) by

un(τ) = u(an + τ(bn − an)).

Assume that the sequence (un)n∈N converges to u? ∈ L∞([0, 1],Rm) for the weak-? topology
of L∞([0, 1],Rm) and, moreover, that the trajectory γ : [0, T ]→ M associated with u is a
length-minimizer. If x = γ(ā), then the trajectory γ? : [0, 1]→ M̂x satisfying

γ̇?(s) =
m∑
i=1

u?,i(s)X̂x
i (γ?(s)), γ?(0) = 0,

is also a length-minimizer. In particular, u?(t) ∈ Sm−1 for almost every t ∈ [0, 1].

Proof. We consider a continuously varying family of privileged coordinates zγ(t), t ∈ [0, T ],
and the corresponding 1-parameter family of dilations δtν := δ

γ(t)
ν . It is not restrictive to

assume that δan 1
bn−an

γ(t) is well-defined for every n ∈ N and t ∈ [an, bn].
Let γn be defined by γn(τ) = δan 1

bn−an
(γ(an + τ(bn − an))). Then, γn is a length-

minimizing curve for the sub-Riemannian structure on Rn with orthonormal frame

(bn − an)
(
δan 1
bn−an

)
∗
X1, . . . , (bn − an)

(
δan 1
bn−an

)
∗
Xm.

The corresponding control is un.
Since the sequence

(
(bn − an)

(
δan 1
bn−an

)
∗
Xi

)
n∈N

converges locally uniformly to X̂x
i , it

follows by standard ODE theory that (γn)n∈N converges uniformly to γ?.
We claim that d̂(γ?(0), γ?(1)) = 1. Indeed, `(γ?) ≥ d̂(γ?(0), γ?(1)) and, by [Bel96,

Theorem 7.32], we have

d̂(γ?(0), γ?(1)) = lim
n→∞

1
bn − an

d(γ(an), γ(bn))

= lim
n→∞

∫ 1

0
|u(an + τ(bn − an))| dτ = 1,

where | · | denotes the norm in Rm. On the other hand, by weak-? convergence we have

`(γ?) = ‖u?‖L1([0,1],Rm) ≤ lim inf
n→∞

‖un‖L1([0,1],Rm) = 1,
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proving the claim.
To conclude the proof, it suffices now to observe that the above implies that γ? is

minimizing. In particular, since |u?(t)| ≤ 1 a.e. on [0, 1] by the properties of weak-?
convergence, this shows that |u?(t)| = 1 a.e. on [0, 1]. �

Corollary 9. Let γ, u, ā, (an)n∈N, (bn)n∈N, and u? be as in Lemma 8. Assume that there
exist u+, u− ∈ Sm−1 such that u? = u− almost everywhere on [0, 1/2] and u? = u+ almost
everywhere on [1/2, 1]. Then u− = u+.

Proof. If u− 6= u+, then γ? is not length-minimizing by Theorem 4, which contradicts
Lemma 8. �

4. Dynamics of abnormal extremals: preliminary results

In this section we present the dynamical system associated with the abnormal extremal,
whose analysis is the basis for the proof of Theorem 1, and we derive a first result on its
structure.

4.1. Introduction to the dynamical system. Let (M,D, g) be an equiregular sub-
Riemannian manifold of rank 2. Since the arguments are local, in what follows we fix a
local generating frame {X1, X2} of (D, g).

Consider an abnormal length-minimizer γ : [0, T ] → M parametrized by arclength.
Then T = d(γ(0), γ(T )) and there exists u ∈ L∞([0, T ],S1) such that

γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)), a.e. t ∈ [0, T ].
Moreover from Theorem 6, γ admits a lift λ : [0, T ]→ T ∗M which satisfies

λ̇(t) = u1~h1(λ(t)) + u2~h2(λ(t)) and h1(λ(t)) ≡ h2(λ(t)) ≡ 0.
By a slight abuse of notation, set hi(t) = 〈λ(t), Xi(γ(t))〉, i = 1, 2, and for every i1, . . . , im ∈
{1, 2},

hi1···im(t) = 〈λ(t), [Xi1 , . . . , [Xim−1, Xim ]](γ(t))〉.
Such a function hi1···im is absolutely continuous and satisfies
(2) ḣi1···im(t) = u1(t)h1i1···im(t) + u2(t)h2i1···im(t) for a.e. t ∈ [0, T ].
Differentiating the equalities h1 ≡ h2 ≡ 0 and using (2) we obtain h12 ≡ 0. Differentiating
again we get
(3) 0 = ḣ12 = u1h112 + u2h212 a.e. on [0, T ].

Remark 10. The identities h1(t) = h2(t) = h12(t) = 0 imply that λ(t) ∈ (D2)⊥ for every t.
The latter is known as Goh condition and is in general (i.e., for sub-Riemannian structures
of any rank) a necessary condition for the associated curve to be length-minimizing [AS99].
It is known that a generic sub-Riemannian structure of rank larger than 2 does not have
non-constant abnormal extremals satisfying the Goh condition [CJT06].

Let h = (−h212, h112) and (t0, t1) ⊂ (0, T ) be a maximal (i.e., non-extendable) open
interval on which h 6= 0. Equation (3) then implies that u = ±h/|h| almost everywhere
on (t0, t1).

Moreover, by length-minimality of γ we can assume without loss of generality that
u = h/|h| on (t0, t1) (see Lemma 22 in the appendix). Thus γ may be non-differentiable
only at a time t such that h(t) = 0. In particular, if the step of the sub-Riemannian
structure is not greater than 3, then γ is differentiable everywhere. We assume from now
on that the step is at least 4.

Observe that from (2) and using u = h/|h| one obtains

(4) ḣ = A
h

|h|
, A =

(
−h2112 −h2212
h1112 h2112

)
, on (t0, t1).
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Here, we used the relation h1212 = h2112, which follows from the Jacobi identity

[X1, [X2, [X1, X2]]] = −[[X1, X2], [X1, X2]]− [X2, [[X1, X2], X1]] = [X2, [X1, [X1, X2]]].

Observe that the matrix A has zero trace and is absolutely continuous on the whole interval
[0, T ].

Lemma 11. Assume that λ(t) /∈ (D4
γ(t))

⊥ for every t ∈ [0, T ]. If h(t0) = 0 for some
t0 ∈ [0, T ], then A(t0) 6= 0.

Proof. The fact that γ is abnormal implies that the non-zero covector λ(t) annihilates
Dγ(t) for every t ∈ [0, T ]. The Goh condition h12 ≡ 0 guarantees that it also annihilates
D2
γ(t). The fact that h(t0) = 0 says, moreover, that λ(t0) annihilates D3

γ(t0). If A(t0) is
equal to zero, then λ(t0) annihilates D4

γ(t0), which contradicts the assumption. �

4.2. The sign of detA is non-negative where h vanishes. A key step in the proof of
Theorem 1 is the following result.

Proposition 12. Let (t0, t1) be a maximal open interval of [0, T ] on which h 6= 0 and
assume that t1 < T . Then detA(t1) ≤ 0.

Proof. Assume by contradiction that detA(t1) > 0. Since traceA(t1) = 0, there exists
P ∈ GL(2,R) such that

(5) P−1A(t1)P =
(

0 −a
a 0

)
, a > 0.

Define the scalar functions α, β and ζ through the relation

P−1A(t)P =
(
−α(t) β(t)
ζ(t) α(t)

)
,

and notice that α, β, ζ are absolutely continuous with bounded derivatives on (t0, t1), since
they are linear combinations of h2112, h2212, h1112, according to (2). Clearly, (5) implies
that α(t)→ 0, β(t)→ −a, and ζ(t)→ a as t→ t1.

Consider a time rescaling and a polar coordinates representation so that P−1h(t) =
ρ(s(t))eiϑ(s(t)), where

s(t) :=
∫ t

t0

|P−1h(τ)|
|h(τ)| dτ.

It is useful to introduce µ := (ζ + β)/2 and η := (ζ − β)/2. Then, denoting by ρ′ and ϑ′

the derivatives of ρ and ϑ with respect to the parameter s, (4) can be rewritten as{
ρ′ = (−α cos 2ϑ+ µ sin 2ϑ),
ϑ′ = 1

ρ(α sin 2ϑ+ µ cos 2ϑ+ η).

Let w = α sin 2ϑ + µ cos 2ϑ + η and notice that 2a > w > a/2 in a left-neighborhood of
s(t1). Therefore,

(ρ2w)′ = 2ρ(−α cos 2ϑ+ µ sin 2ϑ)w + ρ2(α′ sin 2ϑ+ µ′ cos 2ϑ+ η′)
+ ρ2(α cos 2ϑ− µ sin 2ϑ)2ϑ′

= ρ2w
α′ sin 2ϑ+ µ′ cos 2ϑ+ η′

w
≥ −Mρ2w,

for some constant M > 0. This implies at once that t 7→ eMtρ2(t)w(t) is increasing, and
hence that it is impossible for ρ2w to tend to zero as s → s(t1). This contradicts the
assumption that ρ(t)→ 0 as t→ t1, completing the proof of the statement. �
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5. Dynamics of abnormal extremals in a special case: proof of
Proposition 3

In this section we prove Proposition 3. We present it here to illustrate in a simpler
context the general procedure used later to complete the proof of Theorem 1.

Assume that D is generated by two vector fields X1, X2 such that the Lie algebra
Lie{X1, X2} is nilpotent of step at most 4. This means that all Lie brackets of X1, X2 of
length 5 vanish. In particular dimM ≤ 8.

Proof of Proposition 3. Without loss of generality, we assume that the step is equal to 4.
Recall that for an abnormal minimizer on an interval I we have

h1 ≡ h2 ≡ h12 ≡ 0, 0 = ḣ12 = u1h112 + u2h212 a.e. on I.

The vector h = (−h212, h112) satisfies the differential equation

(6) ḣ = Au, A =
(
−h2112 −h2212
h1112 h2112

)
, a.e. on I.

Notice that A is a constant matrix (with zero trace), as follows from (2) and the nilpotency
assumption.

As we have already seen in the general case, on every interval where h(t) 6= 0 we have
that u is smooth and equal to either h(t)

|h(t)| or − h(t)
|h(t)| .

We are then reduced to the case where h vanishes at some point t̄ ∈ I. In this case the
matrix A cannot be zero, as it follows from Lemma 11.

We consider the following alternative:
(a) h(t) = 0 for all t ∈ I;
(b) h does not vanishes identically on I.

Case (a). From (6) it follows that u(t) is in the kernel of A for a.e. t ∈ I. Since u is
nonzero for a.e. t ∈ I, then necessarily A has one-dimensional kernel kerA = span{ū},
where ū has norm one. Then u(t) = σ(t)ū for a.e. t ∈ I, with σ(t) ∈ {−1, 1} and

γ̇(t) = σ(t)Xū(γ(t)), a.e. t ∈ I,
with Xū a constant vector field. Since γ is a length-minimizer then σ is constant, and u
is smooth, thanks to Lemma 22 in the appendix.
Case (b). Consider a maximal interval J = (t0, t1) on which h is never vanishing. Since
J ( I, then either h(t0) = 0 or h(t1) = 0.

The trajectories of (4) are time reparametrizations of those of the linear system ż = Az.
Hence h stays in the stable or in the unstable manifold of A. Recall that detA ≤ 0 by
Proposition 12 and notice that if detA = 0 then A is conjugate to the nilpotent matrix
( 0 1

0 0 ). Hence stable and unstable manifolds reduce to zero. We deduce that detA < 0.
Denote by λ± the eigenvalues of A and by v± the corresponding unit eigenvectors. Since

h belongs to the stable (respectively, unstable) manifold of A then h(t)
|h(t)| is constantly equal

to v− or −v− on J (respectively, v+ or −v+). Fix t∗ ∈ J . Then integrating (6) we get
h(t) = h(t∗)± (t− t∗)λ−v−, t ∈ J,

or
h(t) = h(t∗)± (t− t∗)λ+v+, t ∈ J.

If h(t1) = 0, then limt↓t0 h(t) 6= 0 and J = I ∩ (−∞, t1). Similarly, if h(t0) = 0 then
limt↑t1 h(t) 6= 0 and J = I ∩ (t0,+∞).

If there exist two distinct maximal intervals of I on which h is never vanishing, then
necessarily there exist τ1 ≤ τ2 in I such that these maximal intervals are of the form
J1 = I ∩ (−∞, τ1) and J2 = I ∩ (τ2,+∞). Notice that h vanishes on [τ1, τ2].

If τ1 < τ2, we can apply case (a) on the interval (τ1, τ2), which leads to a contradiction
since A should have nontrivial kernel. We are thus left to consider the case where τ1 =
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τ2 = t̄, that is, when h(t) 6= 0 for t ∈ I \ {t̄}. In this case u is piecewise constant on I \ {t̄}
and satisfies

lim
t↓t̄

u(t) ∈ {v−,−v−, v+,−v+}, lim
t↑t̄

u(t) ∈ {v−,−v−, v+,−v+}.

Theorem 4 and the length-minimizing assumption on γ imply that the two limits must be
equal. Hence, u is constant on I, and in particular it is smooth. �

Remark 13. The technical ingredients of the above proof open the way to an alternative
approach to the Sard conjecture for minimizers [Agr14] which is known in the free case
[LDMO+16]. Indeed, assume that the hypotheses of Proposition 3 hold true and fix a
point x ∈ M . We have proved that given any initial covector in (D2

x)⊥ there exist at
most four length minimizing curves whose extremal lift starts with this covector. Hence,
such curves are parametrized by at most n − 3 parameters. By taking into account the
time parametrization, the set of final points of abnormal minimizers starting from x has
codimension at most 2.

For recent results on the Sard conjecture for rank 2 structures in 3-dimensional mani-
folds, see [BdSRar], which extends the analysis in [ZZ95].

6. Dynamics of abnormal extremals: the general case

The goal of this section is to prove the following result.
Proposition 14. Let (t0, t1) be a maximal interval on which h 6= 0. Assume that t1 < T
and A(t1) 6= 0. Then u(t) has a limit as t ↑ t1, which is an eigenvector of A(t1).

We split the analysis in two steps. The first one, which is a rather straightforward
adaptation of the proof of Proposition 3, corresponds to the case where detA(t1) < 0. We
will then turn to the case where detA(t1) = 0 (recall that, according to Proposition 12,
detA(t1) cannot be positive).

For this purpose, we start by proving a preliminary result.

6.1. A time-rescaling lemma. The result below highlights the fact that equation (4) is
“almost invariant” with respect to similarity of A.
Lemma 15. For P ∈ GL(2,R) and t∗ ∈ (t0, t1), we consider the time reparameterization
given by

ϕ : [t∗, t1) 3 t 7→ s :=
∫ t

t∗

dτ

|h(τ)| .

Let h = P−1h ◦ ϕ−1 and A = P−1(A ◦ ϕ−1)P . Then,
(i) ϕ(t)→ +∞ as t→ t1;
(ii) for any p ∈ [1,+∞] we have h ∈ Lp((0,+∞),R2);
(iii) for every s ∈ (0,+∞) we have

(7) h′(s) = A(s)h(s).
Proof. We start by proving point (iii). Observe that ϕ̇ = 1/|h|. Then, simple computations
yield

h′ = P−1ḣ ◦ ϕ−1

ϕ̇ ◦ ϕ−1 = Ah.

Assume now that limt→t1 ϕ(t) = s∗ < +∞. Then, since h(s∗) = h(t1) = 0, we have that
h is the solution to the (backward) Cauchy problem{

h′ = Ah on (0, s∗),
h(s∗) = 0.

This implies that h ≡ 0 on (0, s∗) and thus h ≡ 0 on (t∗, t1), which contradicts the
definition of the interval (t0, t1).
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To complete the proof of the statement, observe that t 7→ h(t) is bounded on [t∗, t1] and
thus belongs to L∞((t∗, t1),R2). Then, for every p ≥ 1,∫ +∞

0
|h(s)|p ds =

∫ t1

t∗
|P−1h|p|h|−1 dt ≤ ‖P−1‖p

∫ t1

t∗
|h|p−1 dt

≤ ‖P−1‖p‖h‖p−1
L∞ (t1 − t∗) < +∞. �

6.2. Proof of Proposition 14 in the case detA(t1) < 0. Since trace(A) = 0 and
detA(t1) < 0, there exists P ∈ GL(2,R) such that

PA(t1)P−1 =
(
−a 0
0 a

)
, a > 0.

Up to applying the change of coordinates associated with P and defining the time-rescaled
curves h and A as in Lemma 15, we have

(8) A(s) =
(
−α(s) β(s)
ζ(s) α(s)

)
,

where
(9) lim

s→∞
α(s) = a, lim

s→∞
ζ(s) = lim

s→∞
β(s) = 0.

Let h = ρeiϑ for ρ > 0 and ϑ ∈ [0, 2π). We will prove that ϑ(s)→ 0 mod π as s→∞.
Observe that, letting h = (x1, x2) with x1, x2 ∈ R, we have

(10) 1
2 tan 2ϑ = sinϑ cosϑ

cos2 ϑ− sin2 ϑ
= x1x2
x2

1 − x2
2
.

By (7) and simple computations we obtain

(x1x2)′ = ζx2
1 + βx2

2,
(x2

1 − x2
2)′

2 = −α(x2
1 + x2

2) + (β − ζ)x1x2.(11)

Upon integration and exploiting (9), we get

(12) x1x2 = o(R), x2
1 − x2

2 = 2aR(1 + o(1)), where R(s) :=
∫ +∞

s
|h(σ)|2 dσ.

Observe that, by Lemma 15, h ∈ L2((0,+∞),R2) and, in particular, R → 0 as s → +∞.
Finally, substituting the above in (10) shows that tan 2ϑ→ 0. From the second equation
in (12), the sign of x2

1 − x2
2 is positive as t ↑ t1, which implies that ϑ → 0 mod π. This

completes the proof of Proposition 14 in the case detA(t1) < 0.

Remark 16. Recall that in the analysis above we suppose that u = h
|h| , and we actually

prove that in this case u(t) converges to a unit eigenvector of A(t1) associated with the
negative eigenvalue −a. In the case where u = − h

|h| , an analogous argument yields that
u(t) converges to a unit eigenvector of A(t1) associated with the positive eigenvalue a.

6.3. Proof of Proposition 14 in the case detA(t1) = 0. Assume that detA(t1) = 0
and recall that traceA(t1) = 0. Since, moreover, A(t1) 6= 0, there exists P ∈ GL(2,R)
such that

(13) PA(t1)P−1 =
(

0 1
0 0

)
.

As before, using the change of variables of Lemma 15, we let

A(s) =
(
−α(s) β(s)
ζ(s) α(s)

)
,

where α, β, ζ are linear combinations of h2112 ◦ϕ−1, h2212 ◦ϕ−1, and h1112 ◦ϕ−1, and hence
absolutely continuous with bounded derivatives on (0,+∞), according to (2). Equal-
ity (13) implies that α→ 0, β → 1, and ζ → 0 as s→ +∞.
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We also introduce µ := ζ + β and we notice that µ→ 1 as s→ +∞. (Beware that the
same letters are used for different parameters in the proof of Proposition 12.) Then, (7)
reads

ρ′

ρ
= µ sinϑ cosϑ− α cos 2ϑ, ϑ′ = −µ sin2 ϑ+ α sin 2ϑ+ ζ,

and can be written as

(14) ρ′

ρ
= sinϑ cosϑ+ f, ϑ′ = − sin2 ϑ+ g,

where the functions
f = −α cos 2ϑ+ (µ− 1) sinϑ cosϑ, g = α sin 2ϑ+ ζ + (1− µ) sin2 ϑ,

tend to zero as s→ +∞.
Establishing Proposition 14, finally amounts to proving that ϑ→ 0 mod π, as s→ +∞.

Lemma 17. We have the following dichotomy:
(i) ϑ→ 0 mod π, as s→ +∞;
(ii) ϑ→ −∞ as s→ +∞. Moreover, in this case, for any 0 < ε < π/2 there exists an

increasing sequence of positive real numbers (sn)n∈N tending to infinity such that
ϑ(s2n) = π − ε mod 2π, ϑ(s2n+1) = ε mod 2π,

ϑ′(s) < 0 ∀s ∈ [s2n, s2n+1].

Figure 1. The sequence (sn)n∈N in Lemma 17

Proof. Notice that the dynamics of ϑ is a perturbation via g of
ϑ′ = − sin2 ϑ.

The phase portrait of the latter on S1 is made of two equilibria in 0 and π joined by two
clock-wise oriented heteroclinic trajectories.

Assume that (i) does not hold. Therefore, there exists c > 0 such that
(15) lim sup

s→+∞
| sinϑ(s)| > c.

Let ε > 0 be such that sin ε ∈ (0, c) and s∗ > 0 be such that, for s > s∗, ϑ′(s) < −ε2/2 as
soon as | sinϑ(s)| > ε.

Pick q1 > s∗ such that | sinϑ(q1)| > c > sin ε. Since ϑ′ is bounded from zero as long
as | sinϑ| stays larger than sin ε, there exists r1 > q1 such that | sinϑ(r1)| = sin ε. By
definition of c, there exists q2 > r1 such that | sinϑ(q2)| > c. Moreover, q1 and q2 can be
taken so that ϑ(q2) = ϑ(q1)− π and (15) holds with c arbitrarily close to 1. By iterating
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the procedure leading from q1 to q2, we prove that ϑ→ −∞. The construction also shows
how to define the sequence (sn)n∈N as in (ii) (cf. Figure 1). �

The rest of the argument consists in showing that case (ii) in Lemma 17 cannot hold
true. For that purpose, we argue by contradiction.

Lemma 18. Assume that property (ii) in Lemma 17 holds true. Then there exists 0 <
ε0 < π/2 such that for any 0 < ε < ε0 there exists Nε for which, given any n ≥ Nε,

(16) 2
ε

(
1− ε2

)
≤ s2n+1 − s2n ≤

2
ε

(
1 + ε2

)
,

and

(17) (1− ε)ερ(s2n) ≤ ρ(s) sinϑ(s) ≤ (1 + ε)ερ(s2n), for s ∈ [s2n, s2n+1].

As a consequence, for every n ≥ Nε, one has the following estimates

2(1− 2ε)ρ(s2n) ≤
∫ s2n+1

s2n
sinϑ(s)ρ(s) ds ≤ 2(1 + 2ε)ρ(s2n),(18)

(1− 2ε)ρ(s2n)
ε
≤
∫ s2n+1

s2n
ρ(s) ds ≤ (1 + 2ε)ρ(s2n)

ε
,(19) ∣∣∣ ∫ s2n+1

s2n
cosϑ(s)ρ(s) ds

∣∣∣ ≤ ρ(s2n).(20)

Proof. Set Mf (s) = supτ≥s |f(τ)| and Mg(s) = supτ≥s |g(τ)|. Observe that these two
functions tend to zero as s tends to infinity.

By Lemma 17, for n large enough and s ∈ [s2n, s2n+1], equation (14) becomes

(21) (cotϑ)′ = 1− g

sin2 ϑ
.

For n large enough, for every s ∈ [s2n, s2n+1] we have∣∣∣∣ g(s)
sin2 ϑ(s)

∣∣∣∣ ≤ Mg(s2n)
sin2 ε

≤ ε2

2 .

Equation (16) follows by integrating (21) on the interval [s2n, s2n+1].
On the interval [s2n, s2n+1], one has

ρ′(s)
ρ(s) + ϑ′(s) cosϑ(s)

sinϑ(s) = f(s) + cosϑ(s)g(s)
sinϑ(s) .

For n large enough, for every s ∈ [s2n, s2n+1] we have

(22) |f(s)|+
∣∣∣∣cosϑ(s)g(s)

sinϑ(s)

∣∣∣∣ ≤Mf (s2n) + Mg(s2n)
sin ε ≤ ε2

4 .

By integrating between s2n and any s ∈ [s2n, s2n+1], one gets∣∣∣∣ln(ρ(s) sinϑ(s)
ρ(s2n) sin ε

)∣∣∣∣ =
∣∣∣∣∫ s

s2n

(
f(s) + cosϑ(s)g(s)

sinϑ(s)

)
ds

∣∣∣∣ ≤ (s2n+1 − s2n)ε2

4 ≤ ε

2(1 + ε2),

yielding (17) for ε small enough.
We now turn to the proof of the three estimates (18)–(20). The first one simply follows

by integrating (17) on [s2n, s2n+1] and using (16). Estimate (19) is obtained by first
dividing (17) by sinϑ(s) and then integrating the resulting inequalities on [s2n, s2n+1].
One gets that

(1− ε)ερ(s2n)
∫ s2n+1

s2n

ds

sinϑ(s) ≤
∫ s2n+1

s2n
ρ(s) ds ≤ (1 + ε)ερ(s2n)

∫ s2n+1

s2n

ds

sinϑ(s) .



14 D. BARILARI, Y. CHITOUR, F. JEAN, D. PRANDI, AND M. SIGALOTTI

On the other hand, the following holds true,∫ s2n+1

s2n

ds

sinϑ(s) =
∫ s2n+1

s2n

ϑ′(s)
− sin3 ϑ(s)

(
1− g(s)

sin2 ϑ(s)
) ds,

which implies that

(1− ε2)
∫ π−ε

ε

dϑ

sin3 ϑ
≤
∫ s2n+1

s2n

ds

sinϑ(s) ≤ (1 + ε2)
∫ π−ε

ε

dϑ

sin3 ϑ
.

A direct computation shows that
∫ π−ε
ε

dϑ
sin3 ϑ

= 1
ε2(1+o(ε)) as ε tends to zero. One finally

deduces estimate (19).
To derive estimate (20), one notices that∫ s2n+1

s2n
cosϑ(s)ρ(s) ds =

∫ s2n+1

s2n

sinϑ(s) cosϑ(s)ρ(s)
sinϑ(s) ds

=
∫ s2n+1

s2n

ρ′(s)− f(s)ρ(s)
sinϑ(s) ds

= −
∫ s2n+1

s2n

f(s)ρ(s)
sinϑ(s) ds+ ρ(s2n+1)− ρ(s2n)

sin ε

+
∫ s2n+1

s2n

ρ(s) cosϑ(s)ϑ′(s)
sin2 ϑ(s)

ds.

By using the expression of ϑ′ in the last integral, one deduces that

2
∫ s2n+1

s2n
cosϑ(s)ρ(s) ds = ρ(s2n+1)− ρ(s2n)

sin ε −
∫ s2n+1

s2n
ρ(s)

f(s)− cosϑ(s)g(s)
sinϑ(s)

sinϑ(s) ds.

By using (17) for s = s2n and s = s2n+1 and then (22), one deduces (20). �

Fix a sequence (εk)k∈N, strictly decreasing to 0. For each k ∈ N, we use (sk,n)n∈N to
denote the sequence (sn)n∈N given by Lemma 17 and corresponding to ε = εk. For all
k ∈ N let nk ≥ Nεk be an integer to be fixed later, where Nεk is as in Lemma 18. We use
(ξ`)`∈N to denote the sequence defined by

ξ2k = sk,2nk , ξ2k+1 = sk,2nk+1, ∀k ∈ N.

We choose k 7→ nk so that the sequence (ξ`)`∈N is strictly increasing and tends to infinity
as `→ +∞.

Let t` = ϕ−1(ξ`), where ϕ is the change of variables introduced in Lemma 15. For every
` ≥ 0 consider the function u` ∈ L∞([0, 1],S1) defined by u`(τ) = u(t2`+τ(t2`+1−t2`)). By
the weak-? compactness of all bounded subsets of L∞([0, 1],R2), we can assume without
loss of generality that u` ⇀ u? in the weak-? topology. Applying Lemma 8 with a` = t2`
and b` = t2`+1, we deduce that u? is minimizing and |u?| ≡ 1 almost everywhere in [0, 1].

For every subinterval [a, b] of [0, 1], by the properties of weak-? convergence, we have
that ∫ b

a
vTu`(τ) dτ →

∫ b

a
vTu?(τ) dτ, ∀ v ∈ R2.

Moreover, one has∫ b

a
vTu`(τ) dτ = 1

t2`+1 − t2`

∫ (1−b)t2`+bt2`+1

(1−a)t2`+at2`+1

vTh

|h|
dt

= 1
t2`+1 − t2`

∫ ϕ((1−b)t2`+bt2`+1)

ϕ((1−a)t2`+at2`+1)
vTPh(s) ds,(23)

where P has been introduced in (13).
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In addition

(24) t2`+1 − t2` =
∫ ξ2`+1

ξ2`
|Ph(s)| ds.

Lemma 19. Under the above assumptions, there exists a unit vector v? ∈ R2 such that
u?(t) = v? for a.e. t ∈ [0, 1]. Moreover, v? is parallel to P (1, 0).

Proof. Let v?, w? ∈ R2 be two orthogonal unit vectors such that v? is parallel to P (1, 0).
Notice that P Tw? is orthogonal to (1, 0), that is, it is parallel to (0, 1). We start by showing
that wT? u?(t) = 0 for a.e. t ∈ [0, 1]. This amounts to showing that for all 0 ≤ a < b ≤ 1 it
holds

1
t2`+1 − t2`

∫ ϕ((1−b)t2`+bt2`+1)

ϕ((1−a)t2`+at2`+1)
h2(s) ds→ 0 as `→ +∞.

Since h2 = ρ sinϑ is positive on [ξ2`, ξ2`+1] by construction, using (24) it is enough to show
that ∫ ξ2`+1

ξ2`
ρ(s) sinϑ(s) ds∫ ξ2`+1

ξ2`
|Ph(s)| ds

−→ 0 as `→ +∞.

Since |Ph(s)| ≥ ‖P−1‖−1ρ(s) for all s, the latter limit holds true according to (18) and
(19) in Lemma 18, applied to ε = ε` for ` ≥ 0.

Recall that the control u? is minimizing and |u?(t)| = 1 for a.e. t ∈ [0, 1]. From what
precedes, one deduces that u? is almost everywhere perpendicular to w?, hence equal to
v? or −v?. It then follows from Lemma 22 in the appendix that, up to replacing v? by
−v?, the equality u?(t) = v? holds for a.e. t ∈ [0, 1]. �

Let v̄ ∈ R2 be such that P T v̄ = (1, 0). We have, according to Lemma 19,

lim
`→∞

∫ 1

0
v̄Tu`(τ) dτ =

∫ 1

0
v̄Tu?(τ) dτ = v̄T v? 6= 0.

We conclude the proof by contradiction by showing that the limit in the left-hand side is
zero. Indeed, according to (23), we have∣∣∣∣∫ 1

0
v̄Tu`(τ) dτ

∣∣∣∣ =

∣∣∣∫ ξ2`+1
ξ2`

ρ(s) cosϑ(s) ds
∣∣∣∫ ξ2`+1

ξ2`
|Ph(s)| ds

≤ ‖P−1‖

∣∣∣∫ ξ2`+1
ξ2`

ρ(s) cosϑ(s) ds
∣∣∣∫ ξ2`+1

ξ2`
ρ(s) ds

.

The right-hand side of the above equation tends to zero thanks to (19) and (20) in
Lemma 18 applied to ε = ε` for ` ≥ 0.

We have therefore proved that (ii) in Lemma 17 cannot hold true, which completes the
proof of Proposition 14.

7. Proof of Theorem 1

Let M be as in the statement of Theorem 1. Denote, as in the previous sections,
by γ : [0, T ] → M a length-minimizing trajectory parametrized by arclength and by
λ : [0, T ]→ T ∗M an abnormal extremal lift of γ.

Proposition 14, together with Theorem 4, proves the C1 regularity of γ provided that
h vanishes only at isolated points.

We consider in this section the case where t0 ∈ (0, T ) is a density point of {t ∈ [0, T ] |
h(t) = 0}. We want to prove that u(t) (up to modification on a set of measure zero) has
a limit as t ↑ t0 and as t ↓ t0. By symmetry, we restrict our attention to the existence of
the limit of u(t) as t ↑ t0.

We are going to consider separately the situations where h ≡ 0 on a left neighborhood
of t0 and where there exists a sequence of maximal open intervals (tn0 , tn1 ) with h|(tn0 ,tn1 ) 6= 0
and such that tn1 → t0.
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Assume for now on that h ≡ 0 on a left neighborhood (t0 − η, t0] of t0. Then, since
ḣ = Au almost everywhere on (t0− η, t0], we have that u(t) belongs to kerA(t) for almost
every t in (t0 − η, t0]. By Lemma 11, moreover, kerA(t) is one-dimensional for every
t ∈ (t0 − η, t0].

Fix an open neighborhood V0 of λ(t0) in T ∗M such that there exists a smooth map
V0 3 λ 7→ v(λ) ∈ S1 such that v(λ(t)) ∈ kerA(t) if λ(t) ∈ V0 and t ∈ (t0 − η, t0]. Up to
reducing η, we assume that λ(t) ∈ V0 for every t ∈ (t0 − η, t0]. Notice that λ|(t0−η,t0] is a
solution of the time-varying system

λ̇ = σ(t) ~Xv(λ)(λ),

where σ : (t0 − η, t0] → {−1, 1} is measurable. Hence, by length-minimality of γ and by
Lemma 22 in the appendix, either u = v almost everywhere on (t0 − η, t0] or u = −v
almost everywhere on (t0− η, t0]. We conclude that u is continuous on (t0− η, t0] and the
proof in this case in concluded.

We are left to consider the case where every left neighborhood of t0 contains a maximal
interval (τ0, τ1) such that h 6= 0 on (τ0, τ1).

Notice that, by Proposition 12 and by continuity of t 7→ A(t), we have that detA(t0) ≤ 0.
The case detA(t0) < 0 can be ruled out thanks to the following lemma.

Lemma 20. Let detA(t0) < 0. There exists η ∈ (0, t0) such that, for any maximal interval
(τ0, τ1) ⊂ (0, t0) on which h(t) 6= 0, then τ0 < t0 − η.

Proof. As we have already seen in Section 4.1, on every interval where h(t) 6= 0 we have
that u is smooth and equal to either h(t)

|h(t)| or − h(t)
|h(t)| . Thus the function h on (τ0, τ1) is

either a maximal solution to ẋ = A(t) x
|x| or a maximal solution to ẋ = −A(t) x

|x| . Let us
assume that it is a maximal solution of ẋ = A(t) x

|x| , the proof being identical in the second
case.

For every v ∈ R2 \ {0} and every ϑ > 0 denote by Cϑ(v) the cone of all vectors in
R2 \ {0} making an (unoriented) angle smaller than ϑ with v or −v.

Let η0 ∈ (0, t0) be such that det(A(t)) < 0 for every t ∈ [t0− η0, t0]. For t ∈ [t0− η0, t0],
denote by v−(t) and v+(t) two unit eigenvectors of A(t), the first corresponding to a
negative and the second to a positive eigenvalue.

Let η ∈ (0, η0) and ϑ0 > 0 be such that Cϑ0(v+(t0)) ∩ Cϑ0(v−(t0)) = ∅ and v±(t) ∈
Cϑ0(v±(t0)) for every t ∈ [t0− η, t0]. Notice that, for every fixed t̄ ∈ [t0− η, t0], the vector
field x 7→ A(t̄)x points inward Cϑ0(v+(t0)) at every nonzero point of its boundary (see
Figure 2). Hence Cϑ0(v+(t0)) is positively invariant for the dynamics of ẋ = A(t) x

|x| on
[t0 − η, t0].

In order to prove the statement, we argue by contradiction. Assume that h : (τ0, τ1)→
R2 \ {0} is a maximal solution of ẋ = A(t) x

|x| with (τ0, τ1) ⊂ (t0 − η, t0). Then h(τ) tends
to 0 as τ tends to τ0 or τ1 and it follows from Proposition 14 that h(τ)

|h(τ)| converges to an
eigenvector of A(τ0) as τ ↓ τ0 and to an eigenvector of A(τ1) as τ ↑ τ1. More precisely,
from Remark 16 there holds

lim
τ↓τ0

h(τ)
|h(τ)| → ±v+(τ0), lim

τ↑τ1

h(τ)
|h(τ)| → ±v−(τ1).

This contradicts the positive invariance of Cϑ0(v+(t0)) for the equation ẋ = A(t) x
|x| on

(τ0, τ1). �

In the case detA(t0) = 0 the proof follows the steps of the construction of Section 6.3.
In particular, let P ∈ GL(2,R) be such that

P−1A(t)P =
(
−a(t) b(t)
c(t) a(t)

)
,
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Figure 2. Phase portrait of ẋ = A(t̄)x for t̄ ∈ [t0 − η, t0]

where a, b, c are affine combinations of h2112, h2212, and h1112 with a → 0, b → 1, and
c→ 0 as t→ t0. Let
(25) P−1h(t) = r(t)eiω(t),

with ω(t) uniquely defined modulus 2π only when h(t) 6= 0.
The crucial point is the following counterpart to Lemma 17, whose proof can be obtained

using exactly the same arguments.

Lemma 21. We have the following dichotomy:
(i) for any 0 < ε < π/2, for η small enough, | sin(ω(t))| < ε for all t ∈ (t0 − η, t0)

such that h(t) 6= 0;
(ii) for any 0 < ε < π/2 there exists an increasing sequence (tn)n∈N in (0, t0) tending

to t0 and such that
ω(t2n) = π − ε mod 2π, ω(t2n+1) = ε mod 2π,
h(t) 6= 0, sin(ω(t)) > 0, ω̇(t) < 0 ∀t ∈ [t2n, t2n+1]

or
ω(t2n) = −ε mod 2π, ω(t2n+1) = ε− π mod 2π,
h(t) 6= 0, sin(ω(t)) < 0, ω̇(t) < 0 ∀t ∈ [t2n, t2n+1]

holds true.

Case (ii) can be excluded by similar computations as in Section 6.3, since it contradicts
the optimality of γ.

Consider now case (i). Let v?, w? ∈ R2 be two orthogonal unit vectors such that v? is
parallel to P (1, 0). According to (25), if sin(ω(t)) = 0 and r(t) 6= 0, then u(t) = h(t)/|h(t)|
is equal to v? or −v?. For every η ∈ (0, t0) we set

I+
η = {t ∈ (t0 − η, t0) | vT? u(t) > 0}, I−η = {t ∈ (t0 − η, t0) | vT? u(t) < 0}.

Property (i) implies that, for η small, I+
η ∪ I−η contains {t ∈ (t0 − η, t0) | h(t) 6= 0}.

Moreover, if t0 is a density point for I = I+
η ∩ {t ∈ (t0 − η, t0) | h(t) 6= 0} (respectively,
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I = I−η ∩ {t ∈ (t0 − η, t0) | h(t) 6= 0}), then,

lim
t∈I,t→t0

u(t) = v? (respectively, lim
t∈I,t→t0

u(t) = −v?).

Let Φη = {t ∈ (t0−η, t0) | h(t) = 0}. For almost every t ∈ Φη, u(t) is in the kernel ofA(t)
and |u(t)| = 1. Notice that, if t0 is a density point for J = {t ∈ (0, t0) | kerA(t) 6= (0)},
then the kernel of A(t) converges to the kernel of A(t0) as t ∈ J, t→ t0. By construction
of P , moreover, ker(A(t0)) = span(P (1, 0)) = span(v?). Hence, for η small enough, almost
every t ∈ Φη is in I+

η ∪ I−η .
To summarize, for η small enough, I+

η ∪ I−η has full measure in (t0 − η, t0). Moreover,

(26) lim
t∈I+

η , t→t0
u(t) = v?, lim

t∈I−η , t→t0
u(t) = −v?.

We next prove that u converges either to v? or to −v? as t → t0 by showing that, for η
small enough, either I+

η or I−η has measure zero.
Suppose by contradiction that there exists a sequence of intervals (τn0 , τn1 ) in (0, t0) such

that τn0 , τn1 → t0 as n→∞ and both |(τn0 , τn1 )∩ I+| and |(τn0 , τn1 )∩ I−| are positive, where
| · | denotes the Lebesgue measure and I± = {t ∈ (0, t0) | ±vT? u(t) > 0}. Moreover, up to
restricting (τn0 , τn1 ), we can assume that

(27) |(τn0 , τn1 ) ∩ I+| = |(τn0 , τn1 ) ∩ I−| > 0.

This can be seen, for instance, by considering a continuous deformation of an interval
around a Lebesgue point of (τn0 , τn1 ) ∩ I+ towards an interval around a Lebesgue point of
(τn0 , τn1 ) ∩ I−.

For every n ∈ N, let un ∈ L∞([0, 1],R2) be defined by un(τ) = u(τn0 + τ(τn1 − τn0 )). Up
to extracting a subsequence, un weakly-? converges to some u?. Condition (27) and the
limits in (26) imply that

(28)
∫ 1

0
u?(t)dt = 0.

Thanks to (26) we also have that wT? un L∞-converges to zero as n→∞. In particular,
wT? u? ≡ 0. By Lemma 8, u? is optimal and vT? u? has values in {−1, 1}. Hence, by
Lemma 22 in the appendix, vT? u? is constantly equal to +1 or −1. This contradicts (28)
and the proof is concluded. �

Appendix A. An elementary lemma

Lemma 22. Let (M,D, g) be a sub-Riemannian manifold. Let V be a Lipschitz continuous
vector field on T ∗M such that π∗V (λ) ∈ Dπ(λ) \ {0} for every λ ∈ T ∗M . Let λ : [0, T ]→
T ∗M satisfy λ̇(t) = σ(t)V (λ(t)) with σ ∈ L∞([0, T ], [−1, 1]). Assume that γ = π ◦ λ :
[0, T ] → M is a length-minimizer. Then σ has constant sign, i.e., either σ ≥ 0 a.e. on
[0, T ] or σ ≤ 0 a.e. on [0, T ].

Proof. Set κ =
∫ T

0 σ(t)dt and notice that λ(T ) = eκV (λ(0)). If σ does not have constant
sign, then [0, 1] 3 t 7→ π ◦ etκV (λ(0)) is a curve connecting γ(0) to γ(T ) and having length
smaller than γ. �

A particular case of the lemma occurs when V = ~H is the Hamiltonian vector field on
T ∗M associated with the Hamiltonian λ 7→ 〈λ,X(π(λ))〉, where X is a smooth horizontal
never-vanishing vector field on M . This means that if a solution of γ̇(t) = σ(t)X(γ(t)) is
a length-minimizer then σ has constant sign.
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[Agr14] A. A. Agrachev. Some open problems. In Geometric control theory and sub-Riemannian ge-
ometry, volume 5 of Springer INdAM Ser., pages 1–13. Springer, Cham, 2014.
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[CJT06] Y. Chitour, F. Jean, and E. Trélat. Genericity results for singular curves. J. Differential
Geom., 73(1):45–73, 2006.

[HL16] E. Hakavuori and E. Le Donne. Non-minimality of corners in subriemannian geometry. Invent.
Math., pages 1–12, 2016.

[HL18] E. Hakavuori and E. Le Donne. Blowups and blowdowns of geodesics in Carnot groups. ArXiv
e-prints, June 2018.

[Jea14] F. Jean. Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Plan-
ning. Springer International Publishing, SpringerBriefs in Mathematics, 2014.

[LDLMV13] E. Le Donne, G. P. Leonardi, R. Monti, and D. Vittone. Extremal curves in nilpotent Lie
groups. Geom. Funct. Anal., 23(4):1371–1401, 2013.

[LDMO+16] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu, and D. Vittone. Sard property for the end-
point map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(6):1639–
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