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ABSTRACT: A thermodynamic study of the vapor−liquid equilibrium for the ternary
system ethyl lactate−ethanol−water was performed at 101.3 kPa and infinite dilution
regarding ethyl lactate, for boiling temperatures ranging from (352.3 to 370.0) K. The
experimental measurements were carried out with a recirculation still and the equilibrium
compositions of ethyl lactate were determined by gas chromatography. The volatility of
ethyl lactate decreases when the ethanol content in the liquid phase is increased. The
investigated system was correctly correlated by the NRTL and UNIQUAC models, with an
average absolute relative deviation below 10%. The comparison with the results obtained
from interaction parameters fitted to experimental data of the binary systems ethyl lactate−
ethanol and ethyl lactate−water at 101.3 kPa, proves that the parameters calculated in this
work give a better description of the ethyl lactate volatility, a key parameter in distillation,
at low concentrations. These latter parameters are therefore recommended for process
simulation and optimization in alcoholic beverages production.

■ INTRODUCTION

Process simulation is a powerful tool to design, analyze, and
optimize chemical and biochemical processes. For the correct
simulation of separation units, there are two factors of crucial
importance: (1) a reliable and accurate knowledge of the phase
equilibria, and (2) a suitable choice of thermodynamic models to
correctly describe the volumetric behavior of the involved
phases.1−7

In alcoholic distillation, some simulation studies have been
performed over the last 50 years with the aim of identifying and
predicting the influence of operating parameters on process
variables such as product quality and efficiency.6,7 These
researches have been focused on continuous processes for the
production of whisky,8 neutral alcohol,6,7,9 bioethanol,10−12

cachaca̧,13 and anhydrous fuel ethanol.14 In batch distillation,
simulation has been applied for the analysis of the recovery
process of ethanol produced from banana culture waste,15 as well
as the production of pisco,16,17 cachaca̧ in a lab-scale pot still,18,19

whisky,7 pear distillates,20 and bitter orange distillates.6 The
simulations were performed by either implementing mathemat-
ical models of mass and energy balances or using commercial
software as AspenPlus, Aspen Dynamics, BatchColumn,
ChemCAD, Pro/II, and ProSimPlus.

The common point among these studies is that the feedstock
was modeled as a simplified mixture of ethanol and water with
several minor volatile species, known as congeners or aroma
compounds. The number of aroma compounds considered
varies between 0 and 16 and the chemical families included are
acetals (acetal), alcohols (methanol, propan-1-ol, propan-2-ol, 2-
propen-1-ol, 2-methylpropan-1-ol, butan-1-ol, butan-2-ol, 2-
methylbutan-1-ol, 3-methylbutan-1-ol, pentan-1-ol, pentan-2-
ol, hexan-1-ol, 2-phenylethanol), carbonyl compounds (acetal-
dehyde, acetone), carboxylic acids (acetic acid, propionic acid,
octanoic acid), esters (methyl acetate, ethyl acetate, ethyl
hexanoate, ethyl decanoate), furanes (furfural), and terpenes
(pinene, limonene, linalool, linalool oxide). Carbon dioxide has
also been considered in some researches, in order to analyze its
influence on the product composition.7,10,11,14

In alcoholic beverages production, the understanding of aroma
compounds behavior in distillation is fundamental since they are
responsible for the product quality. Several hundred of aroma
compounds are mainly generated at low concentrations during
the fermentation step and a lower proportion during distillation
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and maturation.21−26 The simulation studies from the literature
have included some of the most representative species. However,
other important aroma compounds, such as ethyl lactate, have
never been analyzed.
Ethyl 2-hydroxypropanoate, commonly known as ethyl lactate,

is produced by the reaction of lactic acid, from malolactic
fermentation, with ethanol. This compound has been quantified
in wine and distilled beverages at very different concentration
levels. In wine from traces to 500 mg·L−1 and in distillates up to
400mg·L−1.27−29 Together with ethyl acetate, they constitute the
main esters found in distillates.30 From a sensory point of view,
ethyl lactate may act as a stabilizer of the distillate flavor as well as
a softener of the harsh flavor characteristics if it is present at low
concentrations. However, at higher concentration levels, caused
by lactic acid bacteria spoilage, this compound deteriorates the
organoleptic quality of distillates.28,30 In this case, process
simulation may represent a useful tool to predict and control the
concentration of this aroma compound to the desired levels.
As part of a confidential study carried out in our research group

about cognac distillation,31 the composition profiles of ethanol
and 23 aroma compounds, including ethyl lactate, were
simulated using the commercial software BatchColumn provided
by ProSim. The thermodynamic models chosen for the
representation of the vapor and liquid phases were respectively
the ideal gas equation and the predictive model UNIFAC
1993.32,33 According to Figure 1, in which simulation is
compared to validated experimental data from a distillation
campaign at atmospheric pressure,34 the temporal evolution of
ethyl lactate concentration in the distillate is not at all well
represented during the two series batch distillations of the
traditional process, known as Charentaise distillation. In the first
distillation, Figure 1a, the concentration is highly overestimated
and follows a strongly decreasing trend, against a rather constant
path of the experimental data. In the second one, Figure 1b, the
composition profile has a maximum in the middle of the
distillation period, whereas the experimental data follow an
increasing trend before the depletion of ethyl lactate in the boiler,
toward the end of the operation. From these experimental data,
one can conclude that ethyl lactate is mainly found in the tails
fraction (last cut of the second distillation), even if it is also
present in the core distillate fractions, and that its volatility is
therefore presumably low.
In this context, the knowledge of vapor−liquid equilibrium

data of this aroma compound and a better thermodynamic model
choice are indispensable to correctly describe and predict its

behavior in distillation. To our knowledge vapor−liquid
equilibrium data for ethyl lactate highly diluted in ethanol−
water mixtures at 101.3 kPa have not been reported in the
literature. Only binary equilibrium data have been generated: (1)
at isobaric conditions for the ethyl lactate (EL)−ethanol (Et)
system at 101.3 kPa35 and (2) isothermal conditions for the ethyl
lactate (EL)−ethanol (Et) system (at 313.15, 333.25, and 353.35
K) and for the ethyl lactate (EL)−water (W) system (at 313.15
K, 333.15 K).36 Isobaric equilibrium data for the ethyl lactate
(EL)−lactic acid (LA)−ethanol (Et)−water (W) quaternary
system at 101.3 kPa has also been reported.37 For the binary
measurements, the whole liquid composition range of ethyl
lactate was considered, xEL = (0 to 1) mole fraction, whereas for
the quaternary system, the interval is more reduced, xEL = (0.02
to 0.20) mole fraction. In both cases the number of experimental
data in the vicinity of xEL = 0 is very reduced. Concerning the
ternary mixture ethyl lactate−ethanol−water, only experimental
distillation data are available, including those presented in Figure
1 for cognac distillation34 and some composition profiles of ethyl
lactate concentration in the distillate as a function of the ethanol
volume fraction in armagnac distillation.38

The objective of this work is thus to generate experimental
vapor−liquid equilibrium data of ethyl lactate highly diluted over
a composition range of the ethanol−water solution correspond-
ing to a temperature interval from (352.3 to 370.0) K at 101.3
kPa. The equilibrium measurements are performed with a
recirculation Gillespie-like still,39 a device based on a dynamic
method recommended in the literature for measurements at
temperatures higher than 298.15 K. This procedure provides a
direct and simple way to determine the equilibrium behavior of
dilute mixtures, when coupled to an accurate quantitative analysis
of the liquid and condensed vapor composition40,41 and has been
used to estimate activity coefficients of methanol and ethanol
highly diluted in water40 as well as partition coefficients of aroma
compounds in hydroalcoholic mixtures.42,43 In both cases, the
results proved to be consistent with respect to distillation data
and model correlation.
The equilibrium data are then correlated with the NRTL and

UNIQUAC models in order to determine the interaction
parameters required in process simulators for the simulation of
the ethyl lactate composition profiles in both continuous and
discontinuous distillation of alcoholic beverages. These models
have been used to correlate with satisfactory results the
equilibrium data for ethanol−water system44 as well as some

Figure 1. Evolution of the ethyl lactate concentration (CEL) in the distillate at 20 °C over time (t) during the (a) first batch distillation and (b) second
batch distillation. (○) Experimental data from Cantagrel et al.34 (···) Simulation using UNIFAC 1993 and the ideal gas equation.



binary (aroma compound−ethanol and aroma compound
water)35,36,45,46 and multicomponent aroma systems.42,43,47

■ EXPERIMENTAL STUDY

Materials. The chemical compounds studied in this work are
listed in Table 1, which includes the suppliers and some of their
physicochemical properties. Deionized water was obtained using
a Milli-Q system (Millipore waters. Molsheim, France).
Concerning the total volatile compounds content, a supple-
mentary purity test for ethyl lactate and ethanol was performed
by gas chromatography with flame ionization detection (GC-
FID). No further purification of both compounds was needed
since their experimental purities were estimated to be higher than
99.8%.
The initial ternary mixtures for equilibrium measurements

were prepared by precisely weighing known quantities of the
three compounds. Because of the important quantity required for
each equilibrium measurement (85 mL per ternary mixture,
without considering the mixing flask mass), two weighing scales
were used: one for ethyl lactate with an accuracy of ±0.0001 g
and a maximum capacity of 100 g (Mettler AE240S weighing
scale. L.P. Pesage. Angervilliers, France), and another for ethanol

and water with an accuracy of±0.01 g and amaximum capacity of
1000 g (Sartorious A2612. L.P. Pesage. Angervilliers, France).
Seventeen solutions with initial ethanol mass fractions ranging

from zmEt = (6.2 × 10−2 to 9.1 × 10−1) (or in mole fractions zEt =
(2.5 × 10−2 to 8.0 × 10−1)) were independently brought into
equilibrium. The concentration of ethyl lactate was fixed in every
initial solution to xmEL = 1.0× 10−3, which corresponds to a mole
composition interval xEL = (1.4 × 10−4 to 3.5 × 10−4).

Measurements of Vapor−Liquid Equilibrium. Vapor−
liquid equilibrium measurements were carried out by using the
apparatus Labodest VLE 602 (i-Fischer Engineering GmbH.
Waldbüttelbrunn, Germany), an all-glass still of the Gillespie
type based on a dynamic method at adiabatic and isobaric
conditions, with recirculation of both liquid and vapor phases.
This equipment, Figure 2, has been previously used in our

laboratory to measure vapor−liquid equilibria data for other
aroma compounds.42,43 A detailed description has been already
reported.42,48,49 Some elements are recalled below.
Each ternary mixture (a charge of 85 mL) is heated and

partially evaporated in the boiler. The rising vapor, carrying fine
boiling droplets, goes through a contact path and arrives to a
chamber where phase separation takes place, owing to a
reduction of the flow velocity. Both phases, liquid and vapor

Table 1. Some Properties of the Compounds Studied in This Work

compound CAS
molecular
formula MM/g·mol−1 Tb/K

b supplier
supplier purity %

mass
experimental

purityc

(R,S)-ethyl 2-
hydroxypropanoatea

97-64-3 C5H10O3 118.31 427.65 Sigma-Aldrich
(Saint-Quentin Fallavier, France)

≥98.00% 99.81%

ethanol 64-17-5 C2H6O 46.07 351.44 Carlo Erba (Val de Reuil, France) ≥99.90% 99.98%
water 7732-18-5 H2O 18.01 373.15
aA racemic mixture of L- and D-enantiomers, thereafter designed as ethyl lactate. bRiddick et al.70 cThis experimental volatile purity was calculated as
the ratio between the surface area of the gas chromatographic peak associated to the chemical compound and the total area of all peaks detected.
MM is the molar mass and Tb the boiling point at 101.3 kPa.

Figure 2. (a) Schema of the Labodest VLE 602. Adapted from Dias et al.49 (b) Schema of the pressure control system. (1) Boiler, (2) Electrical
resistance, (3) Contact path, (4) Separation chamber, (5) Mixing chamber, (6) Pt100 liquid probe, (7) Pt100 vapor probe, (8) Liquid sample port, (9)
Vapor sample port, (10), Solenoid valves, (11) connection to the pressure control system, (12) control center, (13) solenoid valve VN2‑auto, (14) manual
needle valve VN2‑man, (15) expansion valve, (16) on−off valve, (17) expansion valve, (18) solenoid valve VVent‑auto, (19) manual needle valve VVent‑amn.
(dark gray solid arrow) vapor−liquid, (blue dashed arrow) liquid (L), (red dotted arrow) vapor (V), (pink dotted arrow) condensed vapor, (light gray
solid arrow) refrigerant.



(after condensation), circulate separately back to a mixing
chamber connected to the boiler until thermodynamic
equilibrium is reached. They are finally sampled for chromato-
graphic analysis.
Two parameters were considered to ensure the equilibrium

state: temperature, governed by the binary system ethanol−
water (components in largest proportion), and composition. The
time needed to reach a stable temperature (with a maximal
standard uncertainty of±0.3 K) was 30 min, whereas the time to
reach composition equilibrium for this ternary system was
determined by gas chromatography analysis to be about 2 h, once
the temperature was constant.
The equilibrium temperature was measured by means of two

Pt100 platinum probes (accuracy of ±0.05 K. i-Fischer
Engineering GmbH. Waldbüttelbrunn, Germany), periodically
calibrated against a reference platinum resistance thermometer
(Pt100 Testo 735, accuracy of ±0.05 K; GFF. Chilly-Mazarin,
France). To promote a continuous and smooth evaporation of
the mixtures, the heating power was adjusted in such a way that
the condensed vapor rate was 2 drops·s−1.
Concerning the total pressure, it was monitored using a digital

manometer (P-10 WIKA, accuracy of ± 0.1 kPa. i-Fischer
Engineering GmbH. Waldbüttelbrunn, Germany) and con-
trolled to the desired value with an electronic pressure controller
(i-Fischer Engineering GmbH. Waldbüttelbrunn, Germany).
This controller, presented in Figure 2 is composed of a
pressurizing circuit with dry nitrogen and a venting circuit. The
nitrogen circuit is used to increase the pressure, and comprises an
expansion valve at the outlet of the storage bottle (where the
pressure is set around 100 to 200 kPa), an on−off valve close to
Labodest, a second expansion valve (for adjusting the pressure to
50 kPa maximum), a manual needle valve (VN2‑man) to vary the
intake flow, and finally a solenoid valve (VN2‑auto) activated by the
control center. A decrease of pressure is achieved by the
activation of the vent valve (VVent‑auto) and the adjustment of this
leakage by the manual valve needle (VVent‑man). In this study, the
set point was maintained at 101.3 kPa with a maximal standard
uncertainty of ± 0.5 kPa.
Determination of Equilibrium Compositions. Ethyl

Lactate Mass Fractions. The analysis of ethyl lactate in the
coexistent liquid and condensed vapor phases was performed by
gas chromatography at the UNGDA laboratory. The equipment,
a chromatograph 5890 series II, Hewlett-Packard (Agilent
Technologies. Ulis, France) was coupled to a flame ionization
detector (T = 220 °C, H2, 40 mL·min−1; air, 450 mL·min−1;
make-up gas He, 45 mL·min−1. Agilent Technologies. Ulis,
France). A polar, polyethylene glycol capillary column (DB-
WAX. 60 m linear length, 0.50 mm internal diameter, 0.25 μm
film thickness. Agilent Technologies. Ulis, France) was used as
stationary phase for the analysis. Hydrogen was used as the
carrier gas at constant flow rate of 2.1 mL·min−1. A 2 μL aliquot
of sample was directly injected with a split ratio of 1/30.
The initial oven temperature was set at 45 °C, followed by a

linear increase rate of 5 °C·min−1 to 130 °C and a final linear
increase rate of 15 °C·min−1 to 210 °C. The total running time
per analysis was 22 min. The chromatographic data were
acquired with theHewlett-Packard Chemstation software B 0204
from Agilent Technologies.
The mass compositions of ethyl lactate were determined

through calibration curves including butan-1-ol (CAS 71-36-3;
mass purity, 99.50%; Carlo Erba. Val de Reuil, France) as internal
standard to minimize variability. The calibration curves were
established by diluting ethyl lactate in two different solvents:

absolute ethanol and an ethanol−water mixture (ethanol mass
fraction zmEt = 0.5), in order to take account of the variations of
injections and column performances due to matrix effects. In
both calibration curves, the ethyl lactate mass fraction range
varies from xmEL = (0.2 × 10−4 to 50.0 × 10−4), suitable for the
analysis of the equilibrium samples. Seven calibration points were
considered in both solvents.
The calculated detection and quantification limits derived

from the analytical treatment of the calibration results were,
respectively, DL = 6.5× 10−6 g·g−1 andQL = 50.0× 10−6 g·g−1 in
absolute ethanol, and DL = 2.0 × 10−5 g·g−1 and QL = 14.0 ×
10−5 g·g−1 in the ethanol−water mixture.
For mixtures with ethanol mass fractions lower than 0.50, a

quantitative dilution in ethanol was done to reach zmEt = 0.50 and
the ethyl lactate compositions were calculated by using the
calibration curve in the mixed solvent. For mixtures with higher
ethanol fractions, the ethyl lactate compositions were calculated
without any dilution. The calibration curve in absolute ethanol
was used for mixtures with ethanol mass fractions between 0.75
and 1.00, and that in the mixed solvent, for mixtures with ethanol
mass fractions between 0.50 and 0.75.
Each equilibrium sample as well as each calibration point was

injected in triplicate. The relative standard uncertainty of the
ratio between the ethyl lactate peak area and that of butan-1-ol,
ur(RAEL‑IS), varies from 0.05% to 5.03% with an average value of
0.44%. This result enables validation of the analysis repeatability,
and therefore of the precision of the composition calculated with
the calibration curves.
The initial ternary mixtures, before equilibrium, were also

analyzed in order to validate the accuracy of the analysis. The
relative deviation (AD%) between the mass fractions of ethyl
lactate determined by weighing (zmEL‑EXP), and the analytical
values estimated by gas chromatography (zmEL‑ANA) varies
between 0.69% and 10.46%. Nonetheless, except for this upper
limit, the deviations are inferior to 6.41% and the overall relative
deviation (AAD %) is only around 4.62%. This value is quite
acceptable in relation to the analysis technique and to the
concentration level of ethyl lactate in the ternary solutions.

Ethanol Mass Fractions. The ethanol mass compositions in
the liquid and vapor phases were computed from the following
experimental data: temperature (T), pressure (P), and global
initial composition of the mixed solvent (zEt), by considering that
the bubble temperature and compositions of ethanol and water
depend exclusively on the ethanol−water binary equilibrium.
This assumption is valid because the concentration of ethyl
lactate in both phases is significantly low (maximum liquid mole
fraction on the order of 10−4), which means that its influence on
the thermal and mechanical equilibriums of the system is
negligible.43

The calculation was carried out using the Flash TP algorithm
of the Simulis Thermodynamics Package by ProSim, which
computes equilibrium compositions at fixed temperature,
pressure, and global composition. The thermodynamic model
used to represent the vapor−liquid equilibrium of the binary
system ethanol−water at 101.3 kPa was NRTL, with the
interaction parameters reported by Kadir.50 The reliability of
these parameters was verified by fitting the experimental data
measured by different authors.44,51−53 The average relative
deviation between the experimental and the calculated temper-
atures was 0.2% and that of mole fractions in the vapor phase
around 1.24%. The equilibrium diagram including the
experimental data and the NRTL representation is presented
in Figure 3.



The calculation of ethanol mass fractions, instead of a
measurement with a specific instrumental technique can be
considered to be an acceptable approach for two reasons: (i) the
experimental values of temperature and pressure are reliable
enough and (ii) theNRTLmodel represents accurately the phase
behavior of the mixed solvent. Moreover, it is important to point
out that the real interest of our research is to represent the
equilibrium distribution of ethyl lactate for simulation purposes,
hence the analytical ef fort was focused on the quantification of
this minor compound.
Mole Fractions. The mass fractions of water were calculated

by difference. The mole fractions of the liquid and vapor phases
were then computed from the mass fractions and the molar
masses of the three compounds.
Computation of Uncertainties. The uncertainties of the

equilibrium variables were calculated by using the law of
propagation of uncertainties, as they were not measured directly
but determined from other quantities through a functional
relation.54 The propagation of standard uncertainties is
associated with four main factors: (1) the mass measurements
with the weighing scales (u(m1) = 0.00006 g for the first one and
u(m2) = 0.006 g for the second one), (2) the repeatability of the
injections in chromatographic analysis, expressed in terms of the
area ratio between the ethyl lactate and internal standard peaks
(0.001≤ u(RAEL‑IS)≤ 0.081), (3) the temperature measurements
(0.1 K≤ u(T)≤ 0.3 K), and (4) the pressure measurements (0.2
kPa≤ u(P)≤ 0.5 kPa), both during the equilibrium experiments.
The calculation was simplified by assuming that the estimates of
the input quantities to calculate each equilibrium variable were
uncorrelated. The computed values are presented in the results
sections.

■ THERMODYNAMIC MODELING
In this section, some elements about the thermodynamic models
used in this work are presented. A suitable choice of these models
is fundamental in process simulation for a correct representation
of the aroma compound behavior during distillation and other
separation processes. For aroma compounds−ethanol−water
systems at low pressures, the deviations from ideal behavior are
usually associated with the liquid phase and can therefore be
described with the excess Gibbs energy approach, widely used

and recommended in the literature. Among the models of this
approach, the semiempirical methods are considered in this work
since they are easy for implementation and are available in most
process simulators.

Fundamental Equation of Phase Equilibrium. Vapor−
liquid phase equilibria are computed by satisfying the equality of
fugacities of all components i present in the two phases:55,56

=f T P f T Py x( , , ) ( , , )i i
V L

(1)

Here f i
V and f i

L are the vapor and liquid fugacity of the species i,
respectively. This property is a function of the temperature (T),
the pressure (P), and the corresponding vector of mole
composition (y or x).
Since the pressure is low (<1000 kPa) and always below the

critical pressure of the pure components, the vapor phase can be
assumed as an ideal gas mixture and the properties of the liquid
phase are pressure independent. As a result, eq 1 can be
approximated as

γ=yP T x P Tx( , ) ( )i i i i
o

(2)

In eq 2, γi is the activity coefficient of the species i in the liquid
phase, Pi

o(T) is the vapor pressure of pure compound, and yi and
xi are the respective equilibrium mole fractions in the vapor and
liquid phases.
The equilibrium behavior of an aroma compound (AC) in

hydroalcoholic mixtures depends not only on the physical
conditions (T, P) but also on the solvent composition (ethanol
and water), and can be described by means of two properties: the
partition coefficient and the relative volatility.
The partition coefficient (KAC), also known as physical

equilibrium constant or absolute volatility, represents the
aroma compound distribution between the vapor and liquid
phases and is defined as

=K
y

xAC
AC

AC (3)

The relative volatility with respect to ethanol (αAC/Et), is an
indicator of the species behavior during the distillation of aroma
compounds−ethanol−water mixtures:57

α = = =
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By combining eqs 2 and 3, the partition coefficient can also be
computed as

γ
= =K

y

x

T P T

P

x( , ) ( )
i

i

i

i i
o

(5)

In the current study, it is useful to consider that ethyl lactate is
placed in the region of infinite dilution, as this compound is
present at very low concentrations (maximum liquid mole
fraction on the order of 10−4).
In this case, the Henry constant, i is defined by the following

relation:58

=
→

T P
f T P

x
x

x
( , , ) lim

( , , )
i

x

i
L

i0i (6)

At low pressures, this variable can also be written as a function of
Pi
o(T) and γi(T,x) at infinite dilution or γi

∞(T,xs), which depends
on the temperature and solvent composition, xs:

Figure 3. Equilibrium diagram of the binary system ethanol−water at
101.3 kPa: (◇) data by Lai et al, 2014;44 (□) data by Arce et al, 1996;51

(△) data by Yang and Wang, 2002;52 (○) data by Kamihama et al,
2012;53 () NRTL model using the interaction parameters calculated
by Kadir.50 T is the equilibrium temperature, xEt the ethanol mole
fraction in the liquid phase, and yEt is the ethanol mole fraction in the
vapor phase.



γ= ∞T T P Tx x( , ) ( , ) ( )i i is s
o

(7)

The activity coefficient at infinite dilution, γi
∞, provides accurate

information about the aroma compound−mixed solvent
interactions and therefore about the deviation from the ideal
solution.59

In this work, the vapor pressure of the three compounds have
been calculated with the Riedel equation,60 an extended version
of the Antoine equation:

= + + +⎜ ⎟⎛
⎝

⎞
⎠P T A

B
T

C T D T( )
1

1000
exp ln( )i i

i
i i

o Ei

(8)

where Pi
o(T) is given in kPa and T in K. Ai, Bi, Ci, Di, and Ei are

coefficients specific for each compound. They were taken from
the DIPPR Database, available through the Simulis Thermody-

namics Package, and are summarized in Table 2. According to the
values of Tmin and Tmax, the coefficients are valid for the three
compounds in the temperature range of the equilibrium
measurements (from 352.3 to 370.0) K.

Calculation of Activity Coefficients. With regard to the
activity coefficient, two semiempirical models of the excess Gibbs
energy (GE) approach were used in this work: NRTL and
UNIQUAC. Both models provide pressure-independent activity
coefficients as a function of temperature and composition.61 The
main working equations are presented in this section. The reader
is directed to the principal references indicated for each model
for further details about their theoretical basis.
The non-random two liquid (NRTL) and universal

quasichemical (UNIQUAC) models of liquid solution are
based on the concept of local composition as introduced by

Table 2. Coefficients of the Riedel Equation for Calculating Vapor Pressures in kPa at a Given Temperature in Ka

component Ai Bi Ci Di Ei Tmin/K Tmax/K

ethyl lactate 78.774 −6715.3 −9.5666 1.4993 × 10−2 1 247.2 588.0
ethanol 73.304 −7122.3 −7.1424 2.8853 × 10−6 2 159.1 514.0
water 73.649 −7258.2 −7.3037 4.1653 × 10−6 2 273.2 647.1

aTmin and Tmax define the temperature interval of validity of the empirical equation. Information is available in Simulis thermodynamics package.

Table 3. Activity Coefficient (γi) Equations of NRTL and UNIQUAC Modelsa

reference equations parameters
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(3.12)
aτij, gij, Gij are binary interaction variables between species i and j in both activities models. φi is a volume fraction, θi and θi′ are surface fractions and li
a supplementary parameter of the combinatorial contribution in the UNIQUAC model. R is the ideal gas constant (1.9872 cal·mol−1 ·K−1) and n is
the number of chemical species in the system, three in this work.



Wilson.62 They are valid at low pressures (<1000 kPa) and are
widely recommended for the description of hydroalcoholic
solutions. The activity coefficient of a component i as a function
of composition and temperature is given by the equations
summarized in Table 3. The UNIQUAC pure compound
parameters for the three species studied in this work are
presented in Table 4.

In both semiempirical models, the temperature dependence of
cij and τij is evaluated according to the original formalisms,
included in the Simulis Thermodynamics package. The variables
Aij
0, Aij

T (non-symmetric), cij
0 and cij

T (symmetric) are binary
interaction parameters specific to each system. They must be

obtained by regression of experimental equilibrium data and/or
other thermophysical properties of the liquid phase. The
estimation of these parameters for the studied system is
presented in the results section.

■ RESULTS AND DISCUSSION

Experimental Data. The vapor−liquid equilibrium data of
the ternary system at 101.3 kPa are given in Table 5. To
characterize the behavior of ethyl lactate in the hydroalcoholic
medium, the values of γEL

∞ , EL, KEL, and αEL/Et are reported in
Table 6. Activity coefficients and Henry constants derive from
the equilibrium relations, eq 2 and eq 7, and volatilities were
directly calculated from composition data, according to eq 3 and
eq 4. For the measurements of temperature and pressure, the
values are reported with their respective standard uncertainties.
For the other equilibrium variables, the reported uncertainties
are the combined expanded ones, using a confidence level of 95%
that corresponds to a coverage factor of k = 2.
The evolution of absolute and relative volatilities as a function

of ethanol composition in the liquid phase is presented in Figure
4. According to this figure, the volatility of ethyl lactate decreases
with the increasing ethanol concentration in the liquid phase.

Table 4. UNIQUAC Parameters for the Studied System

component ri
a qi

a qi′b

ethyl lactate 4.4555 3.9280 3.9280
ethanol 2.1055 1.9720 0.9600
water 0.9200 1.4000 1.0000

aDelgado et al.37 bAnderson and Prausnitz.72 ri is the van der Waals
volume, and qi and qi′ are the van der Waals surfaces.

Table 5. Vapor-Liquid Equilibrium Data of the System Ethyl Lactate Highly Diluted (EL)−Ethanol (Et)−Water (W) at P = 101.3
kPaa

mole composition of liquid phase (x) mole composition of vapor phase (y)

T/K u(T) /K u(P) /kPa xEL Uc(xEL) xEt Uc(xEt) xW Uc(xW) yEL Uc(yEL) yEt Uc(yEt) yW Uc(yW)

exp calc calc exp calc calc calc calc calc exp calc calc calc calc calc

370.0 0.3 0.2 1.38 ×
10−4

1.08 ×
10−6

0.012 3.35 ×
10−4

0.988 3.35 ×
10−4

3.81 ×
10−4

7.85 ×
10−6

0.117 3.40 ×
10−3

0.882 3.40 ×
10−3

365.6 0.1 0.2 1.62 ×
10−4

8.29 ×
10−7

0.035 6.40 ×
10−4

0.965 6.40 ×
10−4

3.02 ×
10−4

2.10 ×
10−6

0.264 4.84 ×
10−3

0.735 4.84 ×
10−3

363.8 0.1 0.2 1.64 ×
10−4

1.26 ×
10−6

0.049 9.03 ×
10−4

0.951 9.03 ×
10−4

2.44 ×
10−4

5.89 ×
10−6

0.321 5.91 ×
10−3

0.678 5.91 ×
10−3

363.7 0.1 0.2 1.55 ×
10−4

1.36 ×
10−6

0.050 9.59 ×
10−4

0.950 9.59 ×
10−4

2.31 ×
10−4

5.48 ×
10−6

0.323 6.26 ×
10−3

0.677 6.26 ×
10−3

362.0 0.1 0.2 1.82 ×
10−4

1.24 ×
10−6

0.066 1.23 ×
10−3

0.934 1.23 ×
10−3

2.37 ×
10−4

2.07 ×
10−6

0.375 6.92 ×
10−3

0.624 6.92 ×
10−3

362.0 0.2 0.3 1.77 ×
10−4

6.38 ×
10−6

0.066 1.69 ×
10−3

0.934 1.69 ×
10−3

2.34 ×
10−4

3.31 ×
10−6

0.376 9.50 ×
10−3

0.623 9.50 ×
10−3

360.0 0.1 0.2 1.78 ×
10−4

8.96 ×
10−7

0.095 1.76 ×
10−3

0.905 1.76 ×
10−3

1.30 ×
10−4

1.14 ×
10−6

0.432 8.00 ×
10−3

0.567 8.00 ×
10−3

359.1 0.1 0.5 1.83 ×
10−4

9.44 ×
10−7

0.111 2.06 ×
10−3

0.889 2.06 ×
10−3

1.16 ×
10−4

1.70 ×
10−6

0.457 8.47 ×
10−3

0.543 8.47 ×
10−3

358.9 0.1 0.4 1.76 ×
10−4

3.03 ×
10−6

0.114 2.12 ×
10−3

0.886 2.12 ×
10−3

1.21 ×
10−4

1.20 ×
10−6

0.461 8.55 ×
10−3

0.539 8.55 ×
10−3

358.3 0.1 0.3 1.92 ×
10−4

1.07 ×
10−6

0.129 2.40 ×
10−3

0.871 2.40 ×
10−3

7.23 ×
10−5

7.33 ×
10−7

0.479 8.89 ×
10−3

0.521 8.89 ×
10−3

358.2 0.1 0.5 1.80 ×
10−4

9.48 ×
10−7

0.130 2.44 ×
10−3

0.869 2.44 ×
10−3

7.72 ×
10−5

1.04 ×
10−6

0.481 8.93 ×
10−3

0.519 8.93 ×
10−3

357.8 0.1 0.4 2.17 ×
10−4

2.84 ×
10−6

0.143 2.66 ×
10−3

0.857 2.66 ×
10−3

8.56 ×
10−5

1.01 ×
10−6

0.494 9.17 ×
10−3

0.506 9.17 ×
10−3

357.7 0.1 0.4 2.02 ×
10−4

2.18 ×
10−6

0.146 2.72 ×
10−3

0.854 2.72 ×
10−3

8.28 ×
10−5

1.65 ×
10−6

0.496 9.22 ×
10−3

0.503 9.22 ×
10−3

353.9 0.1 0.5 2.68 ×
10−4

2.70 ×
10−5

0.392 7.35 ×
10−3

0.608 7.35 ×
10−3

2.89 ×
10−5

1.32 ×
10−6

0.615 1.15 ×
10−2

0.385 1.15 ×
10−2

353.9 0.1 0.3 2.71 ×
10−4

6.06 ×
10−6

0.401 7.52 ×
10−3

0.599 7.52 ×
10−3

3.21 ×
10−5

1.11 ×
10−6

0.618 1.16 ×
10−2

0.382 1.16 ×
10−2

352.3 0.1 0.5 3.45 ×
10−4

3.76 ×
10−6

0.624 1.18 ×
10−2

0.375 1.18 ×
10−2

2.75 ×
10−5

3.81 ×
10−7

0.714 1.35 ×
10−2

0.286 1.35 ×
10−2

352.3 0.1 0.4 2.82 ×
10−4

3.10 ×
10−6

0.626 1.18 ×
10−2

0.374 1.18 ×
10−2

2.38 ×
10−5

6.96 ×
10−7

0.715 1.35 ×
10−2

0.285 1.35 ×
10−2

aT and the equilibrium temperature of the vapor and liquid phases; u is the standard uncertainty, and Uc is the expanded combined uncertainty (95%
level of confidence, k = 2). Notation: exp, experimental value (directly or indirectly measured with in an instrument); calc, calculated value
(analytical estimation from experimental values).



This behavior, already identified for other aroma compounds
highly diluted,42,43 can be explained by two reasons: (1) the
equilibrium temperature of the system decreases as the ethanol
liquid concentration is increased (according to the Txy diagram,
Figure 3) which leads to a reduction of the vapor pressure of the
aroma compound and (2) the chemical nature of the aroma
compound is closer to ethanol (presence of a carbon chain and of

a C−OH (carbon−hydroxyl) bond) than to water. Thus, when
the system is enriched with the organic solvent (ethanol), the
difference between the cohesive forces (like molecules) and
adhesive forces (unlike molecules) in the liquid phase is reduced
and the transition of ethyl lactate to the vapor phase becomes less
favorable.
According to Figure 4a, the vapor phase is richer in ethyl

lactate (KEL > 1) when the liquid ethanol mole fraction is lower
than xEt = 0.1. For higher fractions, the phenomenon is reversed
and the aroma compound becomes 2 to 10 times more abundant
in the liquid phase. Concerning the relative volatility, ethanol is
more volatile than ethyl lactate over the entire concentration
range of the solvent, as evidenced in Figure 4b. This volatility
ratio varies by a factor of 4, from 0.27, when xEt tends to 0, to 0.07,
when xEt tends to 1.

Modeling with Semiempirical Models. Experimental
equilibrium data were correlated by using the NRTL and
UNIQUAC models. The objective was to determine the
interaction parameters for the binary subsystems: ethyl lactate
(1)−ethanol (2), ethyl lactate (1)−water (3) and ethanol (2)−
water (3), which corresponds to 18 parameters for the NRTL
model and 12 for the UNIQUAC model.
To reduce the number of parameters, the following

assumptions were considered:

• For the NRTL model, the non-randomness parameter, cij
0,

was set to 0.3 for all binaries. This assumption is valid for
systems in vapor−liquid equilibrium containing water and
polar non-associated substances.63

• For the ethyl lactate−ethanol and ethyl lactate−water
binaries, Aij

T, the temperature-dependent parameters of τij,
were neglected. Two factors justify this approximation:
(1) the number of experimental data is limited and (2) the
equilibrium temperature interval is reduced (from 352.3 to
370.0) K.

Table 6. Equilibrium Variables Describing the Behavior of Ethyl Lactate Highly Diluted in Hydro-alcoholic Mixtures at P = 101.3
kPaa

activity coefficients Henry constants absolute volatility relative volatility

T/K xEt γEL
∞ Uc(γEL

∞ ) EL/kPa Uc( EL)/kPa KEL Uc(KEL) αEL/Et Uc(αEL/Et)

exp calc calc calc calc calc calc calc calc calc

370.0 0.012 18.89 0.66 278.97 12.31 2.75 6.07 × 10−2 0.27 1.18 × 10−2

365.6 0.035 15.19 0.22 189.50 3.54 1.87 1.61 × 10−2 0.25 5.61 × 10−3

363.8 0.049 12.98 0.37 150.18 4.59 1.49 3.78 × 10−2 0.23 7.37 × 10−3

363.7 0.050 13.03 0.37 151.05 4.77 1.48 3.75 × 10−2 0.23 7.49 × 10−3

362.0 0.066 12.41 0.20 133.88 2.68 1.30 1.44 × 10−2 0.23 5.08 × 10−3

362.0 0.066 12.21 0.55 131.88 6.66 1.32 5.12 × 10−2 0.23 1.09 × 10−2

360.0 0.095 7.42 0.12 73.91 1.47 0.73 7.35 × 10−3 0.16 3.29 × 10−3

359.1 0.111 7.31 0.13 69.89 1.53 0.63 9.85 × 10−3 0.15 3.58 × 10−3

358.9 0.114 6.68 0.17 64.14 1.81 0.69 1.37 × 10−2 0.17 4.48 × 10−3

358.3 0.129 4.10 0.07 38.19 0.79 0.38 4.36 × 10−3 0.10 2.06 × 10−3

358.2 0.130 4.67 0.09 43.33 0.98 0.43 6.17 × 10−3 0.12 2.56 × 10−3

357.8 0.143 4.58 0.09 41.59 1.00 0.39 6.94 × 10−3 0.11 2.73 × 10−3

357.7 0.146 4.38 0.12 39.91 1.18 0.41 9.32 × 10−3 0.12 3.36 × 10−3

353.9 0.392 1.55 0.15 12.01 1.16 0.11 1.14 × 10−2 0.07 7.24 × 10−3

353.9 0.401 1.40 0.07 10.93 0.53 0.12 4.88 × 10−3 0.08 3.24 × 10−3

352.3 0.624 1.11 0.02 8.08 0.20 0.08 1.41 × 10−3 0.07 1.20 × 10−3

352.3 0.626 1.18 0.04 8.54 0.31 0.08 2.64 × 10−3 0.07 2.29 × 10−3

aT is the equilibrium temperature of the vapor and liquid phases. xEt is the mole fraction of ethanol in the liquid phase at equilibrium. Uc is the
combined expanded uncertainty (95% level of confidence, k = 2). Notation: exp, experimental value (directly or indirectly measured with in an
instrument); calc, calculated value (analytical estimation from experimental values).

Figure 4. Evolution of (a) absolute (KEL) and (b) relative volatilities
(αEL/Et) of ethyl lactate at 101.3 kPa as a function of ethanol composition
(xEt mole fraction) in the liquid phase: (○) experimental data, (black
solid line) NRTLmodel, (blue short dash) UNIQUACmodel, (red long
dash) UNIQUACmodel with literature interaction parameters, fitted to
binary data.35,37 T is the corresponding equilibrium temperature.



• The interaction parameters of the binary ethanol (2)−
water (3) are fixed to the values presented in the
literature50 and reported in Table 7. In this case, the
temperature dependency is considered (Aij

T ≠ 0) as this
major binary governs the thermal equilibrium of the
ternary system. As previously stated, the reliability of the
interaction parameters was verified by fitting different
experimental data sets.44,51−53 The deviations of the
temperature and vapor mole fractions calculated with
NRTL and UNIQUAC models are also reported in Table
7. According to this information, the experimental data
from the literature are well correlated by bothmodels, with
average relative deviations of 0.2% for temperature and
lower than 1.3% for ethanol mole fractions in the vapor
phase. A detailed procedure to assess the thermodynamic
consistency of the reference data is presented in Appendix
1.

In this way, the model identification for the ternary system is
reduced to the regression of four parameters:

• two associated with the binary ethyl lactate (1)−ethanol
(2): A12

0 , A21
0 .

• two associated with the binary ethyl lactate (1)−water (3):
A13
0 , A31

0 .

The parameters were fitted by minimizing an objective
function with the generalized reduced gradient method.64 The
regressed properties were KEL and αEL/Et. These parameters will
be considered for the simulation of distillation units, in which the
separation performance is directly based upon the difference of
volatilities between the chemical species.
Two objective functions were evaluated:

∑α α α= −
=

wOF( ) ( )
i

N

i i i
1

EL/Et Exp EL/Et Model
2

(9)

∑= −
=

K w K KOF( ) ( )
i

N

i i i
1

EL Exp EL Model
2

(10)

where N is the number of data and wi is a weighting factor
depending on the uncertainty of the experimental data (αEL/Et
i Exp, KEL i Exp). An experimental value having a high standard
uncertainty is supposed to be less reliable and has therefore a
lower weighting factor than an experimental value with a low
uncertainty.
The weighting factors were normalized (∑wi = 1) and

calculated as

=
∑ =

w
U i

U i

1/ ( )

1/ ( )
i

i
N

c

1 c (11)

where Uc is the estimated expanded combined uncertainty for
each experimental value.

The calculation of equilibrium properties (αEL/Et i Model,
KEL i Model) was carried out using the bubble temperature
algorithm of the Simulis Thermodynamics package, at the
experimental pressure (P) and composition in the liquid phase
(x). The algorithms allow computation of the saturated
temperature (T), and the composition of the vapor phase (y)
in equilibrium.
The fitting quality was judged with respect to four variables

(E): T, yEt, and yEL, KEL, and αEL/Et. Two deviations were
calculated:

• Average absolute relative deviation (AAD%):

∑=
−

=N

E E

E
AAD%

1
100

i

N
i i

i1

Exp Model

Exp (12)

• Root-mean-squared deviation (RMSE):
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2
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The results obtained are summarized in Table 8. The evaluation
of the thermodynamic consistency of the experimental data set
reported in this work is complicated as one of the species is
present at very low concentrations. No specific consistency tests
have been reported in the literature for this type of system. The
area test proposed by Kurihara et al.65 cannot be used as the ethyl
lactate does not cover the entire composition range. Therefore,
only the point-to-point test, developed by Van Ness et al.66 was
considered for validation. This test should be regarded as a
modeling capability test, which shows how the NRTL and
UNIQUAC model can accurately reproduce the experimental
data. After completion of the model identification, the approved
criteria applied in this work are the AAD% values of yEL, KEL, and
αEL/Et. To pass the test the values of those criteria must be less
than a selected tolerance, fixed at 10% by Faundez et al.67 As a
result, comparing the statistics reported in Table 8, one can
conclude that for both models, only the regressions based on
OF(αEL/Et) are consistent.
To complete the consistency test, the absolute (Δ) and

relative (AD%) residuals of the equilibrium variables are plotted
in Figure 5 as a function of the ethanol mole fraction xEt. As
suggested by Van Ness et al.66 the data set passes the test if the
residuals show a rather random distribution about the zero line
with low deviations. In this case, even though it is difficult to
define whether the scatter distribution is actually random due to a
limited number of points, the point-to-point consistency of the
experimental data can be validated as the residuals do not follow
any tendency or correlation with the liquid phase composition.
The residual values are not negligible but they remain acceptable
if one considers the difficulty to quantify with high accuracy the
composition of ethyl lactate highly diluted.

Table 7. Interaction Parameters for the Binary Ethanol (2) − Water (3) and Fitting Quality Statistics with Respect to Five
Experimental Data Sets Obtained from Literaturea

T/K yEt

model A23
0 /cal·mol−1 A″32

0 /cal·mol−1 A23
0 /cal·mol‑1·K−1 A32

T /cal·mol−1·K−1 AAD% RMSE AAD% RMSE

NRTLb 34.02 850.12 −1.8 5.65 0.2 0.3 1.24 0.01
UNIQUACc 1448.61 −1504.21 −3.68 4.96 0.2 0.3 1.27 0.01

aThese parameters are fixed for the correlation of equilibrium data of the ternary system ethyl lactate highly dilutedethanolwater. bKadir.50
cDelgado et al.37 Notation: T, equilibrium temperature; yEt, ethanol mole fraction in the vapor phase; AAD%, average absolute deviation; RMSE,
root-mean-squared deviation.



In this way, using the interaction parameters derived from
OF(αEL/Et), the obtained evolution of KEL and αEL/Et as a
function of ethanol composition is shown in Figure 4. Both
models correlate correctly the experimental data. A very slight
difference is noted only at high ethanol concentrations, from xEt
= 0.6.

Comparison with Literature Data. Concerning the informa-
tion from the literature, the interaction parameters for ethyl
lactate−ethanol and ethyl lactate−water pairs have been
reported for the UNIQUAC model by Peña-Tejedor et al35

and Delgado et al.37 The values are presented in Table 9. They
were estimated from isobaric experimental data of the
corresponding binary systems, in which ethyl lactate is present
over the entire composition range, from xEL= (0 to 1).
The volatility curves of ethyl lactate as a function of ethanol

composition, calculated with these latter parameters, are shown
in Figure 4. The values of RMSE and AAD% for the different
equilibrium values are summarized in Table 9. One can observe
that the representation of the experimental data for the ternary
system is globally acceptable, but the evolution of αEL/Et with
respect to ethanol composition exhibits some non-negligible
differences: the volatility is underestimated at low ethanol
concentrations (xEt ≤ 0.1), with an average error of 16%, and
overestimated from xEt = 0.1, with a mean error of about 29%. As
a result, for simulation purposes in alcoholic beverages
distillation, where relative volatility is the key parameter of
separation, the interaction parameters proposed in this work
(Table 8) are recommended.

Evolution of γEL
∞ and EL with Temperature and Ethanol

Composition. The evolution of the activity coefficient of ethyl
lactate, γEL

∞ , as a function of temperature and ethanol composition
is shown in Figure 6. The activity coefficient is always higher than
unity. In this case, the positive deviation from ideality (γEL

∞ > 1)
means that the interactions forces between the solvent molecules
and the ethyl lactate molecules are unfavorable, especially with
water. It is observed that γEL

∞ increases as the equilibrium
temperature is increased and decreases when the liquid phase is
enriched in ethanol. Both trends are linked since the activity
coefficient is determined along the ethanol−water vapor−liquid
equilibrium curve. The increase of γEL

∞ indicates that the
interaction forces between the ethyl lactate molecules are
reduced, which leads to an increase of its partial pressure and
therefore of its volatility. This behavior is logical since the
volatility of ethyl lactate is higher in the low ethanol
concentration region, where equilibrium temperatures are
higher.
Concerning the Henry constant, the evolution of ln EL as a

function of 1/T (plotted in Figure 7), calculated with the NRTL
and UNIQUACmodels, exhibits not a linear trend but a concave
decreasing behavior. This can be explained by the fact that the
temperature and the composition of the liquid phase are not
independent at boiling conditions: a change in boiling temper-
ature corresponds to a variation in the liquid composition and
vice versa. As noted in eq 7, EL is a function of both
temperature and composition, as the solvent is not a pure
compound but a mixture of ethanol and water.

■ CONCLUSIONS

The vapor−liquid equilibrium of ethyl lactate highly diluted in
ethanol−water mixtures at 101.3 kPa for boiling temperatures
from (352.3 to 370.0) K was investigated in this work. The
experimental results showed that the volatility of ethyl lactateT
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decreases when the ethanol content in the liquid phase is
increased. Ethyl lactate is less volatile than ethanol and its relative
volatility is reduced by a factor of four over the entire solvent
composition range in the liquid phase. The ternary system
exhibits positive deviation from ideality (γi > 1).
Good agreement between the measured data and the NRTL

and UNIQUACmodels was verified, with overall average relative

deviations between 0.3% and 9.63%. The parameters calculated
in this work can be used for simulation purposes in alcoholic
beverages distillation, where ethyl lactate is present at low
concentrations. Furthermore, the methodology of data acquis-
ition and model identification here proposed can be used when
dealing with other volatile aroma compounds in hydroalcoholic
mixtures.

Figure 5. Plot of absolute (Δ) and relative (AD%) residuals of (a) yEL (ethyl lactate mole fraction in the vapor phase), (b) KEL (ethyl lactate absolute
volatility) and (c) αEL/Et (ethyl lactate relative volatility with respect to ethanol) at 101.3 kPa as a function of ethanol composition (xEt mole fraction) in
the liquid phase: (○) residuals for the NRTL model, (×) residuals for the UNIQUAC model.

Table 9. Interaction Parameters of UNIQUAC Models for the Binaries Ethyl Lactate (1)−Ethanol (2) and Ethyl Lactate (1)−
Water (3) from the Literature. Fitting Quality Statistics of the Equilibrium Data Measured in This Worka

T/K yEt yEL KEL αEL/Et

binary i−j Aij
0/cal·mol−1 Aji

0/cal·mol−1 AAD% RMSE AAD% RMSE AAD% RMSE AAD% RMSE AAD% RMSE

(1)−(2)b 679.2 −295.4 0.1 0.1 0.44 1.77E × 10−3 23.11 3.15 × 10−5 23.11 1.92 × 10−1 23.34 3.41 × 10−2

(1)−(3)c 198.3 128.2
aT is the equilibrium temperature, yEt is the ethanol mole fraction in the vapor phase, yEL is the ethyl lactate mole fraction in the vapor phase, KEL is
the ethyl lactate absolute volatility, αEL/Et is the ethyl lactate relative volatility with respect to ethanol, AAD% is the average absolute deviation, and
RMSE is the root-mean-squared deviation. bPeña-Tejedor et al.35 cDelgado et al.37

Figure 6. Evolution of the activity coefficient of ethyl lactate (γEL
∞) with respect to (a) equilibrium temperature (T) at 101.3 kPa and (b) ethanol

composition in the liquid phase (xEt): (○) experimental data, (black solid line) NRTL model, (blue short dash) UNIQUAC model, (red long dash)
UNIQUAC with interaction parameters fitted to binary data.35,37



■ APPENDIX 1

Test of Thermodynamic Consistency for Experimental
Vapor−liquid Data of Binary Ethanol−water at 101.3 kPa
The thermodynamic consistency of the experimental data used as
reference to validate the interaction parameters for the binary
ethanol−water was assessed by means of two tests: area test by
Kurihara et al.65 and point-to-point test proposed by Van Ness et
al.66 The aim of these tests is to validate the quality of
experimental data and to perform preliminary data reduction.
Area Test. The area test is derived from the integration of the

Gibbs−Duhem relation.68 At isobaric conditions, the following
expression is used:

∫ ∫γ
γ

ε* = × +x xA 100 ln d d
W0

1
Et

Et
0

1

Et
(A1)

ε is a function of the excess enthalpy (HE) and temperature:

ε = − ∂
∂

H
RT

T
x

E

2
Et (A2)

The experimental data pass the area test if the value ofA* is lower
than 3.65 In this work, the arguments of the integral were
calculated as follows:

• The activity coefficients γEt and γW were directly obtained
from equilibrium data by using the fundamental
equilibrium relation, eq 2:

γ =
yP

x P T( )i
i

i i
o

(A3)

The vapor pressures were computed with eq 8, using the
coefficients gathered in Table 2.

• The excess enthalpy were estimated by means of the
empirical correlation proposed by Larkin,69 based on the
adjustment of several experimental data sets:

∑= −
=

H x x a x(1 )E

i

m

i
i

Et Et
0

Et
(A4)

WhereHE is given in J·mol−1, i is a non-integral counter
(i = 0, 0.5, 1.5, 2.5, 4.5) and ai are temperature-dependent
coefficients, computed as follows:

= + +a b c T d Ti i i i
2

(A5)

The values of bi, ci, and di are reported by Larkin.69

• The relation between T and xEt was evaluated by adjusting
the experimental equilibrium data to a polynomial-type
correlation with order 6, in the form of eq A6 (n = 6), with
a coefficient of determination (R2) higher than 0.99. Fi are
coefficients determined from regression, by minimizing

Figure 7. Representation of Ln EL with respect to 1/T at 101.3 kPa:
(○) experimental data, (black solid line) NRTL model, (blue short
dash) UNIQUAC model, (red short dash) UNIQUAC model with
interaction parameters fitted to binary data.35,37 EL is the Henry
constant of ethyl lactate and T is the equilibrium temperature.

Figure A1. Plot of the area test for the reference equilibrium data of binary ethanol−water: (a) representation with all the experimental points, without
data rejection; (b) representation after data rejection; (c) representation of rejected data, with appreciable deviation from global trend. (◇) Data by Lai
et al, 2014.44 (□) data by Arce et al, 1996.51 (△) data by Yang and Wang, 2002.52 (○) data by Kamihama et al, 2012;53 () smoothing of the
experimental data with a polynomial correlation.



the sum of quadratic errors between the experimental
value and the respective calculated value.

∑=
=

T Fx
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i
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0
Et

(A6)

A first representation of the integral argument as a function of xEt
is presented in Figure A1a. From this plot, it is possible to identify
that several experimental points are slightly shifted from themain
decreasing trend, which suggests that they are probably
inconsistent. A new plot, presented in Figure A1b, is obtained
by rejecting those specific data. The integral is finally calculated
by smoothing this set experimental data with a polynomial
correlation with order 3 (eq A6 with n = 3), ensuring a coefficient
of determination (R2) over 0.99. The value of A* obtained in this
case is 0.7, which means that the experimental data used as
reference in this work pass the area test. Following the same
procedure for the set of rejected data, plotted in Figure A1c, the
value of A* is 18.3, thus confirming that, in the light of this test,
those data are not thermodynamically consistent.
Point-to-Point Test. The point-to-point test proposed by Van

Ness et al.66 is a modeling capability test, which assesses whether
an activity coefficient model can accurately reproduce the
experimental data. For isobaric sets, the approving criteria
correspond to the average relative deviations (AAD%) of T and
yEt. The experimental set passes this test if the AAD% value for T
is lower than 1% and that for yEt does not exceed 10%.67 In this
context, according to Table 7, the test is verified for the NRTL
(AAD% T = 0.2% and AAD% yEt = 1.24%) and UNIQUAC
models (AAD% T = 0.2% and AAD% yEt = 1.27%), which
represent the reference data set with the same high accuracy. The
AAD% values were calculated without taking into account the
inconsistent data identified in the area test.
This test is completed with an analysis of the relative residuals

(AD%) for T and yEt, presented in Figure A2 as a function of xEt.
The data set can be considered as consistent since the residuals
are randomly scattered about the zero line.68 From these residual
plots, one can also confirm that the quality of data fitting
obtained with both models is equivalent. They are equally

recommended for the estimation of thermodynamic properties
of ethanol−water mixtures.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jced.7b00770.

Computation of combined standard uncertainties (uc) for
the equilibrium variables (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*Tel.: + 33 169 93 50 92. E-mail: martine.decloux@
agroparistech.fr.

ORCID
Cristian Puentes: 0000-0001-7126-1193
Patrice Paricaud: 0000-0003-4028-7133
Funding
This work was funded by the ABIES Doctoral School
(AgroParisTech, Universite ́ Paris-Saclay; doctoral contract
2014-7).

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the ABIES Doctoral School
(AgroParisTech, Universite ́ Paris-Saclay) and was carried out
within the framework of the RMT FIDELE (Reśeau mixte
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Computation of combined standard uncertainties (uc) for the equilibrium variables 

 
The combined standard uncertainty represents the estimated standard deviation of an indirect 

measurement and is calculated as the positive square root of the estimated variance uc2. The 

combined expanded uncertainty, Uc, is obtained by multiplying uc by the selected coverage factor 

k.54 

 
Mass compositions 

 

Ethyl Lactate  

Uncertainty associated with the mass measurements as well as the three replicates of sample 

injections during the chromatographic analysis: 

uc
2(zmEL)= ∑ (

∂zmEL

∂mi

)
2

u2(mi)

i=1

+ (
∂zmEL

∂RAEL-IS

)

2

u2(RAEL-IS) 

Relationship between mass composition, area ratio of Ethyl Lactate - internal standard peaks and 

reagents masses: 

zmEL= (
RAEL-IS

kCalibration

) (
mIS-SM0

mSM-IS0

mSM-ISf

mSample

) 

Hence: 

uc
2(zmEL)= (

RAEL-IS

kCalibration

)

2

[(
1

mSM-IS0

mSM-ISf

mSample

)

2

u2(mIS-SM0)+ (
mSM-IS0

mSM-IS0
2

mSM-ISf

mSample

)

2

u2(mSM-IS0)+ (
mIS-SM0

mSM-IS0

1

mSample

)

2

u2(mSM-IS)+ (
mIS-SM0

mSM-IS0

mSM-ISf

mSample
2
)

2

u2(mSample)] 

+ (
1

kCalibration

)
2

(
mIE-SM0

mSM-IE0

mSM-IE

mSample

)

2

u2(RAEL-IS) 

Here: 
u(mIS-SM0

)=u(mSM-ISf
)=u(mSample)=u(m1)=0.00006 g 

u(mSM-IS0
)=u(m2)=0.006 g 

 



Therefore: 

uc
2(zmEL)= (

RAEL-IS

kCalibration

)

2

[(
1

mSM-IS0

mSM-ISf

mSample

)

2

+ (
mIS-SM0

mSM-IS0

1

mSample

)

2

+ (
mIS-SM0

mSM-IS0

mSM-ISf

mSample
2
)

2

] u2(m1)

+ (
RAEL-IS

kCalibration

)

2

(
mSM-IS0

mSM-IS0
2

mSM-ISf

mSample

)

2

u2(m2) 

+ (
1

kCalibration

)
2

(
mIS-SM0

mSM-IS0

mSM-ISf

mSample

)

2

u2(RAEL-IS
) 

 

 

Ethanol 

Uncertainty associated with the temperature and pressure measurements in the equilibrium 

experiments: 

uc
2(zmEt)= (

∂zmEt

∂T
)

2

u2(T) + (
∂zmEt

∂P
)

2

u2(P) = (
∂zmEt

∂zEt

)
2

[(
∂zEt

∂T
)

2

u2(T)+ (
∂zEt

∂P
)

2

u2(P)] 

Relationship between composition, temperature and pressure given by the equilibrium relation 

for the binary system Ethanol - Water the, namely:  
y

Et
P= γEt

(T, x)xEtPEt
O (T) 

Where: 

-  γEt
(T, x) determined with NRTL model, Table 3, Eq 3.1.  

-  PEt
O (T) calculated by means of the Riedel equation, Eq 8 with the coefficients given in Table 

2.  

Therefore, for the liquid phase:  

xEt=
y

Et
P

γEtPEt
O  

uc
2(xmEt)= [

MMEtMMW

(MMEtxEt-MMWxEt+MMW)2
]

2

[(
y

Et
PγEt 

γEt
2 PEt

O2 )

2

(PEt
0L

∂ ln γEt

∂T
+

∂PEt
O

∂T
)

2

u2(T)+ (
y

Et

γEtPEt
O )

2

u2(P)] 

And for the vapor phase:  

y
Et

=
xEtγEtPEt

O

P
 

uc
2(y

mEt)= [
MMEtMMW

(MMEtyEt
-MMWy

Et
+MMW)

2]

2

[(
xEtγEt

P
)

2

(PEt
O

∂ ln γEt

∂T
+

∂PEt
O

∂T
)

2

u2(T)+ (
xEtγEtPEt

O

P2 )

2

u2(P)] 

∂PEt
O (T)

∂T
 and 

∂ ln γEt(T, x)

∂T
 are obtained analytically. The final expressions are:  

- PEt
0 (T): 

∂PEt
O (T)

∂T
= PEt

O (T) (−
B

T2 +
C

T
+EDTE-1) 

- ln γEt
(T, x): The function differentiated is the simplified version of the NRTL model for a 

binary system, that is,  

ln γEt (T,x) =xW
2 [τW-Et (

GW-Et

xEt+xWGW-Et

)
2

+
τEt-WGEt-W

(xW+xEtGEt-W)2
] 

Hence: 
∂ ln γEt

(T, x)

∂T
=xW

2 [(
GW-Et

xEt+xWGW-Et

)
2 ∂τW-Et

∂T
+2τW-Et (

GW-Et

xEt+xWGW-Et

) (
xEt

(xEt+xWGW-Et)
2

∂GW-Et

∂T
)] 

+xW
2 [

(GEt-W
∂τEt-W

∂T
+τEt-W

∂GEt-W

∂T
) (xW+xEtGEt-W)2 − 2τEt-WxEtGEt-W(xW+xEtGEt-W)

∂GEt-W

∂T

(xW+xEtGEt-W)4
] 

 

With:  
∂GEt-W

∂T
=  - c0 exp(- c0τEt-W)

∂τEt-W

∂T
 

∂τEt-W

∂T
=

-R(AEt-W
0 +273.15AEt-W

T )

R2T2  

∂GW-Et

∂T
=  - c0 exp(- c0τW-Et)

∂τW-Et

∂T
 



∂τW-Et

∂T
=

-R(AW-Et
0 +273.15AW-Et

T )

R2T2  

 

Water  

Propagation of the combined uncertainties of the mass fractions of Ethyl Lactate and Ethanol: 

uc
2(zmW)= (

∂zmW

∂zmEL

)
2

uc
2(zmEL) + (

∂zmW

∂zmEt

)
2

uc
2(zmEt) 

Relationship between zmW, zmEL and zmEt 
zmW = 1 − zmEL − zmEt 

Therefore: 
uc

2(zmW) = uc
2(zmEL) + uc

2(zmEt) 

 

Mole compositions 

 

Ethyl Lactate  

Propagation of the standard uncertainties of the mass fractions of ethyl lactate, ethanol and 

water: 

uc
2(zEL)= (

∂zEL

∂zmEL

)
2

uc
2(zmEL)+ (

∂zEL

∂zmEt

)
2

uc
2(zmEt) + (

∂zEL

∂zmW

)
2

uc
2(zmW) 

Relationship between zEL, zmEL,  zmEt  and zmW given by: 

zEL=

zmEL

MMEL
zmEL

MMEL
+

zmEt

MMEt
+

zmW

MMW

=
zmELMMELMMEtMMW

zmELMMEtMMW+zmEtMMELMMW+zmWMMELMMEt

      

 

 

Resulting expression:  

uc
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Ethanol 

Analogous calculation to that for Ethyl Lactate: 

uc
2(zEt)= (

∂zEt

∂zmEL

)
2
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Water 

Analogous calculation to that for water mass fraction: 

uc
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2
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)
2
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Activity coefficient of Ethyl Lactate 

γEL
∞ (T,𝒙𝒔)=

y
EL

P

xELPEL
O (T)
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Henry constant of Ethyl lactate 
ℋEL(T,xs)=γ

EL
∞ (T,xs)PEL

O (T) 
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Volatility of Ethyl lactate 

Absolute volatility 

KEL=
y

EL

xEL
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Relative volatility with respect to ethanol 
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=
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