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Collisions in musical string instruments play a fundamental role in explaining the sound
production in various instruments such as sitars, tanpuras and electric basses. Contacts
occuring during the vibration provide a nonlinear effect which shapes a specific tone due
to energy transfers and enriches the hearing experience. As such, they must be carefully
simulated for the purpose of physically-based sound synthesis. Most of the numerical methods
presented in the literature rely on a compliant modeling of the contact force between the
string and the obstacle. In this contribution, numerical methods from nonsmooth contact
dynamics are used to integrate the problem in time. A Moreau-Jean time-stepping scheme
is combined with an exact scheme for phases with no contact, thus controlling the numerical
dispersion. Results for a two-point bridge mimicking a tanpura and an electric bass are
presented, showing the ability of the method to deal efficiently with such problems while
invoking, as compared to a compliant approach, less modelling parameters and a reduced
computational burden.

c©2018 Acoustical Society of America. [http://dx.doi.org(DOI number)]

[XYZ] Pages: 1–13

I. INTRODUCTION

Collisions are of prime importance in musical acous-
tics for explaining the particular timbre of a number of
instruments ranging from strings (a typical example be-
ing that of indian instruments such as sitar, tanpura
and veena) to drums (e.g. snare drum) (Bilbao, 2012;
Fletcher and Rossing, 1998; Raman, 1921). In these
examples, the role of contacts is to alter the frequency
content due to a nonlinear, nonsmooth interaction that
generates high frequencies and contributes to enrich the
hearing experience. This effect is particularly prominent
in the case of the sitar, where a curved bridge contributes
to significantly modify the frequency content of the string
vibration, see e.g. (Bilbao et al., 2015; Mandal and Wahi,
2015; Siddiq, 2012; Vyasarayani et al., 2009), and in the
case of the tanpura and its particular bridge (Chatzi-
ioannou and van Walstijn, 2015; Issanchou et al., 2017;
Valette et al., 1991). Other examples that attracted in-
terest in the recent years concern the case of string/frets
interactions (for e.g. guitar or electric bass) (Bilbao

aAlso at: IMSIA, ENSTA ParisTech-CNRS-EDF-CEA, Univer-
sité Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau
Cedex, France
b)cyril.touze@ensta-paristech.fr; Corresponding author.

and Torin, 2015; Issanchou et al., 2018; Trautmann and
Rabenstein, 2004) and snare drum where metal wires are
in contact with a vibrating membrane (Bilbao, 2012; Bil-
bao et al., 2015).

Earlier studies on vibrating strings with contacts de-
rive a number of analytical results, mostly in the 1980s,
see e.g. (Amerio, 1978; Cabannes, 1987; Citrini, 1991;
Schatzman, 1980). To overcome the limitations of these
approaches, where the string needs to be perfect with-
out stiffness, thus discarding the dispersive effect which
has been shown to be of prime importance in the case
of the sitar and tanpura (Chatziioannou and van Wal-
stijn, 2015; Issanchou et al., 2017; Siddiq, 2012), recent
research efforts concentrate toward the development of ef-
ficient, robust and accurate numerical methods in order
to simulate musical strings encountering an obstacle dur-
ing their vibration. Most of the methods presented in the
last years use a regularisation in order to treat numeri-
cally the contact force, see e.g. the energy-conserving
schemes proposed by Bilbao et al. (Bilbao et al., 2015;
Desvages and Bilbao, 2015; Ducceschi et al., 2016) and
by van Walstijn et al. (Chatziioannou and van Walstijn,
2015; van Walstijn and Bridges, 2016; van Walstijn et al.,
2016), the modal approach proposed in (Issanchou et al.,
2017) or the approach followed in (Inácio et al., 2006)
to model the interaction between a puja (exciting stick)
and a Tibetan bowl. In all these studies the contact
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force is modeled using a power-law method with two pa-
rameters defining the stiffness of the repelling force, thus
allowing to cover a wide range of contact laws, from soft
collisions, see e.g. contact between felt and hammer in
piano (Boutillon, 1988), between mallet and membrane
in a kettledrum (Rhaouti et al., 1999) or between finger
and fretboard (Bilbao and Torin, 2015), to hard contacts.
In this article, we will name as compliant approach the
methods using a regularisation to express the repelling
force. In this framework, power-law are often used but
other functions may also be selected. Also, the parame-
ters defining the contact force may have a physical basis,
see e.g. (Goldsmith, 2001) for some examples. On the
other hand, ad hoc values may be used as numerical free
parameters, so that a penalty approach is at hand.

On the other hand, a large body of research has
been dedicated to the development of nonsmooth nu-
merical methods in order to deal efficiently with nu-
merical challenges posed by contact and friction forces.
These methods rely on specific assumptions (e.g. no in-
terpenetration is allowed between the contacting bod-
ies) and use mathematical tools from the measure the-
ory, differential inclusions and complementarity systems.
The first developments have been pioneered by Jean and
Moreau, see e.g. (Jean, 1999; Jean and Moreau, 1987),
continued by numerous investigations (Doyen et al., 2011;
Janin and Lamarque, 2001; Paoli and Schatzman, 2002),
and are now summarized in reference books (Acary and
Brogliato, 2008; Studer, 2009). Nonsmooth methods
have been succesfully applied in a variety of contexts
ranging from granular media (Renouf et al., 2004), geo-
materials (Jean, 1995), multibody dynamics (Chen et al.,
2013) to realistic simulations of hair motions and living
systems (Acary et al., 2014; Bertails-Descoubes et al.,
2011). In the field of vibration, the method has been ap-
plied to rotor/casing contacts in (Meingast et al., 2014)
as well as to string vibrations in (Ahn, 2007), where the
study was however limited to the case of a perfect string
without stiffness and a frictionless contact. In the area of
musical acoustics, the action of a grand piano has been
recently simulated efficiently by using a nonsmooth ap-
proach (Thorin et al., 2017).

As remarked by a number of investigators, numer-
ical integration for contact dynamics is generally time-
consuming due to the high-frequency content gener-
ated (Doyen et al., 2011; Issanchou et al., 2017), leading
to consider very small time steps in order to achieve con-
vergence. In this context, nonsmooth numerical meth-
ods, as avoiding the costly step of finding the zeros of
a nonlinear function with a Newton-Raphson approach
and using efficient numerical methods to solve a linear
complementarity problem, should decrease the compu-
tational burden (Acary and Brogliato, 2008). On the
modeling point of view, nonsmooth methods are partic-
ularly appealing when one only needs an efficient nu-
merical method to repel a vibrating structure from an
obstacle with a simple representation of the dissipation
phenomena at contact. As such, nonsmooth methods de-
scribe the contact law with a single parameter: the coef-

ficient of restitution, instead of the two parameters used
in the power-law approach as done in e.g. (Bilbao et al.,
2015; Chatziioannou and van Walstijn, 2015; Issanchou
et al., 2017) in the conservative case, and additional pa-
rameters to model the dissipation following a Hunt and
Crossley approach. Let us note that it is also difficult
with the power-law approach to obtain large dissipation
rates at contact. For this purpose, more complicated
compliant models must be introduced including plastic-
ity effects (Nguyen and Brogliato, 2014). Less modelling
parameters could be seen as an advantage, but also as a
drawback if one prefers to have more degrees of freedom
in order to represent different contact laws with a large
variety of stiffness and/or damping to account for a phys-
ical reality having perceptual effects. A typical example
is that of the guitar where very different parameters are
used for the string/fret and finger/fingerboard collisions
(Bilbao and Torin, 2015). Note however that nonsmooth
methods can also be conjugated with a material descrip-
tion of a soft structure including nonlinear stiffness and
damping to account for these effects and tune them at
ease, see e.g. the recent modeling of felt in piano action
proposed in (Thorin et al., 2017).

In this contribution, a nonsmooth numerical ap-
proach based on a Moreau-Jean time-stepping scheme is
adapted to the case of a string vibrating against a stiff
obstacle with hard contacts, for the specific purpose of
musical acoustics. The examples have been purposely
chosen to restrict our discussion to hard contacts where
the nonsmooth method should be an interesting alterna-
tive to compliant approach. Standard nonsmooth meth-
ods are known to produce numerical dispersion (Yoong
et al., 2017), which is a specific issue in the field of mu-
sical acoustics. During non-contacting phases, an exact
scheme, introduced in (Bilbao, 2009) and used for a com-
pliant contact approach in (Issanchou et al., 2017; van
Walstijn and Bridges, 2016), is considered in order to
ensure a numerical integration method with controlled
dispersion. The efficiency of the scheme is demonstrated
on two examples which are compared either to a com-
pliant approach or to experimental results. First, the
case of a two-point bridge mimicking a tanpura is shown.
Results are then extended to a fretted electric bass hav-
ing at most 20 contact points. The accuracy of the two
different modeling options (nonsmooth vs compliant ap-
proach) are discussed and the computational burdens of
these methods are compared.

II. MODEL

A. Vibrating string against a unilateral obstacle

We consider a stiff string of length L (m), mass
per unit length µ (kg· m−1) and tension T (N). Its
Young’s modulus E (Pa) and moment of inertia I de-
fine its stiffness. The string vibrates against a unilateral
obstacle, the profile of which is described by g(x) (see
Fig. 1). Eq. (1) describes the displacement of the string
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FIG. 1. Scheme of a string vibrating against a unilateral

obstacle.

along (Oz):

µutt − Tuxx + EIuxxxx = f(x, t), (1)

where the subscript t (respectively x) refers to a partial
derivative with respect to time (respectively space). The
right-hand side f(x, t) refers to the contact force per unit
length.

The string is simply supported at its endpoints, so
that ∀t ∈ R+: u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) =
0. In order to achieve a fine representation of eigenfre-
quencies and damping parameters, we employ the fol-
lowing modal description of the string:

u(x, t) =

Nm∑
j=1

qj(t)φj(x), (2)

where φj(x) =
√

2
L sin

(
jπx
L

)
and qj is the jth modal am-

plitude.
Inserting the modal expansion (2) into the equation

of motion (1), multiplying by another mode shape and
integrating over the string length, and then adding losses
to the final modal equations, one obtains:

µ(q̈ + Ω2q + 2Υq̇) = F, (3)

where q = [q1, q2, ...qNm ]T is the vector of unknown
modal amplitudes. Ω and Υ are diagonal matrices such
that Ω contains radian frequencies Ωjj = ωj = 2πνj ,
νj being the jth eigenfrequency, and Υ contains damp-
ing coefficients Υjj = σj . These quantities follow a
model presented in (Issanchou et al., 2017, 2018; Paté
et al., 2014; Valette and Cuesta, 1993). We briefly recall
the expression of eigenfrequencies and damping param-
eters in Appendix. The vector F contains modal forces
and represents the projection of the contact force onto

mode shapes, its entries read Fp =
∫ l

0
f(x, t)φp(x)dx, for

p ∈ {1, . . . , Nm}.

B. Contact force

We choose to model the contact condition by a uni-
lateral constraint in order to avoid the interpenetration
of the solids. Defining η(x, t) = u(x, t)− g(x) as the dis-
tance between the string and the obstacle, this constraint
is given by:

η(x, t) ≥ 0,∀t ∈ R+. (4)

In order to satisfy Eq. (4), the reaction force introduced
in Eq. (1) has to be positive and vanishes only if the
constraint is not active (open contact). The complete
model is the Signorini law which can be simply written
with the following notation (Acary and Brogliato, 2008;
Signorini, 1933):

0 ≤ η(x, t) ⊥ f(x, t) ≥ 0, (5)

meaning that either η(x, t) = 0 and f(x, t) ≥ 0, or
f(x, t) = 0 and η(x, t) ≥ 0.

Second order dynamics with unilateral constraints
involves velocity jumps. The usual setting is to consider
that the velocity map t 7→ ut(x, t) is a right continu-
ous function, i.e. u+

t (x, t) = ut(x, t), and of bounded
variation. The notation u+

t (x, t) (respectively u−t (x, t))
stands for the right limit (respectively the left limit) of
t 7→ ut(x, t) at time t, i.e. u+

t (x, t) = lims→t
s>t

ut(x, s) (re-

spectively u−t (x, t) = lims→t
s<t

ut(x, s) ). Since the function

is of bounded variation, these limits exist.
In order to define the solution, especially in a discrete

(finite-dimensional) system, a condition on the velocity
after an impact must be specified. To this purpose, we
choose the Newton impact law (Acary, 2016):

η̇+(x, t) = −%η̇−(x, t) if η(x, t) = 0, (6)

where the coefficient of restitution % ∈ [0, 1] defines the
string behaviour at impact instants.

In the sequel, the Signorini law is formulated at the
velocity level, which allows one to explicitly control con-
tact losses in taking into account the Signorini condition
together with the impact law. Therefore, the contact law
writes:{

0 ≤ η̇+(x, t) + % η̇−(x, t) ⊥ f(x, t) ≥ 0 if η(x, t) = 0

f(x, t) = 0 otherwise.

(7)
The viability Lemma of Moreau (Moreau, 1999) ensures
that the condition at the velocity level (7) implies the
condition at the position level (5) if the constraint (4) is
satisfied at the initial time.

Since the system has some discontinuities in the ve-
locity w = q̇, the acceleration ẇ is not everywhere de-
fined in the classical sense. A differential measure dw is
associated with the velocity w and plays the role of the
acceleration. If we assume furthermore that w is of spe-
cial bounded variation (i.e. w may be decomposed into
a sum of an absolutely continuous function and a jump
function), the differential measure can be decomposed
with respect to the Lebesgue measure dt as:

dw = q̈dt+ (w+ −w−)dν̃, (8)

where dν̃ is a discrete measure of the form
∑
i aiδsi with

given sequences {ai} and {si} of real numbers. The no-
tation δs refers to the Dirac measure supported at time s
(see e.g. (Moreau, 1988) for details on differential mea-
sures). In other words, ẇ(t) = q̈(t) almost everywhere

J. Acoust. Soc. Am. / 1 June 2018 JASA/Nonsmooth contact dynamics for string collisions 3



and at impact instants t∗ we have dw = (w+ −w−)δt∗ .
Similarly, the reaction force in the modal space is defined
by a vector measure:

dI = Fdt+ Pdν̃, (9)

where the vector F corresponds to a modal continuous
contact force and the vector P is a modal contact impulse
corresponding to velocity jumps. In terms of differential
measure, the modal equations read as:

µ(dw + Ω2qdt+ 2Υq̇dt) = dI. (10)

By substituting (8) and (9) in (10), we remark that
Eq. (3) is satisfied dt–almost everywhere. At the instants
of discontinuities, we obtain the impact equation:

µ(w+ −w−) = P. (11)

The contact condition at the velocity level is also refor-
mulated in terms of measures as follows:{

0 ≤ η̇+(x, t) + %η̇−(x, t) ⊥ di ≥ 0 if η(x, t) = 0

di = 0 otherwise,

(12)
where di is the reaction force in the physical space. The
relation between η, η̇ and q, q̇ is given by the rela-
tions between the quantities in the physical space and
the modal space. Let us introduce the column vector
φ(x) containing the Nm first string modes, defined by
φj = φj(x), ∀j ∈ {1, ..., Nm}. From (2), we get that
u(x, t) = φT (x)q(t) where q = [q1(t), ..., qNm

(t)]T and
therefore:

η(x, t) = φT (x)q(t)− g(x) and η̇(x, t) = φT (x)q̇(t).
(13)

By duality, we also have:

dIj =

∫ L

0

φjdidx. (14)

Altogether, the dynamics is given by the following mea-
sure differential complementarity problem:

q̇ = w

µ(dw + Ω2qdt+ 2Υq̇dt) = dI

q(0) = q0,w(0) = w0

η = φTq− g
η̇ = φT q̇

dIj =

∫ L

0

φjdidx

0 ≤ η̇+ + %η̇− ⊥ di ≥ 0 if η ≤ 0.

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

(15g)

III. NUMERICAL METHOD

In this section, we present a discretisation of the
problem presented in Section II which is able to han-

dle nonsmooth contacts. The distinctive feature of the
proposed scheme is to combine an exact method for
the linear (non-contacting) part of the equations of mo-
tion with a Moreau-Jean time-stepping approach to han-
dle impulses and velocity jumps. The resulting scheme
thus prevents dispersion when the string freely vibrates,
which represents an improvement of already existing non-
smooth time-stepping methods.

In the rest of the paper, the variable tn denotes the
discrete time tn = n∆t, where ∆t is the time step. The
spatial grid is defined by xi = i∆x, ∀i ∈ {0, ..., N}, where
∆x = L

N is the spatial step. Due to selected boundary
conditions, u(x0, t) = 0 and u(xN , t) = 0 ∀t ∈ R+, so
that only the interior points of the grid are considered.

As prescribed in a Moreau-Jean scheme, Eq. (15b) is
integrated over (tn, tn+1]. One thus obtains:

µ(w+(tn+1)−w+(tn)) + µΩ2

∫ tn+1

tn
qdt

+ 2µΥ

∫ tn+1

tn
q̇dt =

∫
(tn,tn+1]

dI. (16)

The collision term on the right-hand side of Eq. (16)
is treated with the Moreau-Jean scheme, leading to the
following discrete approximation:

Pn+1
i ≈

∫
(tn,tn+1]

dIi, (17)

where Pn+1 = [Pn+1
1 , ..., Pn+1

N−1]T is a contact impulse
over the time interval, which will be defined later through
a complementarity condition. The Moreau-Jean scheme
is generally used with a θ-method to approximate the
stiffness and damping terms in Eq. (16), as prescribed for
example in (Acary and Brogliato, 2008; Jean, 1999; Jean
and Moreau, 1987; Moreau, 1999). However, for mechan-
ical vibratory systems expressed in the modal basis and
with application to musical acoustics where the problem
of numerical dispersion is particularly stringent, the ex-
act scheme used in (Bilbao, 2009; Issanchou et al., 2017)
shall be considered in order to improve the discretisation
of the stiffness and damping terms. Using the follow-
ing notations for discrete approximations, wni ≈ w+

i (tn)
, and qni ≈ qi(tn), it reads:

∫ tn+1

tn
qidt ≈

∆tqni

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

, (18)

∫ tn+1

tn
σiq̇idt ≈

σ∗
i ∆twni

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

, (19)
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where the introduced terms γi and σ∗
i are such that:

γi =
2

ω2
i∆t2

− Ai
1 + ei −Ai

, (20)

σ∗
i =

(
1

∆t
+
ω2
i∆t

2
− γi

ω2
i∆t

2

)
1− ei
1 + ei

, (21)

with:

Ai = e−σi∆t
(

e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)
, (22)

ei = e−2σi∆t. (23)

Finally, one obtains the following time-stepping scheme
from (16) for the update of the modal velocity vector
using (18) and (19):

wn+1
i − wni +

∆tω2
i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

qni

+
2∆tσ∗

i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

wni =
1

µ
Pn+1
i , (24)

In matrix form, it writes:

wn+1 −wn + ∆tCqn + ∆tČwn =
1

µ
Pn+1, (25)

where C and Č are diagonal matrices with entries:

Cii =
ω2
i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

,

Čii =
2σ∗

i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗
i ∆t

.

The update of the modal amplitudes is given by the dis-
cretisation of (15)(a) as:

qn+1
i = qni + ∆twn+1

i (26)

We introduce a matrix S containing the Nm first string
modes, defined by Sij = φj(xi), ∀(i, j) ∈ {1, ..., N − 1}×
{1, ..., Nm}. Defining the physical discrete displacement
vector u = [u(x1, t), ..., u(xN−1, t)]

T , one easily obtains
the following relationship: u = Sq (Issanchou et al.,
2017). Denoting the displacement of the string at con-
tact points by uc = Scq, its velocity by vc = Scw and
introducing the velocity without contact wn+1

free as:

wn+1
free = wn −∆tCqn −∆tČwn, (27)

one obtains the following linear equation between vn+1
c

and pn+1
c , with Pn = ∆xSTc pnc :

vn+1
c = Scw

n+1
free + Wccp

n+1
c , (28)

where the Delassus’ matrix Wcc is computed as:

Wcc =
∆x

µ
ScS

T
c . (29)

The complementarity condition (15g) is discretised in
a fully implicit way as prescribed for the Moreau-Jean
scheme. For a contact point indexed by ci, one has to
solve:{

pn+1
ci = 0 if ηnci > 0

0 ≤ vn+1
ci + %vnci ⊥ pn+1

ci ≥ 0 if ηnci ≤ 0.
(30)

Let us denote the index set of active contact points as
c̄ = {ci | ηnci ≤ 0}. The impulse pn+1

c̄ is the solution of:{
vn+1
c̄ = Sc̄w

n+1
free + Wc̄c̄p

n+1
c̄

0 ≤ vn+1
c̄ + %vnc̄ ⊥ pn+1

c̄ ≥ 0
(31)

which is a Linear Complementarity Problem (LCP). A
LCP consists in finding the vectors z,λ such that:{

z = Wλ+ a

0 ≤ z ⊥ λ ≥ 0
(32)

for some given matrix W and given vector a. Let us
recall that the LCP has a unique solution for all a if
the matrix W is a positive definite matrix (Cottle et al.,
1992). It is straightforward to identify in (32) the vector
a as a = Sc̄w

n+1
free + %vnc̄ and the matrix W = Wc̄c̄. In

our application, the Delassus matrix W is obviously sym-
metric positive definite and a unique solution is ensured.
If the string vibrates against a single point obstacle, the
Delassus matrix reduces to a positive scalar and the LCP
can be solved directly as:

pn+1
c̄ = max

(
0,− 1

Wc̄c̄
(vn+1
c̄,free + %vnc̄ )

)
. (33)

In the case of a distributed obstacle, a LCP solver has
to be employed. In this article, we employ the numeri-
cal solvers provided by the Siconos software (Acary et al.,
2016) which is dedicated to the modelling and simulation
of nonsmooth dynamical systems. In Siconos, several nu-
merical algorithms are implemented to solve LCPs. De-
pending on the number of constraints and the required
accuracy, pivoting or projected successive overrelaxation
(PSOR) techniques may be used (Cottle et al., 1992).
Simulations in the present paper are based on the use
of a standard pivoting technique for solving LCP, known
as Lemke’s method (Cottle et al., 1992) to get a high
precision solution at the machine accuracy.

IV. NUMERICAL RESULTS

A. One contact point: the case of tanpura

In this section, the case of a two point bridge is con-
sidered, which consists in placing a point obstacle near a
boundary. The string parameters are selected as in (Is-
sanchou et al., 2017) for the purpose of comparison. Ge-
ometric and material relevant properties are recalled in
Table I. The point obstacle is located at 6 mm from the
boundary x = 0, in agreement with the range of positions
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mentioned in (Valette and Cuesta, 1993) to mimick the
tanpura bridge with a two point approximation.

L (m) d (mm) T (N) µ (kg.m−1)

1.002 0.43 180.5 1.17× 10−3

TABLE I. Electric guitar string properties.

The initial position of the string is a smoothed
centered triangle with a maximal amplitude u0,max =
1.8 mm and no velocity. The nonsmooth numerical pro-
cedure is compared to the power-law approach described
in (Issanchou et al., 2017), where the contact force is
modeled as f = K[η]α+, where [η]+ = 1

2 [η + |η|], with

K = 1013 and α = 1.5 for simulations. In order to be in
line with the assumptions retained in (Issanchou et al.,
2017), we select an equal number of modes Nm and grid
points N , specifically Nm = N − 1, and set N = 1002
for the simulations. For completeness, the outcomes of
the nonsmooth method are compared for both % = 0 and
% = 1.

A convergence study has been led using the stringent
criterion introduced in (Issanchou et al., 2017) to control
the long-term behaviour. The criterion inspects relative
errors of the numerical results on a 3 seconds simulation
and imposes the error to be less than 10−1. Following
that, the sampling frequency is selected as Fs = 2 MHz
for both compliant and nonsmooth cases, since it has
been found that the convergence is obtained at that sam-
pling rate for the two methods.

The linear modal characteristics of the string are also
selected as in (Issanchou et al., 2017), eigenfrequencies
and damping ratios resulting from an experimental iden-
tification on a real guitar string. The identification has
been realised up to 7200 Hz, then models are employed to
input linear characteristics into the simulation up to the
desired maximal frequency. Models used for linear char-
acteristics are recalled in Appendix, and selected values
resulting from model fitting shown in (Issanchou et al.,
2017) are given in Table II.

B δve Q−1
te

1.78× 10−5 4.5× 10−3 2.03× 10−4

TABLE II. Model parameters for the electric guitar string.

Fig. 2 shows the string displacement at a point lo-
cated at 1 cm from x = L. Associated sound files corre-
sponding to the displacement resampled at 44.1 kHz are
available as supplementary materials1. Its appears that
selecting % = 0 or % = 1 has no significant macroscopic
effect on the simulation result. Both values give a tempo-
ral displacement extremely similar to that obtained with
the penalty approach. In all cases, a crenel shape ap-
pears which evolves in time due to effects of dispersion
and damping. As analysed for the power-law approach
in (Issanchou et al., 2017) where simulation outcomes are

compared to experimental signals, we can thus conclude
that the nonsmooth method also retrieves the essential
features of the string vibration against a point obstacle,
with the same global accuracy as that obtained with the
penalty approach.

Spectrograms of numerical signals with the penalty
approach and the nonsmooth method with % = 1 are
shown in Fig. 3. No significant difference is observed
when % = 0, therefore we do not show the spectrogram in
this case. In both cases, there is no missing mode despite
the centered initial condition, due to energy transfers in-
duced by collisions. Moreover, both methods accurately
recover the descending formant observed experimentally.
Such formants constitute a distinctive feature of musical
instruments such as tanpuras.

We now explore the local behaviour of the simulated
string displacement at the obstacle position uc in Fig. 4,
with the nonsmooth method, % = 0 and % = 1, as well as
with the penalty approach. Zooms focus on the first two
contact periods. Despite similar global waveshapes, the
string has local specific and distinguishable behaviours,
around the obstacle, when colliding with it. When % = 0,
as expected since no back velocity is enforced, the string
sticks to the obstacle for a short period of time when col-
liding, and then leaves it when the wave propagates back
(i.e. around 3.8× 10−3 s for the first contact time, then
around 8.8×10−3 s for the second contact). When % = 1,
the string bounces off the obstacle with a magnitude of
about 10−7 m and the signal takes the form of one time
step oscillations until the string leaves the obstacle for
a longer time around 3.8 × 10−3 s. With the penalty
approach, smoother oscillations appear with similar am-
plitudes. Interestingly, the envelope of oscillations of the
nonsmooth signal closely fits oscillations of the compliant
signal. The detailed behaviour of the string, computed
with the nonsmooth method and different values of Fs,
is presented in Fig. 5. Increasing the sampling frequency
does not significantly change the global string behaviour,
however the local behaviour at the obstacle position is
affected. Note also that a very small penetration occurs
with the nonsmooth method, a numerical artifact linked
to the time discretisation. This numerical penetration is
reduced and small bounces can be observed when % = 1,
after the string reaches the obstacle. When % = 0, the
string sticks to the obstacle at the height given by the
first discrete point where contact condition is activated,
defining the depth of this numerical penetration.

Finally, nonsmooth and power-law approaches give
very similar results in the case of a point obstacle, and
no significant difference is observed between simulations
with % = 0 and % = 1 in the nonsmooth case, except when
focusing on the obstacle position. This can be related to
the analytic solutions for a string with a single contact
point where a sticking time is obtained as long as the
wave has not come back, see e.g. (Cabannes, 1984, 1987)
and (Doyen et al., 2011; Yoong et al., 2017) for a similar
case with bars.

We now discuss time costs of the nonsmooth (% = 1)
and power-law (α = 1.5, K = 1013) approaches. Com-
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FIG. 3. Spectrograms of the string displacement in the case of a point obstacle near a boundary (dB, with a 70 dB dynamic)

(a) power-law method, Fs = 2 MHz (b) nonsmooth method, Fs = 2 MHz, % = 1.

putation costs, excluding initialisation, saving data and
energy computation, are presented in Table III. For the
compliant method, they are presented either with a spa-
tial grid which is fully included in the matrix S, mean-
ing that its dimensions are (N − 1)2, or with a matrix
S which only includes the obstacle position, meaning
that its dimensions are 1 × N − 1. The former case
strictly corresponds to the scheme presented in (Issan-
chou et al., 2017), while the latter case (modified compli-
ant method) contains an improvement where the number
of grid points N is not anymore related to the number of
modes Nm. This further step is described in (van Wal-
stijn and Bridges, 2016), and is also implemented for the
nonsmooth method. All computations presented in Ta-
ble III were led with MATLAB on a single CPU with a
clock at 2.4 GHz.

One can observe that taking into account only the
contact point in the modified compliant method allows
one to obtain a significant gain in computational times
since a factor two is present as compared to the power-law
method with a full S matrix. A more significant gain can
be obtained due to the nonsmooth method: computation
costs are 12 to 37 times smaller. This is due in particular
to the reduced number of matrix vector products as well
as a reduced time for solving the LCP (straightforward
in the point obstacle case) compared to Newton-Raphson
iterations. Note also that computation times has been
found to be once again divided by a factor two by running
the same code with the SICONOS software in a optimized
C/C++ implementation (Acary et al., 2016).

In this section, we discussed the behaviour of a string
vibrating against a point obstacle, mimicking the case of
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penalty approach, Fs = 2 MHz (green line) and the nonsmooth method with % = 0 (black dashed line, black line in zooms) and

% = 1 (red line), Fs = 2 MHz.
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FIG. 5. Displacement of the string at the obstacle position. Comparison between the numerical nonsmooth simulation with

Fs = 2 MHz (% = 0: black dashed line, % = 1: red line) and Fs = 8 MHz (% = 0: blue dashed line, % = 1: magenta line): (a)

first overall string/obstacle contact (b) second overall string/obstacle contact.

a tanpura. We observed that the nonsmooth simulation
in the case of a two point bridge was very close to the
simulation led with the power-law method, both being
consistent with experimental data presented in (Issan-
chou et al., 2017). Moreover, it seems that the global
behaviour of the string does not rely on the coefficient
of restitution, even though the local string behaviour at
the contact point does. In the following, we investigate
a case implying multiple contact points.

B.Multiple contact points: application to the electric bass

In this section, the complexity is increased by consid-
ering a string vibrating against the fretboard of an elec-
tric bass with up to 20 contact points. Electric basses are
known for their modern playing techniques such as pop
and slap where numerous contacts are intentionally pro-
voked in the transient attack, giving a peculiar bright and
percussive sound (Bacon , 2013; Issanchou et al., 2018).
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Compliant approach, full spatial grid included in S

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 30 55 105 362

Other operations 175 352 710 3964

Total time 205 407 815 4326

Compliant approach, S at the obstacle position only

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 7.7 12 29 140

Other operations 100 196 343 1592

Total time 108 208 372 1732

Nonsmooth method

Fs (kHz) 44.1 88.2 176 1000

LCP 1.4 5.3 3.9 21

Computation in (27) 1.4 2.6 5.2 38

Other operations 4.3 8.0 13 83

Total time 7.1 16 22 142

TABLE III. Computation times with the compliant and non-

smooth methods (implemented in Matlab), in seconds, for the

simulation of a one second signal in the case of a point obsta-

cle.

0

-5

5

fret 1 fret 20
g

x [mm]
800400

z [mm]

FIG. 6. A string vibrating against a bass guitar fretboard

represented by the function g.

Fig. 6 shows the guitar neck profile with its 20 frets
together with the initial condition imposed to the string.
A G-string of an electric bass is considered for simula-
tions, its properties are given in Table IV. The string is
plucked at 64 cm from the nut with a maximal initial
amplitude u0,max = 3.6 mm. As in the previous section
and according to the study led in (Issanchou et al., 2018),
measured values of the linear characteristics are selected
to fit with the model up to about 3400 Hz, then mod-
els are employed with parameters reported in Table V.
In order to perform comparisons with the power-law ap-
proach and with experimental results obtained in (Issan-
chou et al., 2018), 863 modes are retained for simulations.
The convergence of data is determined according the cri-
terion presented in (Issanchou et al., 2017, 2018) applied
over a period of time recovering all string/neck collisions.
This implies large values of Fs, nevertheless smaller val-
ues may be selected for other applications. For instance,
a convergence study on the spectral content, associated
to a perception evaluation of signals with different Fs,

may lead to smaller values of Fs with a satisfactory sound
rendition. This is however not the purpose of the present
paper.

L (m) d (mm) dcore (mm) T (N) µ (kg.m−1 )

0.863 1.14 0.43 191.6 6.69× 10−3

TABLE IV. Electric bass string properties.

B δve Q−1
te

3.5× 10−5 0.01 6× 10−6

TABLE V. Models parameters for the electric bass string in-

stalled on an electric bass.

Temporal results are shown in Fig. 7, with a com-
parison of the nonsmooth approach with the experimen-
tal result already shown in (Issanchou et al., 2018), and
then with the compliant method. A spectral comparison
is provided due to the spectrograms of the displacements
shown in Fig. 8. Related sound files corresponding to the
displacement resampled at 44.1 kHz are available as sup-
plementary materials2. The presence of multiple contacts
makes the dynamics more complex but leads once again
to similar results for the two limit values of the restitu-
tion coefficient, namely % = 0 and % = 1. Simulation
results show that the temporal signals are almost coin-
cident. Consequently only the case % = 1 is presented.
It thus appears that the dynamics of collisions, from a
macroscopic point of view, is still dominated by waves
going back and forth in inter-fret intervals.

Comparing outcomes of the displacement obtained
with the nonsmooth method with experimental results
shows an excellent agreement, both in the global shape
of the time series and in the details shown in zooms in
Fig. 7. The occurrence of a substantial high frequency
content from the very first collisions is clearly ascertained
and retrieved, and the long term behaviour remains sim-
ilar. A few discrepancies appear, however as explained
in (Issanchou et al., 2018) they are probably mainly due
to (i) uncertainties related to the experimental measure-
ment of the neck profile and, to a lesser extent, to the
measured properties of the string; (ii) the assumption
that the fretboard is a rigid obstacle. Comparing the
two numerical methods shows that they behave very sim-
ilarly, with only slight discrepancies.

Focusing on spectrograms, a similar structure be-
tween experimental and numerical data can be observed.
In particular, energy transfers appear in the transient
attack between 0 and 0.09 s, this time window corre-
sponding to the occurrence of contacts between the string
and the fretboard. Once again, this collision period of
time, together with specific reinforced spectral zones (e.g.
around 4500 Hz), is particularly well retrieved by numer-
ical simulations. From a perceptive point of view, associ-
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FIG. 7. Displacement of the string vibrating against the neck of a bass guitar, taken at 9 mm from the extremity x = L.

Comparison between the experimental signal (blue line) and the nonsmooth method, % = 1, Fs = 4 MHz (red line), and

between the nonsmooth method, % = 1, Fs = 4 MHz (red line) and the compliant method, Fs = 8 MHz (green line).
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compliant method, Fs = 8 MHz (c) nonsmooth method, Fs = 4 MHz, % = 1.

ated sounds, given as supplementary materials, are very
close to the ear.

Finally, the global dynamics of the string colliding
with frets is well described by both compliant and
nonsmooth approaches. In the studied configuration,
both numerical methods produce very similar results
at the measurement point considered, selected from
experiments. Furthermore, the value of the restitution

coefficient % does not substantially affect simulations,
meaning that, in the present case, the nonsmooth
approach would be free of parameters to be adjusted.

The simulation of 0.1 s of signal (time interval recov-
ering all contacts) at Fs = 1 MHz lasts 5 minutes with
Matlab while it lasts only 30 s with Siconos. Numerical
costs are thus found to be divided by a factor 10: once
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again, an important gain in computation can be achieved
with the nonsmooth method on Siconos.

V. CONCLUSION

A nonsmooth approach to the numerical simulation
of musical strings colliding with an obstacle has been pre-
sented. The main feature consists in combining an exact
scheme for the vibratory (linear) part and a Moreau-Jean
scheme for the contact force, embedded in a modal de-
scription of the dynamics. This results in a computa-
tionally efficient scheme preventing numerical dispersion
during free flight phases. The method has been tested
on two cases involving either one contact point (a two
point bridge mimicking a tanpura) or multiple contacts
(the case of an electric bass). In both cases, it has been
found that the nonsmooth approach is very accurate and
compares well with experiments and simulations led with
a compliant method. A significant gain in computational
times is obtained with the proposed nonsmooth method.
Interestingly, for the two test cases, simulation results
are relatively insensitive to the choice of the value of the
restitution coefficient, so that the model could finally be
considered as free of parameters to describe collisions.
This particular behaviour should however be limited to a
few number of pointwise contacts where, from a macro-
scopic point of view, the behaviour during collisions is
governed by waves going back and forth in the string.
In contrast, the coefficient of restitution should have an
effect when considering a large number of contact points
or continuous contact regions (e.g. a fretless bass), where
sticking may occur on a whole interval. Note also that
the nonsmooth method has been tested in specific ex-
amples where a hard collision is at hand and no specific
physical detail on the contact is needed to have efficient
simulations accounting for the rich contact dynamics of
the string. For other cases encountered in musical acous-
tics where the contact is softer, e.g. mallet/membrane or
finger/string interactions, the nonsmooth approach may
also be used, either with a refined continuous descrip-
tion of the deformable bodies, involving an increase of
the computational burden to take into account the whole
dynamics; or with a localised behaviour law to account
for the felt as done for example in (Thorin et al., 2017).
These points are thus left for further studies where a
more complete comparison of nonsmooth and compliant
methods could be given.

APPENDIX: LINEAR CHARACTERISTICS

A complete model for the computation of eigenfre-
quencies is given in (Issanchou et al., 2018) which in-
cludes the tension and the stiffness of the string, together
with the potential mobility at one extremity, as observed
e.g. for string instruments such as bass and guitar. The
eigenfrequencies are then described by:

νj = j
c

2L

(
1 +

Bj2

2
+
µc

jπ
Im(Ynut(ω0,j))

)
, (A.1)

where c =
√

T
µ is the wave velocity of the ideal string,

B = π2EI
TL2 is the inharmonicity coefficient and Ynut is

the mobility at the nut, evaluated at ω0,j = j πcL . In this
paper, the mobility is taken as zero in the case of a two
point bridge while it takes measured values (see (Issan-
chou et al., 2018)) in the case of an electric bass.

Damping parameters are modeled through the qual-
ity factor Qj = πνj/σj , such that:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te +
µc2

πLνj
Re (Ynut(ωj)) , (A.2)

where subscripts air, ve and te respectively refer to losses
due to air friction, viscoelastic and thermoelastic effects.
Their detailed expressions are given by:

Q−1
j,air =

jc

2Lνj

R

2πµνj
, (A.3)

Q−1
j,ve =

4π2µEcoreIcoreδve

T 2

ν3
0,j

νj
, (A.4)

where R = 2πηair + 2πdeq
√
πηairρairνj , with ηair and ρair

the dynamic viscosity coefficient and the air density re-
spectively. Usual values ηair = 1.8×10−5 kg.m−1.s−1 and
ρair = 1.2 kg.m−3 are selected. The employed equivalent
diameter is expressed as:

deq =
π

2

((
1 +

2

π

)
2rwinding + 2rcore

)
, (A.5)

where rwinding and rcore are the radii of the string wind-
ing and core respectively.
Viscoelastic effects are assumed to be located in the
string core so that the Young’s modulus Ecore and the
moment of inertia I = πr4

core/4 are related to the core

only. The notation ν0,j refers to the value jc
2L and Q−1

te

is taken as a constant.
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Paté, A., Le Carrou, J.-L., and Fabre, B. (2014). “Predicting the
decay time of solid body electric guitar tones,” Journal of the
Acoustical Society of America 135(5), 3045–3055.

Raman, C. (1921). “On some indian stringed instruments,” Indian
Association for the Cultivation of Science (7), 29–33.

Renouf, M., Dubois, F., and Alart, P. (2004). “A parallel version
of the non smooth contact dynamics algorithm applied to the
simulation of granular media,” Journal of Computational and
Applied Mathematics 168(1), 375 – 382.

Rhaouti, L., Chaigne, A., and Joly, P. (1999). “Time-domain mod-
eling and numerical simulation of a kettledrum,” Journal of the
Acoustical Society of America 135(6), 3545–3562.

Schatzman, M. (1980). “A hyperbolic problem of second order
with unilateral constraints: the vibrating string with a concave
obstacle,” Journal of Mathematical Analysis and Applications
73, 138–191.

Siddiq, S. (2012). “A physical model of the nonlinear sitar string,”
Archives of acoustics 37(1), 73–79.

Signorini, A. (1933). “Sopra alcune questioni di statica dei sistemi
continui,” Annali della Scuola Normale Superiore di Pisa 2, 231–
251.

Studer, C. (2009). Numerics of unilateral contacts and friction,
47 of Lecture Notes in Applied and Computational Mechanics
(Springer Verlag, Berlin Heidelberg).

Thorin, A., Boutillon, X., Lozada, J. and Merlhiot, X. (2017).
“Non-smooth dynamics for an efficient simulation of the grand
piano action,”, Meccanica 52(11-12), 2837–2854.

Trautmann, L., and Rabenstein, R. (2004). “Multirate simulations
of string vibrations including nonlinear fret-string interactions
using the functional transformation method,” EURASIP Journal
on Applied Signal Processing 7, 949–963.

Valette, C., and Cuesta, C. (1993). Mécanique de la corde vibrante
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