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We experimentally and numerically investigate the temporal aspects of turbulent spots
spreading in a plane Couette flow for transitional Reynolds numbers between 300 and
450. Spot growth rate, spot advection rate and large-scale flow intensity are measured
as a function of time and Reynolds number. All these quantities show similar dynamics
clarifying the role played by large-scale flows in the advection of the turbulent spot.
The contributions of each possible growth mechanism: growth induced by large scale
advection or growth by destabilization, are discussed for the different stages of the spot
growth. A scenario which gathers all these elements is providing a better understanding
of the growth dynamics of turbulent spots in plane Couette flow that should possibly
apply to other extended shear flows.

Key words:

1. Introduction

Transition to turbulence in wall-bounded shear flows often occurs through subcritical
scenarios when their natural control parameter, the Reynolds number (Re) is increased.
This is the case of plane Couette flow (PCF), Hagen-Poiseuille flow, Taylor-Couette flow
(when the outer cylinder is rotating) and plane Poiseuille flow. In all these cases, the
laminar profile is linearly stable for Re < Rec but it is actually observed to be nonlinearly
destabilized by finite amplitude perturbations above Reg < Rec. Below this threshold
Reg, any perturbation brought to the laminar profile eventually vanishes. Above, the flow
is highly sensitive to the perturbation nature and intensity. The ultimately observed state
results from the competition between coexisting turbulent and laminar areas. When Re
is larger than Ret > Reg, this final state consists of homogeneous featureless turbulence,
while for Reg < Re < Ret, it involves both laminar and turbulent areas. This mixed
state can be unpredictably evolving or steady and organized –as in the turbulent spiral
formerly observed by Coles (1965) and van Atta (1966) in Taylor-Couette flow and later
characterized at a much larger aspect ratio by Prigent et al. (2002). In both cases, the
laminar-turbulent interfaces are found to be oblique, a so far unexplained feature shared
by all such patterns now observed in all the extended ”subcritical” flows cited above –
see Prigent & Dauchot (2005), Barkley & Tuckerman (2005) and Duguet et al. (2010) for
plane Couette flow and Hashimoto et al. (2014) and Tuckerman et al. (2014) for plane
Poiseuille flow. These patterns are even observed in Waleffe flow, a shear flow without
walls, as recently proven by Chantry et al. (2016).

† Email address for correspondence: monchaux@ensta.fr
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More basically, the simple development of turbulence within a formerly laminar state
is far from being fully understood. From the early observations by Emmons (1951) in
boundary layers, it obviously appears that localized perturbations trigger the growth
of turbulent spots that consist of simply connected turbulent regions immersed in an
otherwise laminar flow and bounded by fronts that move in order to expand the turbulent
area provided Re is large enough. Turbulence in these kinds of transitional flows consists
of long streamwise velocity streaks associated with counter-rotating vortices that are
stacked together along the spanwise direction. As the wavelength of the streaky pattern
is narrowly distributed around a given value λs, the spanwise growth of a turbulent spot
corresponds to the nucleation of new streaks. The mechanisms at work to achieve this
expansion have not yet been all revealed in spite of many experimental and numerical
studies. Shedding light on the growth process of turbulent spots can also be a key point
in understanding the formation and sustainment of organized patterns. In the case of
plane Couette flow, for which no mean advection is present, turbulent spot growth can
be split into two phases: in the first stage of their development, they grow in a more
or less symmetric fashion leading to diamond-like shape as seen in figure 1 and then,
when their spatial extension is large enough, they start being distorted and tend to form
oblique branches. As first evidenced numerically in the pioneering work by Lundbladh
& Johansson (1991), the spot remains centro-symmetric all along the first phase. The
flow and pattern symmetries are detailed in an extensive review (Barkley & Tuckerman
2007). Figure 1 gives an illustration of the growth of such a spot in our experiment
around a localized perturbation. The spot is indeed elliptic, the principal axis along
the streamwise direction being longer than the one along the spanwise direction. As
time passes, both principal axes tend to have the same length and the spot takes the
form of a more or less regular diamond whose sides form an angle with respect to
the streamwise direction. This angle is prefiguring the organized pattern orientation.
This dynamic results from growth rates that are significantly larger in the spanwise
than in the streamwise direction as shown successively by the two experimental works
by Tillmark & Alfredsson (1992) and by Dauchot & Daviaud (1995) confirming the
numerical investigation by Lundbladh & Johansson (1991). These researchers focused
on global growth rates along both relevant directions and found in first approximation
that they were time independent but increasing functions of the Reynolds number as can
be seen in figure 2 that gathers their time-average results of spanwise growth rate s a
function of Re.

The second phase is illustrated in figure 1 at times larger than 400. Specific studies
of this second phase are scarce. In very large domains, Duguet et al. (2010) nevertheless
present the typical evolution of a diamond shaped spot turning progressively into a
turbulent pattern made of several adjacent bands with various orientations that are
similar to the more steady patterns described above (see in particular their figures 2
and 4). In domains of moderate extension (say when the spanwise direction is 40 times
the distance between the walls), this second phase starts when the spot size becomes
sizable with the domain spanwise extension and consists mostly in a reorganization of
the turbulent area into an inclined pattern. In the following we will focus on the first
phase.

Understanding the mechanisms responsible for the spot growth requires taking into
account all the features of the spot during this first phase. From the numerical simulations
of PCF by Lundbladh & Johansson (1991) and by Duguet & Schlatter (2013) in larger
domains, from the model flows studied by Lagha & Manneville (2007) and Schumacher
& Eckhardt (2001) and from our own experimental study (Couliou & Monchaux 2015),
it appears that large-scale flows are always present around the growing spot. Their origin
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Figure 1. Snapshots of a spot growing around a bead during a step experiment (sudden
increase at t = 0 of Re from 0 to 403). Times are given in unit of h/U . First phase last
till t ' 400 h/U when the reorganization process starts. See text for details. The corresponding
space-time diagram can be found in figure 5.

can be explained by the laminar-turbulent coexistence and more particularly by the
streamwise flow rate mismatch occurring in the overhang region where the laminar flow
on one wall faces turbulent flow on the other wall (Coles 1965; Lundbladh & Johansson
1991). Large scale flows actual shape depends on the wall normal plane of observation,
but they are globally oriented in the spanwise direction and outward at the spot spanwise
tips and in the streamwise direction and inward at the spot streamwise tips. Experimental
works already cited also report the existence of waves at the spot spanwise tips. These
waves may correspond to the advection of streamwise vortices that are actually visible
on the snapshots presented in figure 1 and that have been observed from visualizations
in spanwise-wall normal plans by Hegseth (1996). Both these features are thought to
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Figure 2. Spot spanwise spreading rate σz
sf as a function of Re in Tillmark (1995) (filled

squares), Dauchot & Daviaud (1995) (filled circles), our experiment (filled squares with errobar)
and our numerical simulation (filled stars with errobar). Note that σz

sf is defined in the present
article as the temporal average of half the total spot spanwise growth rate, or equivalently as the
average of both spanwise front velocities. Other authors’ data have been obtained graphically
from their publications and scaled to comply with the present definition of σz

sf .

be relevant in understanding the spot spanwise growth dynamics. Following the work
of Gad-El-Hak et al. (1981) on the boundary layer, the spot spanwise growth is usually
attributed to local instabilities of the modified laminar profile at the spanwise laminar-
turbulent interface (Hegseth 1996; Dauchot & Daviaud 1995). Schumacher & Eckhardt
(2001) emphasize the fact that suppressing the large scale recirculation in the parallel
flow of interest in their work inhibits the spot growth. The same conclusion may also
hold for plane Couette flow. Trying to select the most meaningful features, Duguet et al.
(2011) have studied the growth of turbulent spots in narrow domains for which the
periodicity in the streamwise direction is achieved at a wavelength shorter than the
typical spot streamwise extent. By doing so, the large-scale recirculation is suppressed
and the authors found a stochastic growth resulting from the competition between streak
retreat and generation events. The corresponding growth rates are found to be one order
of magnitude lower than those usually measured in domains extended in both directions.
It is nevertheless difficult to know if this stochastic growth is actually active in such
large domains since the stochastic growth rate could be smaller than the measurement
uncertainties on the total growth rate. The role of large-scale flows can primarily be
seen as a disturbance to the stable laminar profile around the turbulent spot. The
temporal evolution of the large-scale flows is quite slow as compared to the rapid turbulent
fluctuations and happens on the same order of time scales as those associated to the spot
growth as shown for example in our experimental study Couliou & Monchaux (2015)
or a recent model by Manneville (2015). As a result, the large-scale flows may induce
modifications to the laminar flow around the turbulent spot that are strong enough to
turn this profile unstable and steady enough to allow the instability to develop. The
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local corresponding mechanism is the growth by destabilization we alluded to above.
A quantitative study of this mechanism has been undertaken in plane Poiseuille flow
by Henningson et al. (1994), but the growth rate was found too small to fully explain
the experimentally observed rapid expansion of turbulent spots. If relevant, the two
mechanisms we have just described are not sufficient and should be only part of the
growth process. In a recent article (Couliou & Monchaux 2016), we have shown the
existence of two localizations for the generations of new streaks occurring during the
spot growth. We have attributed these two localizations to two different mechanisms.
The first one is local, happens at the spanwise tips of the growing spot and results in
the nucleation of new streaks at the laminar-turbulent interface, outside of the turbulent
region. It could result from instabilities of the modified laminar flow as explained above
or from the stochastic process revealed by Duguet et al. (2011). The second mechanism
was actually shown by our study. It occurs globally and is induced by an advection due
to the large scale flows present around the spot that tend to spread it in the spanwise
direction. A first consequence of this spreading is a temporary widening of the streaks
constituting the turbulent spot before a new streak is nucleated by some wavelength
instability inside the turbulent phase to restore the favoured state consisting in more or
less equally spaced streaks.

The spot growth process results from the interplay between several mechanisms and
involves large-scale flows. Isolating each mechanism and quantifying its contribution to
the total growth rate now seems possible. In the present article, the temporal aspects
of spot spreading is investigated in order to quantify to which extend the two identified
growth mechanisms are present and interact to achieve the time-averaged results which
we have presented in our ealier work (Couliou & Monchaux 2016). To do so, we analyse
experimental and numerical data which acquisition and post-processing will be described
in section 2. The main results consist of growth rates, front velocities and large-scale flow
measurements that are gathered in section 3. Discussion of these results are given in
section 4 before we summarize our findings and identify perspectives of this work in
section 5.

2. Methods

In this section, we present our experimental setup, the numerical code used to perform
the direct numerical simulations (DNS), the protocols used to trigger the turbulent spots,
the measurement and visualisation systems and the various post-processing techniques
applied to our data.

2.1. Experimental setup

As sketched in figure 3 (left), an endless 0.25 mm thick plastic belt is stretched between
two cylinders. One of them is connected to a brush-less servo-motor which drives the
system through a gear-reducer of ratio 9. This motor can achieve a maximal speed of
2500 rpm. Speed and acceleration are controlled to an accuracy of 2/1000. Four smaller
cylinders guide the belt and enable to adjust the gap between the two walls moving in
opposite directions at an accuracy of 0.05 mm. All the results presented here corresponds
to a gap of 2 h = 7.5 mm. This set-up is immersed in a tank filled with water. The water
temperature is monitored by a thermo-couple with a 0.5◦C accuracy. The Reynolds
number is defined as Re = Uh/ν, where ν is the kinematic viscosity of the fluid, U the
belt velocity and h the half-gap between the two faces of the belt. The uncertainties on
the belt velocity, the gap width and the temperature lead to an Re-uncertainty of 5. The
x, y, z-directions are respectively the streamwise, wall-normal and spanwise directions
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Figure 3. Left: general sketch of the plane Couette flow set-up. Right: snapshot obtained from
our visualisation system during the growth of the turbulent spot. The PIV window is highlighted
by the red frame. The orange dot corresponds to the position of the bead.

and Ux, Uy and Uz are the associated velocities. Due to the experimental geometry, the
plane Couette profile is achieved within an area of size Lx ∗ Lz = 800 ∗ 400 mm2, which
is our visualisation field of view. The corresponding aspect ratios are Γx = Lx/h = 107
and Γz = Lz/h = 53. The plane y = 0 is the midway between the two plates. The
tank is closed at the top by a transparent Plexiglas lid wherever the plane Couette
profile is achieved in order to enable top and bottom symmetrical boundary conditions.
From previous experiments not detailed here, the critical Reynolds numbers have been
obtained as Rg ' 305 and Rt ' 390, which are consistent with previous experiments and
well-resolved direct numerical simulations.

2.2. Experimental protocol

The flow is permanently perturbed by a bead positioned close to the y = 0.5 h plane at
(x, z) = (0, 0) corresponding to the center of the experiment. The bead is maintained by
means of a thin wire stretched between two stalks placed between and aligned with the
guiding and main cylinders as illustrated in figure 4. This type of permanent perturbation
was used by Bottin et al. (1997). The wire diameter is φwire/h = 0.1 and the bead
diameter is φbead/h = 0.8. As explained in Bottin et al. (1998), a thin wire parallel to
the streamwise direction does not influence the flow since it does not induce any wake
formation.The bead diameter does not strongly affect the qualitative results and provided
that Re > Reg, no intermittency is observed and the bead is rather only triggering
turbulent spots. We studied the influence of the stalks and wire on the transition to
turbulence in our system when the bead is not present: their influence is hardly noticeable
when considering critical Reynolds numbers and transition time to turbulence. When
turbulence develops in a formerly laminar domain, it always occurs first around the
bead. A typical experiment is a step consisting in a sudden increase of Re from 0 to
a final Reynolds number Ref . The acceleration used is such that the belt reaches its
final velocity in less than 0.3 s, i.e. less than 10 h/U , which is always very short as
compared to the spot development time scales. For each kind of experiment (final Re
value Ref , presence of the bead or not . . . ) we have performed from 5 to 10 independent
realisations. Unless otherwise specified, results presented here are ensemble averaged over
these different realisations.

2.3. PIV measurements and visualisations

Velocity measurements have been achieved by Particle Image Velocimetry (PIV). The
Dantec system consists of a dual pulse Laser (Nd:YAG, 2 × 135 mJ, 4 ns, 532 nm) and



Growth dynamics of turbulent spots in the plane Couette flow 7

x

y

x

z

y=-h

y=h
y~-0.5h

Figure 4. Side and top sketch of the perturbation set-up.

a CCD camera (FlowSenseEO, 4 Mpx). Image pairs are acquired at a rate of 5 Hz. The
PIV Laser is mounted above the test section on a linear traverse such that velocities over
different y planes can be measured with a spatial resolution of about 1.3 mm along y.
The laser sheet produced from a cylindrical lens gives 2D velocity fields (Ux,Uz) in the
streamwise/spanwise planes. The flow is seeded with particles coated with Rhodamine,
the diameter of which dp is in the range = 1− 20 µm and that diffuse light at a shifted
wavelength. A filter mounted on the camera lens is used to keep only wavelengths around
this shifted wavelength, getting rid of unwanted light reflections on the vessel and plastic
belt. The 1948× 2048 pixels2 observation window corresponds to physical sizes of 305×
310 mm2. An adaptive cross-correlation processing is applied to an initial interrogation
area of 64× 64 pixels2 followed by a final interrogation area of 32× 32 pixels2 with 50%
overlap. The corresponding spatial resolution is 2.45 mm, i.e. 0.6 h. Each instantaneous
velocity field is further filtered by removing values exceeding 1.2 U . Resulting outliers
are replaced using local median filters.

Alternatively, visualisations are performed over the entire area where a plane Couette
flow is achieved. To that purpose, the flow is seeded with Iriodin particles and lighted
with a Laser diode combined with a polygon mirror rotating at high frequency to produce
a laser sheet which illuminates the flow along a plane at a given y. Iriodin particles are
micron-sized platelets which tend to align with the flow stream. These platelets respond
to local flow changes and reveal laminar and turbulent regions: the turbulent state is
indicated by quick fluctuations in the reflected light intensity while the laminar state
corresponds to more uniform light reflections. Images at a resolution of about 2200×1100
pixels2, corresponding to an observation window of 800×400 mm2 (exactly fitting the area
where the laminar Couette profile is achieved), are captured by a PCO sCMOS Camera
provided by PhotonLine. Figure 3(right) illustrates typical full size visualisations with
both laminar and turbulent phases coexisting.

Growth of turbulent spots in the whole flow are obtained from visualisations and will
be presented in 3.2. PIV measurements are used to study large-scale flows; associated
results will be presented in section 3.4. For practical reasons, it is not possible to perform
PIV measurements and visualisations at the same time. As a consequence, from the
experimental data, it will not be possible to match the time evolution of large-scale flows
and of spot growth. We will thus mostly rely on the numerical data for such comparisons.

2.4. Direct numerical simulations

DNS of a plane Couette flow are computed using the Channelflow software written by
John F. Gibson (Gibson 2014; Gibson et al. 2008). The software solves Navier-Stockes
equations numerically by using pseudo-spectral methods for the spatial discretisation
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with a Fourier decomposition in the (x,z) directions and Chebyshev polynomials in
y direction. The boundary conditions are periodic in the (x,z) directions and no-slip
conditions are imposed at the walls i.e at y = ±1. Numerical simulations are performed
in a domain of size (Lx,Ly,Lz)=(180,2,80) h. In order to resolve all the relevant modes of
turbulent flow in the Re range studied, the numerical resolution is (768,33,384) dealiased
modes in the (x,y,z) directions. According to Philip & Manneville (2011) this is sufficient
to observe pattern formation. A time-step of 0.01 was used resulting in a CFL number
less than 0.6. A pertubation consisting of four pairs of counter-rotating vortices like that
used by Lundbladh & Johansson (1991) is introduced as an initial disturbance to trigger
turbulent spots. As for the experiment, five realisations of the DNS have been performed
for each Re value and ensemble-averaged results are presented. Note that for the DNS,
a slight change in the perturbation amplitude (typically 0.1%) is introduced to achieve
some variability between realisations.

2.5. Space time Diagrams and front detection

A large part of the results presented in the next section are obtained from space-time
diagrams drawn from both numerical and experimental data. They are obtained from the
dimensionless streamwise velocity component Ux/U extracted on the line (x, y) = (0, 0) in
the numerical case and from the x = 0 line of light intensity acquired by our visualisation
system in the experimental case. To strengthen the detected structures and in order to
improve the signal-to-noise ratio, sliding averages are applied along the x coordinates over
3 samples and along the time coordinate over 5 samples. Typical examples of numerical
and experimental space-time diagrams are provided in figure 5.

Laminar-turbulent fronts are manually tracked in the experiment and automatically
detected from the numerical data by defining two possible states: the laminar one which
corresponds to the area where Ux = 0 and the turbulent state which corresponds to the
remaining area. We focus on the spanwise expansion on line x = 0 and one can note that
at this location the large-scale flow is mainly oriented toward z and is consequently not
that visible from Ux.

2.6. Large-scale flows

As reported by many authors (see section 1), large-scale flows develop around growing
turbulent spots in shear flows. They are easily identified by studying the two-dimensional
spatial power spectrum of either velocity component in the (x, z) plane. These power
spectra show an obvious scale separation between two peaks; one occurs around the
wavelength λ ' 4 − 5 h corresponding to turbulent streaks and another one, associated
with large-scale flows, is situated around λ = 40 h (Duguet & Schlatter 2013; Tuckerman
et al. 2008; Couliou & Monchaux 2015). In this work, we will use two quantities associated
with large-scale flows: ALSF

z = kEz(λ = 40 h)/U2 that represents the Uz premultiplied

power spectra amplitude at λ = 40 h and MLSF
z = max(Ûz(x = 0, y = 0, z), z), the

maximal amplitude of Ûz which is the spanwise velocity component filtered above the
cutoff wavelength λcut = 24 h on the line x = 0, y = 0. More details can be found in the
work by Couliou & Monchaux (2015).
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Figure 5. Left: Ux/U space-time diagram for a DNS at Re = 380. Nucleations of streak inside
(.) and outside (◦) of the spot are labelled. Only half the spot is presented in the spanwise
direction. Blue: negative velocities, red: positive velocities, white: zero velocity. Right: Space-time
diagram from the experimental visualisation corresponding to the growing spot presented in
figure 1. Final Re = 403 is reached after 10 h/U and, according to Tillmark & Alfredsson (1992),
the linear Couette profile is established after about 0.25 Reh/U corresponding to 100 h/U in
this case. The white vertical band from 450 h/U to 480 h/U corresponds to the tape which
closes the plastic belt.

3. Results

3.1. General features

3.1.1. Growth time scales and region definition

Due to our numerical and experimental protocols, the growth of the triggered spot
differs slightly in the two cases presented in figure 5. In the numerics, a turbulent zone
is established very quickly (few h/U) from the initial perturbation that is already large,
of the order of 5h. The spot growth in our experiment takes place in two phases as
can be seen in the space-time diagram of figure 5 (right). During a first phase lasting
tp h/U (tp being about 210 in the displayed example), structures develop around the
bead. Then an actual spot, with an interior made of turbulent fluctuations like the ones
displayed in any numerical or experimental study of such spots, grows until the end of
the acquisition. In the experimental case, as our step protocol starts at Re = 0, a time tc
is required for the laminar profile to establish itself. An important point is to know how
the time tc compares to tp associated with the development of the perturbation before
turbulence is triggered. According to measurements performed by Tillmark and reported
in Tillmark & Alfredsson (1992), the linear Couette velocity profile establishes in a time
tc ' 0.25 Re h/U . In our experiment, this corresponds to a time of the order of 100 h/U
which is short enough as compared to 210 h/U when the spot is triggered.

The experimental space-time diagram presented in figure 5(right) allows us to define
three distinct zones during the growth of a turbulent spot. The region connected to the
bead is turbulent and displays fluctuating disorganized structures. Far away from the
bead, the flow is laminar which results in roughly homogeneous dark areas. Between
these two regions, long coherent inclined structures are visible. They correspond to the
waves evoked by many authors as explained in the introduction (see section 1) and it
has been argued that these waves correspond to the advection of streamwise vortices by
the large-scale flows present at the spot spanwise tips (Couliou & Monchaux 2016). A
similar distinction is actually also observed on the numerical space-time diagram.
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Figure 6. Methodology figures: (a) front position as dots and corresponding smoothing spline
as black line from an experiment at Re = 365. (b) same in a numerical simulation at Re = 380.
(c) Front velocities obtained by derivating the cubic spline of figure (a). (d) Front velocities
obtained by differentiating the cubic spline of figure (b).

3.1.2. From fronts to spreading rate

The spanwise fronts of the turbulent spot are tracked to measure the spot front velocity.
From the individual fronts detected manually from the experiment and automatically
from the DNS as explained in section 2.5 we obtain scatter plots such as those presented
in figure 6(a) and 6(b) that provide the front position as a function of time for each
experiment or simulation. In the experimental case, the time at which the spot starts
growing may vary from one realization to another. To obtain the scatter plot presented in
figure 6(a), we have translated each front so that they coincide when they have reached
z = ±16 h. Note that when Re < 320, it may happen that no spot grows in some cases.
The results presented in the following are obtained by gathering fronts associated with
spots that eventually grow. In both numerical and experimental scatter plots, gathering
from 5 to 10 independent realizations, the dispersion between different spot fronts is small
enough such that an average front can be obviously distinguished. The position of this
average front is obtained from cubic spline interpolation with a smoothing parameter µ.
This cubic spline is further differentiated to obtain the average front velocity, i.e. half the
average spot spreading rate, as a function of time at a given Re. In practice, we perform
this velocity calculation by regularly varying the smoothing parameter µ from 0.5 to
0.9. We thus obtain several time velocity signals that slightly differ from one another.
The ensemble average of these velocity signals is used as the spot front velocity and
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Quantity Definition Measurement

σsf Total growth rate of the spot From laminar-turbulent front velocity

σadv Growth rate fraction due to advection From the velocity of edge vortices

σloc Remaining growth rate fraction as σsf − σadv

Table 1. Table gathering the different growth rates used in the text, their definition and the
way they are measured.

their ensemble standard deviation as the corresponding error bar. Figure 6(c) presents
such a velocity signal and its error bar for Re = 365. We can also appreciate on this
figure the relative symmetry of both fronts (top and bottom of the experiment) that
is representative of the symmetry obtained at any Re. Note that the numerical front
velocity signals are not found to be more symmetric than the experimental ones, even
though the numerical boundary conditions are perfectly symmetric. Consequences are
twofold: the top-bottom symmetry is fairly preserved in our experimental setup and the
remaining asymmetry in the growth dynamics has to be attributed to the dynamics itself
and not to the boundary conditions.

3.1.3. Velocities of edge vortices

From experimental space-time diagrams as the one presented in figure 5(b), the
edge vortices are manually detected as straight lines. Their individual velocity is then
estimated as the corresponding slope. For a given Re, all detected velocities of the
vorticies are gathered in a scatter plot as done in figure 6 for spot fronts. It appears
that, as time passes, the velocity increases linearly and a linear fit of the scatter plot is
thus performed.

3.1.4. Quantities of interest and relation to growth mechanisms

To study the spreading dynamics, we consider four quantities: σz
sf , the velocity of the

spot front, σz
adv, the velocity of the vortices, σz

loc defined as σz
sf − σz

adv and the ratio
σz
loc/σ

z
sf . All these quantities depend on time and Re. Their time averages have been

studied by Couliou & Monchaux (2015) to reveal the two growth mechanisms described
in the introduction. σz

sf corresponds to the spot spreading rate in the spanwise direction.
σz
adv is associated with the global growth induced by large-scale flows and corresponds

to the rate of streak nucleations inside the turbulent spot. From its definition, if only
these two mechanisms are at work, σz

loc measures the importance of the local mechanism
and corresponds to the rate of streak nucleations outside the turbulent region. σz

loc/σ
z
sf

simply quantifies the relative importance of both mechanisms and can be compared to
the fraction of nucleations occurring outside or inside the turbulent spot, which can be
obtained from the numerical data. Next we present the time dependence of these four
quantities in our experiments and in our simulations. In the sequel, X will denote the
time average of the quantity X. The different quantities defined above are recalled in
table 1.
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Figure 7. Methodology figures: (a) Front position for three numerical simulations performed
at Re = 380 for three different domain size (Lx ∗Lz = 360 h ∗ 160 h, Lx ∗Lz = 180 h ∗ 80 h and
Lx ∗Lz = 90 h∗40 h). Lightest lines correspond to smaller boxes. (b) Superposition of all fronts
obtained at various Re by numerical simulations for a domain size of Lx ∗ Lz = 180 h ∗ 80 h .
From brightest to darkest, Re increases from 320 to 420 by a step of 20.

3.1.5. Influence of box size and reproducibility

Figure 7(a) illustrates the spot fronts for three numerical simulations performed at
the same Reynolds number Re = 380 but with increasing box sizes at constant aspect
ratio. The darkest lines correspond to the spot fronts for the largest boxes. The brightest
lines correspond to a smaller box than that used here and the darker to a larger box. It
appears that the influence of the box size is negligible at the beginning of the growth,
but becomes significant at later times when effect of the periodic boundary conditions
on the spot front is not negligible any more. In order to avoid any bias from this size
effect, we have decided to study the spot growth dynamics before the box size influences
the spot development. More specifically, the recording of the front position should be
stopped when it reaches ±36h with our box size. The same restriction has been applied
to our experimental data.

Figure 7(b) illustrates the average spot fronts for the six Reynolds numbers studied
numerically. It appears that one fourth of the dynamics are identical, regardless of the
Reynolds number and even when the spot eventually vanishes (see the brightest lines
corresponding to Re = 320). During this first phase, the spot growth rate is roughly
independent of Re and so are the mechanisms responsible for the spot spreading that
can possibly involve non-normal growth.

3.2. Spreading in experiments

Figure 8 illustrates the time evolution of the four quantities defined in table 1 for 6
values of the Reynolds number spanning the range of Re studied here. We do not present
the 11 available Re values for the sake of clarity but the limiting cases detailed below
take them into account.

In figure 8(a), σz
sf is seen to monotonically increase with time, while saturating at the

end of the growth, resulting in S-shaped curves whose typical amplitude is 0.13 U . When
varying the Reynolds number, the overall shape of these curves does not change, but
their starting point is higher and occurs at earlier time for larger Re so that they can be
deduced one from another by simple translations. The spot growth is faster at larger Re
and, with the type of perturbation used here, it also starts earlier, even in dimensionless
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Figure 8. Total spot growth rate σz
sf (a), edge vortices advection velocity / advective growth

rate σz
adv (b), local growth rate σz

loc (c) and ratio σz
loc/σ

z
sf (d) as a function of time for various

Re. Experimental data. Color online.

units. This is probably due to faster development of the perturbation around the bead
in the first stages of the experiment (see section 2.2).

In figure 8(b), σz
adv, the velocity of the vortices is seen to linearly increase with time.

The rate of this increase grows with the Reynolds number so that, at the end of the growth
process, vortices travel much faster at larger Re while in the first steps of the growth
dynamics, all vortices go roughly at the same speed (0.05 U within our measurement
accuracy), except at the very large Re values. Note that the time span on which the
velocity of the vortices is displayed is different from the displayed time span for the spot
front position. This is because vortices are not always found in the space-time diagram at
all times, either because they are not present, or because the visualization quality does
not allow us to accurately track them. As σz

loc and σz
loc/σ

z
sf are derived from σz

adv, the
same remark obviously applies for them too.

Due to the different dependencies for σz
sf and σz

adv on Re, their difference σz
loc has

more complicated dynamics that strongly depends on Re. The local contribution to the
total growth is most of the time between 10% and 30% at any Re. This shows that most
of the spot growth has to be attributed to the global mechanism as already proven from
the time-average study by Couliou & Monchaux (2015).
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Figure 9. Total spot growth rate σz
sf , edge vortices advection velocity / advective growth rate

σz
adv , local growth rate σz

loc and ratio σz
loc/σ

z
sf as a function of time for various Re. Numerical

data.

3.3. Spreading in numerics

Figure 9 gathers the time evolution of the three growth rates defined above and of
their ratio for different Reynolds numbers in the numerical simulations. As a preliminary
remark, we can note that all these figures differ from the experimental ones. Precise
differences will be explained in this section. Note that for Re = 320, spots grow during a
first phase but eventually vanish. For Re = 340, spots arise in most cases but their sizes
stay moderate and fluctuate.

Contrary to what was observed in the experiment, the behaviour of σz
sf strongly

depends on Re. For Re > 360, its maximum is reached at about 125 h/U . Below this
value, σz

sf monotonically decreases with time and the decreasing rate is stronger with
lower Reynolds number. Note that for Re = 320, the spreading rate ends up negative
since the considered spot actually vanishes (not presented). Regardless of the Reynolds
number, the total growth rate σz

sf is of the order of 0.12 U at short times and takes values
between 0.05 U and 0.15 U . This order of magnitude is similar to the experimental one.

The quantity σz
adv also displays a dynamics that is more complicated than in the

experimental case and that is Re dependent. It is roughly constant at low Re, slowly
increasing at intermediate Re values but presents a maximum for the larger Re. This
maximum is once again reached around 125 h/U . Regarding the order of magnitudes,
they increase with Re from 0.05 U to 0.1 U . Once again, this order of magnitude is
similar to the experimental one, although slightly smaller for larger Re.
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The quantity σz
loc has time and Re dependencies very similar to that of σz

sf , except
that the maxima are reached at earlier times. As in the experimental case, its order of
magnitude is around 0.05 U .

The trend of σz
loc/σ

z
sf are almost identical regardless of the Reynolds number. They

increase with time from values around 50% to 60% in the early stage of the growth before
decreasing down to values around 20%. The order of magnitude is clearly smaller than
in the experimental case.

Coming back to the underlying mechanisms, these numerical results show that the
global growth induced by large-scale flows dominates the growth rate at long times while
local growth is much more active at the beginning of the growth process, leading to a
balance between the two mechanisms. It is interesting to note that, when comparing the
order of magnitudes seen in the experiment and in the simulation, they are very similar
for the local growth (σz

loc) but clearly larger in the experiment for the global growth
(σz

adv). This will be further discussed in section 4.

3.4. Large-scale flows

As explained in section 2, large-scale flows and spot growth are not measured exper-
imentally during the same experiment. Thus a straightforward temporal comparison of
the associated dynamics is not possible. We have chosen to time-shift the large-scale flow
quantities so that time t = 0 corresponds to early stage of the growth presented above,
at around one fourth of the overall process.

In section 2.6, we have introduced two quantities associated with large-scale flows:
ALSF

z and MLSF
z . The quantity ALSF

z gives a global measure of the large-scale flow
amplitude while the quantity MLSF

z is a local direct estimation of the order of magnitude
of the advection of edge vortices by large-scale flows (see section 1). Figures 10(a) and
10(c) illustrate the evolution of these global and local measurements in our experiment
on time scales relevant to the growth process as explained above. Both have relatively
similar time dependencies. At low Re, they are fluctuating around a low constant value
during the whole growth process. When Re > 330, they increase from the beginning of
the growth process and then saturate or slowly decay (actually, at later non-represented
times, they all decay). For higher values of Re, the increase is faster and the decay starts
sooner. Similar observations can be made for the numerical data presented in figure 10(b)
and 10(d). The maximum of max(ULSF

z ) is reached at about t ' 120 − 150 h/U when
the spot front velocity was found to be maximal too.

4. Discussion

4.1. Comparison to former work

The spot front velocity as a function of time for different Re is represented in figure 8.
Contrary to some of the previous works that found the spot front velocity to be indepen-
dent of time, particularly those by Tillmark (1995) and by Dauchot & Daviaud (1995),
these plots show a time dependent spot front velocity, even if our experimental setup is
very similar to the ones cited. In fact, these researchers have followed spot growth over
shorter times and have performed linear fits of the measured spot fronts equivalent to
that presented here in figure 6(a). Restricting the spot growth presented here to their first
part, performing the same linear fitting seems reasonable since the non-linear evolution
clearly appears only when considering the full temporal signal.

On average, the spot front velocity σz
sf is found both in our experiment and in our

simulations to be of the same order of magnitude than the one presented in Dauchot &
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Figure 10. ALSF
z (top line) and MLSF

z (bottom line) as a function of time for different Re in
the experiment (left) and in the DNS (right). See text for precise definitions.

Daviaud (1995) even though slightly larger, particularly in the experimental case. The
dependence of σz

sf on Re is nevertheless similar in all cases as illustrated with the three
parallel curves presented in figure 2.

The velocities of edge vortices measured here as a function of both time and Re
have an order of magnitude similar to those found by Dauchot & Daviaud (1995) and
by Tillmark (1995). Unfortunately, the dependencies of these velocities with time or
Reynolds numbers were not provided, so that the comparisons can not be pushed further.
As we are, to our knowledge, the first to investigate the time evolution of the spot
development in plane Couette flow and the link to with large-scale flow development, we
cannot compare this part of our study to former contributions. The next paragraph is
dedicated to a discussion of these aspects.

4.2. Experiments vs numerics

As already mentioned in the last section, there are differences between the numerical
and experimental velocity evolution presented here. When the numerical domain size
is modified, we have seen in section 2 that the growth of turbulent spots is affected.
When the spot fronts reach 0.87 Lz which corresponds to a distance to the domain
boundary of 0.13 Lz, the fronts slow down. We have thus restricted our analysis to
regions far enough from the domain boundaries in order to limit the influence of this
finite-size effect. We have done so for both numerical and experimental data as already
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a b

Figure 11. Schematic representation of the periodic boundary conditions in numerical
simulation (a) and of water at rest and wall boundary conditions in the experiment (b).

explained. Nevertheless, boundary conditions are very different in both cases as sketched
in figure 11. In simulations, they are periodic while in the experiment, they consist of
walls where the spanwise velocity vanishes. The distance between these walls and the
belt edges is about Lz/7. A buffer area thus exists between the shear zone and these
walls. As a consequence, numerical and experimental fronts are analysed in physical
zones of similar sizes but enclosed within very different boundary conditions. The main
consequence of these differences is that large-scale flows associated with a numerical spot
are tempered by their periodic images at times when, in the experiment, the buffer zone
still allows these structures to develop. We indeed observe experimentally that the large-
scale recirculation is actually present in the buffer zone as sketched in figure 11. Large-
scale flows and thus the spot fronts are slowed down earlier in the numerical simulations
than in the experiment. In the experiment, this slowing down should also be observed,
but at later times. Since our analysis is restricted to the same physical space in both
cases, and since the growth velocities have similar magnitudes, the numerical analysis
spans a larger part of the whole dynamics than the experimental one. Indeed, we observe
in figure 9(a) and 9(b) that σz

sf and σz
adv decrease in the numerical case when they are

still increasing in the experimental plots of figure 8(a) and 8(b). Suppressing the buffer
area in the experiment should lead to a more similar behaviour.

4.3. Temporal dynamics

Considering numerical or experimental data, it is clear that at any time, the local
and the global growth mechanisms are at work since σz

adv and σz
loc are non vanishing.

Their relative contributions depend mostly on time. The quantities σz
adv and Mz

LSF

have very similar temporal dynamics: in the experimental case, they are both increasing
functions of time and they take values of the same order of magnitude in the range 0.05-
0.17 U . In the numerical case they exhibit maxima realized at the same time, around
t = 125 h/U . These strong similarities strengthen our conviction that the large-scale
flows are responsible for the advection of the edge vortices and of the turbulent spot.
From a more quantitative point of view, it is not easy to find a relevant measure of the
large-scale flow intensity to be compared to the advection rate σz

adv. We have used the
maximum, which is local and by nature an upper bound. A more refined estimation could
be done by an integral measure (over x) at a given distance upstream the front and over
a given streamwise length. This would imply the introduction of two free parameters and
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could lead to questionable results. Note nevertheless that the large-scale flow maximum
is found to strictly remain at a distance 2− 5 h upstream of the spot front at any time
and for any Re (figure not shown).

4.4. Growth mechanisms

Both in our previous work Couliou & Monchaux (2016) and in the present work we
have reported the existence of a global growth mechanism due to advection of the spot
by the large-scale flows induced by the laminar-turbulent coexistence. This mechanism is
associated with a growth rate σz

adv that takes non-zero values at any Re and at any time.
This implies that large-scale flows are present throughout the growth process as already
shown by direct PIV measurements of these flows by Couliou & Monchaux (2015). As
a consequence, the laminar profile outside of the turbulent spot differs from the linear
Couette profile at any time and at any Re. A classical hypothesis to explain the growth
of turbulent spots is, as detailed in the introduction, a local destabilization of the laminar
profile at the spot spanwise tips. With our notation, the corresponding growth rate is
σz
loc. At Re = 335, σz

loc equals zero at any time but large-scale flows are present. The
configuration is such that the laminar profile is modified but does not trigger local growth.
At Re = 346, the local growth is active as σz

loc is non-zero. We can thus infer the existence
of a critical Re value between 335 and 346 below which the laminar profile modification
induced by the large-scale flow is not strong enough to trigger the instability. From the
numerical simulations, the modified laminar flow is entirely known and can be extracted
to perform linear stability analysis as was done by Henningson & Alfredsson (1987) for
the plane Poiseuille case.

As presented in the introduction, Duguet et al. (2011) suggest a local stochastic growth
of the turbulent spot. This suggestion comes from observations in narrow domains where
associated large scale flows do not develop. This stochastic growth is associated with a
growth rate σz

stoch, whose order of magnitude is around 0.01 U in their narrow domains.
This is one order of magnitude smaller than the two growth rates introduced in the
present work. Actually, Duguet et al. (2011) observe numerous streak-retreat events at
any Re while, in our numerical simulations, these events are very rare (5 streak-retreats
over the 35 simulations performed). If this stochastic growth exists in large domains, it
can not explain the measured local growth rate that, as shown here, contributes to about
50% of the total growth rate.

5. Conclusions and perspectives

Spot growth in the transitional regime of plane Couette flow has previously been
studied numerically and experimentally by several researchers, revealing the existence
of waves at the spot spanwise tips and pointing out the possible role played by large-
scale flows surrounding the developing spot. The actual mechanisms at work to achieve
the observed growth when Re is large enough are still unclear although most of the
former studies suggest a destabilization taking place at the spot spanwise tips. This
suggestion is based on results time-averaged over the whole growth process. In our
recently published work (Couliou & Monchaux 2016), we have revealed the occurrence of
streak nucleation within the turbulent phase pointing to a new global growth mechanism
involving large-scale flows. In the present work, we have presented a temporal version
of this study showing that the two suggested mechanisms are actually both present
throughout the growth dynamics. At all times they contribute significantly to the total
growth. Temporal comparison of the global growth rate σz

adv and of measures of the
large-scale flow intensities strengthen our interpretation that the large-scale flows are
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responsible for the advection of edge vortices and thus for the global spot growth rate. The
role of nonlinear advection in the growth of turbulent spots was also noted from a recent
model of pipe and channel flows proposed by Barkley et al. (2015). From visualisations
of both our experiments and simulations, we clearly see that large-scale flows change in
shape and intensity during the reorganisation occurring when the spot is large enough to
form the laminar-turbulent stripe pattern expected at long times. We suggest they also
do play an important role in this reorganisation that we have planned to study.

Regarding the spot growth in the streamwise direction, if the same kind of mechanisms
act in this direction, due to their geometry, large-scale flows should be acting against the
growth in this case. We are currently investigating these aspects from the data presented
here. As plane Couette flow shares most of its features with the other extended shear
flows, including the existence of large-scale flows around turbulent patches, it is worth
performing the same analysis in plane Poiseuille and Taylor-Couette flows to see if the
same conclusions can be formulated.
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Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space
in plane Couette flow. J. Fluid Mech. 611, 107–130, arXiv: 0705.3957.

Hashimoto, S., Hasobe, A., Tsukahara, T., Kawaguchi, Y. & Kawamura, H. 2014
An experimental study on turbulent-stripe structure in transitional channel flow.
arXiv:1406.1378 .

Hegseth, J. J. 1996 Turbulent spots in plane Couette flow. Phys. Rev. E 54, 4915–4923.
Henningson, D. S. & Alfredsson, P. H. 1987 The wave structure of turbulent spots in plane

poiseuille flow. J. Fluid Mech. 178, 405–421.
Henningson, D. S., Johansson, A. V. & Alfredsson, P. H. 1994 Turbulent spots in channel

flows. J. Eng. Mat. 28, 21–42.
Lagha, M. & Manneville, P. 2007 Modeling of plane Couette flow. i. Large scale flow around

turbulent spots. Phys. Fluids 19, 094105, arXiv: 0811.3695.
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane couette

flow. J. Fluid Mech. 229, 499–516.
Manneville, P. 2015 Towards a model of large scale dynamics in transitional wall-bounded

flows. arXiv:1504.00664 .
Philip, J. & Manneville, P. 2011 From temporal to spatiotemporal dynamics in transitional

plane couette flow. Phys. Rev. E 83, 036308.
Prigent, A. & Dauchot, O. 2005 Transition to Versus from Turbulence in Subcritical Couette

Flows. In IUATM Symp., pp. 195–219.
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