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Abstract. In the context of turbulent flows laden with inertial particles, accurate

estimation of preferential concentration is particularly relevant. We have recently

proposed to use Voronöı diagrams to estimate concentration fields from 2D imaging

techniques implemented around wind tunnel experiments. Due to various experimental

biases, the relevance of such an analysis gets questionable. In this article we show the

robustness of the Voronöı analysis with respect to the three more important identified

biases possibly present in such experiments.
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1. Context and motivations

In the increasing number of studies on particle laden turbulent flows, three aspects are

usually pointed out in the case of inertial particles: the preferential concentration or

clustering, the possible increase in collision rate and the enhancement of the particle

settling velocity since all of them are of prime importance regarding the various practical

applications (pollutant dispersion, rain formation, optimisation of chemical reactors. . . ).

Preferential concentration plays a crucial role since it is clearly involved in the two

other aspects; the collision kernel is expressed as the product of the particles radial

relative velocity and of the particle radial distribution function, the latter containing

the information related to the preferential concentration [17, 9]. Regarding the settling

velocity enhancement, that has been reported both numerically and experimentally

[13, 15, 1], the commonly invoked mechanism is based on the fact that particles

tend to preferentially explore the downward side of turbulent eddies. Nevertheless,

Aliseda and coworkers have shown that collective effects should be involved to explain

the further increase in the settling velocity measured in their experiment when the

seeding density is increased [1]. They found that the fall velocity conditional on the

local concentration linearly increases with the latter suggesting the key role played by

preferential concentration in this issue.

Properly simulating particle laden flows requires an accurate model for the particle

dynamics equation that is lacking so far: only the point particle limit is usually

considered [5, 6] and most of the simulations make further simplifications and often do

not consider the back-reaction of the particles on the fluid phase. Thus, experimental

investigations are required to assess the preferential concentration problem and its

consequences on the settling velocity and collision rate enhancement. We study in the
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present the possible biases arising from classical experiments regarding the quantification

of preferential concentration.

The relevant parameters in this context are the particles diameter or their Stokes number

defined as the ratio of the particle viscous relaxation time to the dissipation time scale

of the carrier flow (St = τp/τη), the average seeding density and the Reynolds number.

A first bias arises from the nature of the particles used: in air experiment, particles are

usually water droplets generated from commercial or dedicated injectors that produce

polydispersed particle populations leading to seeding consisting of a mixture of various

Stokes number particles so that average Stokes numbers and corresponding uncertainties

have to be defined.

Acquisitions of the concentration field requires imaging techniques. If 3D imaging is

developing fast, it is still limited to cases when too few particles (thousands) are present

in the measurement volume to allow proper study of concentration issues, consequently

most of the work devoted to preferential concentration relies on 2D images obtained

from cameras aiming at a particular region of the flow illuminated by a Laser sheet

whose thickness Lth is of order 1 mm. In this case, experimentalists are studying a

3D phenomenon through projections into a 2D space and one may wonder how this

projection affects the results and conclusions of their work.

Another bias arising from these imaging techniques is linked to the identification of the

particles in the images. Typical water droplets experiments involve mixture of particles

whose diameters are in the range 2 − 200 µm [7, 1, 10, 11, 14]. On a typical image,

rough detection of particles is performed through thresholding of the grey level, a more

precise position being obtained from sub-pixel accuracy techniques that are relevant

when particles span over several pixels in the images. The use of thresholds implies

that many particles may not be detected and therefore the particle sets are artificially

sub-sampled.

Whenever it is possible to clearly measure the coordinates of the particles, various

methods can be implemented to estimate and/or accurately access the concentration

field or its global properties: box counting methods, clustering index, correlation

dimension, Minkowski functional, Voronöı diagrams. . . In a recent review, we have tried

to present the advantages and drawbacks of these various techniques in the field of

particle laden turbulent flows [8]. Here, we would like to focus more particularly on

the technical issues raised by the use of Voronöı diagrams when studying concentration

fields of particles in turbulent flows. We have introduced the use of this tool in the

field in a recent paper to analyse experimental data obtained in a wind tunnel[7]. In

the present, we will use various 3D numerical simulations to question the influence of

the three biases introduced above. Section 2 presents the Voronöı analysis, the former

experimental results and the numerical simulations used here. Section 3 is dedicated

to the study of the various biases we consider. We finally discuss our results and draw

possible conclusions in section 4.
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2. Data, post-processing and former results

As we aim at addressing the possible biases arising in experiments using 2D imaging

methods, we present the experimental setup and we summarize the main results

presented in [7] that is representative of this family of experiments. We then describe

the two numerical data sets we have employed to assess the importance of these biases.

All the analysis being carried out using Voronöı diagrams, we first recall the basics of

this tool.

2.1. Post-processing and definitions

As explained in [7] and further justified in [8], the use of Voronöı diagrams is particularly

relevant for studying preferential concentration of inertial particles in turbulent flows.

Given a set of particles, the corresponding Voronöı diagram is the unique decomposition

of the nD space into independent cells associated to each particle. One Voronöı cell is

defined as the ensemble of points that are closer to a particle than to any other. Use of

Voronöı diagrams is very classical to study granular systems and has also been used to

identify galaxy clusters. Voronöı diagrams computation is very efficient with the typical

number of particles per set usually encountered (up to several hundred thousands). From

their definition, it appears that the volume/area of a Voronöı cell is the inverse of the

local concentration of particles ; therefore the investigation of Voronöı volumes/areas

field is strictly equivalent to that of local concentration field. In the following, we will

deal with volume regardless of the space dimension. As the mean value of the Voronöı

volumes is nothing but the average concentration, we always normalise these volumes

by their mean value to define normalised Voronöı volumes that will be referred to as

volumes and denoted V throughout this article.

In simulations as well as in experiments, several 2D or 3D particle fields are obtained

at various instants. We present statistics obtained from ensemble averaging over

several time samples. Probability Density Function (PDF) and standard deviation

of the normalised Voronöı volumes can be calculated for experimental and numerical

datasets and compared to those expected for uniformly distributed particles (see [4] for

a presentation of those expectations). Voronöı volumes PDF may be used to identify

clusters of particles as follows. Voronöı PDFs for a typical experiment/simulation

and for a uniform random process (URP) intersect twice: for low and high values of

normalized Voronöı volume, corresponding respectively to high and low values of the

local concentration, PDF associated to inertial particles is above that of URP, while

the opposite is observed for intermediate volume values. This is consistent with the

intuitive image of preferential concentration: inertial particles concentration field is more

intermittent than the URP, with more probable preferred regions where concentration

is higher than the uniform case and subsequently also more probable depleted regions

where concentration is lower than in the uniform case. We consider the first intersection

point Vc as an intrinsic definition of particle clusters : for a given dataset, Voronöı cells

whose volume is smaller than Vc are considered to belong to a cluster. It appears that
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cluster cells tend to be connected in groups of various sizes and shapes that we identify

as clusters whenever they belong to the same connected component. We then analyze

the geometrical structure of the identified clusters. More details are available in [7].

2.2. Original experiment

Here we present our former experimental setup and results that will be referred to as

LEGI data.

2.2.1. Experimental setup Experiments are conducted in a large wind tunnel with a

0.75 m × 0.75 m square cross-section where an almost ideal isotropic turbulence is gen-

erated behind a grid whose mesh size is 7.5 cm. We can adjust the mean velocity from

3 to 15 m.s−1 (the turbulence level remaining relatively low, of the order of 3% at the

measurement location and the anisotropy level between the transverse and longitudinal

fluctuating velocities is smaller than 10%) and thus the Taylor micro scale Reynolds

number Rλ. Inertial particles are water droplets generated by four injectors placed in

the convergent part of the wind tunnel, one meter upstream the grid to insure a homo-

geneous seeding of the flow. According to the injection process, we are able to tune the

average Stokes number and the average particle concentration C0. We always consider

regimes of relatively low particles volume loading (volume fraction in our experiments

covers the range 2.10−6 < φv < 3.10−5) so that no turbulence modulation by two-way

coupling is expected to occur. Acquisitions are performed using a Phantom V12 high

speed camera (Vison Research, USA) operated at 10 kHz and acquiring 12 bits images at

a resolution of 1280 pixels × 488 pixels corresponding to a 125 mm (along x)× 45 mm

(along y) visualization window on the axis of the wind tunnel (covering slightly less

than an integral scale in the vertical y direction and almost two integral scales in the

streamwise x direction), located 2.95 m downstream the grid. The camera is mounted

with a 105 mm macro Nikon lens opening at f/D = 2.8. An 8 W pulsed copper Laser

synchronized with the camera is used to generate a 2 mm (i.e. 3-4η) thick light sheet

illuminating the field of view in the stream-wise direction. Particles are identified on

the recorded images as local maxima with intensity higher than a prescribed threshold.

Sub-pixel accuracy detection is obtained by locating the particles at the center of mass

of the pixels surrounding the local maxima. More detailed description of the experi-

mental and acquisition setups are available in [7].

2.2.2. Experimental results Here, we briefly recall the main results obtained

experimentally and presented in [7]. By systematically varying the triplet of parameters

(St,Rλ, C0), we have shown that particle Voronöı volume distributions are always

reasonably log-normal, so that preferential concentration can be quantitatively measured

by a single scalar (the standard deviation of these distributions σV). By plotting σV

versus the Stokes number, the maximum of heterogeneity of the concentration field
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for particles with Stokes numbers around unity has been successfully recovered. We

have characterized clusters (and voids) geometries and their inner concentration: the

cluster areas/volumes (Ac) are algebraically distributed and their structure is fractal

(their perimeter Pc and their area Ac are not linearly related); in particular clusters

do not appear to have any characteristic typical scale. The analysis of particles

normalised concentration inside the clusters (C/C0) have revealed two new and so far

unpredicted results: (i) average particle concentration inside clusters depends on the

global particle loading in a non trivial way and (ii) after compensation of this particle

loading dependency, average concentration inside clusters exhibits a non monotonic

dependency on Stokes number, with a maximum around unity values. Figure 1 gathers

all these results.

2.3. Numerical simulations

Our goal in this article is to use 3D Direct Numerical Simulation (DNS) data to produce,

as much as possible, sets of data that exhibit biases similar to those naturally present

in experiments and to analyse them as experimental data to estimate the consequences

of the considered biases on the measured results. We have benefited from two sets

of numerical data produced by similar methods. The first set is available on line

at http://mp0806.cineca.it/icfd.php and has been used and presented in [3], the

second set provided by Susumu Goto has been used in [16]. They will be referred to as

CINECA and GOTO data respectively. Both of them consist of 3D DNS of isotropic

homogeneous turbulence produced in periodic cubic boxes of size (2π)3. They employ

the simplest model for small heavy particles [5, 6]:

d

dt
vp(t) =

1

τp
(u(xp(t), t)− vp(t)), (1)

where vp(t) and xp(t) are the particle velocity and position at time t and u(x, t) is the

surrounding fluid velocity field at position x. The latter corresponds to a statistically

homogeneous isotropic stationary turbulence field obtained a priori for an incompressible

fluid and is used as a frozen forcing to solve equation (1) for various types of particles

defined through the Stokes drag coefficient τp = 2ρpa
2/9µ where ρp and a are the particle

density and radius respectively and µ is the fluid viscosity.

The fluid velocity field u(x, t) is obtained by solving the Navier-Stokes equations:

∂

∂t
u+ (u · ∇)u = −

1

ρf
∇p+ ν∇2u+ f , (2)

∇ · u = 0, (3)

where ν and ρf are the fluid kinematic viscosity and density respectively, p(x, t) is the

fluid pressure field and f is an external forcing implemented by fixing the amplitudes

of Fourier modes in the low-wavenumber region. The numerical grids used set the

associated Taylor micro scale Reynolds numbers Rλ. The relevant parameters defining

the simulations are provided in table 1. The number of particles in the simulations



CONTENTS 7

−4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

(log(V) - log(V)) / σ
log(V)

P
D

F

(a)

0 2 4 6
0.5

0.6

0.7

0.8

0.9

St

 

 

R
λ
=72

R
λ
=90

R
λ
=114

<
σ
V
>

(b)

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

A
c  
(mm2)

P
D
F

 

 

0 2 4

−3

−2

−1

0
St

−2

slope

η2

L2

(c)

10
0

10
1

10
0

10
1

10
2

10
3

P
c
  
(m

m
)

A
c      

(mm)
1/2

1.7

1.2

(d)

−5 0 5
10-4

10-3

10-2

10-1

100

C/C
0

P
D

F

(e)

0 1 2 3 4 5
0.8

0.9

1

1.1

1.2

1.3

St

<
C

/C
0>

/ F
it

0 1 500
0

5

10

C
0
 (ppi)

<
C

/C
0>

 

 

(f)

Figure 1: a: centered and normalized PDF of the logarithm of Voronöı area for 40

experiments performed at LEGI; black dashed line represents a Gaussian distribution.

b: standard deviation of Voronöı areas as a function of average Stokes number; Reynolds

number is constant along lines, each point is estimated as the averaged standard

deviation from experiments with same Stokes number (but possibly different average

concentration), error-bars represent the dispersion between such experiments. c: PDFs

of clusters area, inset shows the evolution of the fitted power law exponent with Stokes

number for the 40 experiments performed at LEGI, vertical dash-dotted lines indicates

η2 (left) and L2 (right). d: geometrical characterization of clusters for the same 40

experiments. e: PDF of normalized-reduced concentration C/C0 within clusters. f:

evolution of the means of PDFs in figure (e) with the Stokes number after compensation

by the seeding concentration dependency displayed in the inset.
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LEGI CINECA GOTO

grid points 1280× 488 5123 5123

ǫ 0.085m2.s−3 0.877 0.262

Rλ 114 180 190

L 61.4mm 4.6 1.87

λ ≃ 5mm 0.24 0.15

η 0.45mm 0.01 0.00555

kmaxη NA 3.35 1.34

St 0.1− 6 0− 4 0− 10

Lth 2η − 6η 2η − 6η 2η − 6η

N0 300− 6000 128× 103 16× 106

∆p 2η − 8η 12η 4η

Table 1: Parameters involved in

the DNSs (dimension less) and ex-

periments. ǫ: the energy dissipa-

tion rate, λ: the Taylor micro scale,

Rλ: the associated Reynolds num-

ber, L and η the integral and Kol-

mogorov scales, kmaxη the largest

wave number in the simulation in

units of η, Lth: the 2D slices thick-

ness, N0: the original number of

particles per instant/snapshot and

∆p: the average distance between

neighbouring particles

and the considered Stokes numbers vary from one simulation to another, they are also

recalled in table 1.

3. Study of bias

3.1. 2D/3D bias

As mentioned in the introduction, most of the current concentration measurements

performed in particle laden turbulent flows consist of 2D imaging of particular region of

the flow illuminated by a Laser sheet whose thickness is ranging from 0.5 to 2 mm. The

consequence of such a technique is that particles living in a 3D space are projected onto

a 2D slice. If this may have little implications regarding Particle Image Velocimetry

(PIV) since in this case the relevant parameter is the particle velocity that should not

much change along the sheet thickness in most of the applications, it turns to be an

issue when one deals with the particle concentration since it may artificially increase

the concentration locally (think for example about a case where particles would be

organised in structures or clusters whose typical relative distance would be smaller than

the Laser thickness). In order to estimate the resulting bias, from original DNS boxes

of size (2π)3, we have defined several slices whose surface along the two first coordinates

is (2π)2, whose extension along the third coordinate is varied from Lth = 2η to Lth = 6η

and who are centered at various positions between 0 and 2π. For each slice, we keep

only the two first coordinates and we calculate the associated Voronöı tessellations. This

exactly mimics experimental 2D imaging of a 3D flow with usual Laser sheets.

Figures 2 and 3 present the resulting normalised Voronöı area distributions and the

dependency of the Voronöı area standard deviation with the Stokes number for various

slice thickness for GOTO and CINECA data. As for the experimental data, the PDFs

of the Voronöı areas are wide, covering more than four decades. The one obtained from
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GOTO are close to log-normal (as in the experimental data) while the one obtained

from CINECA are not. The shape of the one obtained from GOTO changes when Lth

is increased which is not the case for the CINECA’s ones. Nevertheless, all of them

are well described by their standard deviation. When the slice thickness is increased,

the standard deviation dependency on the Stokes number is qualitatively preserved over

the available range of Stokes numbers. Nevertheless, the exact values of the standard

deviation show a systematic increase with the slice thickness. We report a maximal

increase of 25% when the slice thickness is increased by 150% for both sets of numerical

data. Surprisingly, the standard deviations obtained from GOTO data are twice as big

as the one obtained from CINECA data that are closer to the experimental one. The

discrepancies between GOTO and CINECA data on the standard deviation values, on

the PDFs shapes and on their shape change with Lth will be discuss when adressing

subsampling issues in 3.2.

A very interesting feature is that for both simulations, 2D and 3D post-processing lead

to very similar quantitative results that legitimates the experimental use of 2D slices to

investigate a 3D phenomenon.

3.2. Sub-sampling bias

Another bias that may come from imaging techniques is an artificial sub-sampling of

the data sets. As in any detection problem, two kind of errors are expected: wrong

detections and missed detections (false positive and false negative in receiver operating

characteristic curve vocabulary). The former overestimates the number of particles

while the latter underestimates it. Usually, the signal processing chain implemented in

such a case is designed so that there is no wrong detection and so that the number of

particles found varies very slowly with the chosen threshold whenever this is possible.

As a consequence, there are necessarily several if not many missed detections and

experimental data sets are usually sub-sampled.

Sources of missed particles are numerous. One is particles that remain in the shadow

of other, another is due to the use of thresholds for particles detection that implies that

some particles have to be assimilated to the noisy background. We believe that the latter

is the main source of missed detection and this for several reasons: (i) smaller particles

appear less luminous than bigger ones, (ii) as the laser sheet intensity is decreasing

toward its edges, particles in the center of the sheet appear more luminous than the

others, (iii) due to the average seeding and to the Laser sheet thickness, the resulting

concentration on 2D images is not very high and the number of shadowed particles

might be very small compared to the number of missed particles due to (i) and (ii).

To test the impact of this unavoidable sub-sampling, we have created extra data sets

from data sets obtained with a given threshold, by keeping less and less particles from

the original data set. Particles were removed by randomly picking them up from the

original dataset with a uniform distribution. The same procedure has been applied to

3D DNS data. From an original dataset consisting of N0 particles, we produce new data
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Figure 2: .PDFs of normalised Voronöı areas for 2D slices obtained from GOTO data

(top) and CINECA data (bottom). Left: V = A/A. Right: centered and normalized

PDFs of the logarithm of normalized Voronöı volume.

sets with only αN0 particles, α ∈ [0, 1] being the ratio of kept particles.

Results are presented on figure 4. The top left figure shows the changes in the normalised

Voronöı area PDF obtained for one experiment at St = 0.25 taken from LEGI data when

the number of particles is artificially reduced down to 1% of the original number and the

top right figure shows the associated standard deviation σV as a function of the ratio of

particles kept. It is seen that the PDFs are not much affected for ratios down to 40% of

the original number. This result is confirmed with the standard deviation that shows a

change by less than 2% when the number of particles is decreased by more than a factor

2. Note that when only 1% of the particles are kept, the resulting standard deviation

corresponds to that of a uniform distribution of particles. The bottom left and right

figures on fig. 4 respectively present the dependency of the Voronöı volumes standard

deviation on the sub-sampling ratio and the Stokes number for all GOTO data associated

to 2D slices of thickness 5.7η. As for the experimental data, the effect of sub-sampling is

a monotonous decrease of the estimated Voronöı standard deviation. Whatever the value

of the Stokes number, when a few percent of the original particles are kept, the standard

deviation is getting very close to the value expected for a uniform random process.
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Figure 3: Standard deviation of the normalised Voronöı area distributions as a function

of the Stokes number for three different slice thickness. Left: GOTO data, right:

CINECA data. Top: 2D data, bottom: 3D data. The dash-dotted lines correspond

to the value expected for uniform random distributions of particles.

For small and intermediate values of the sub-sampling (say above 40%) the qualitative

dependency upon the Stokes number is preserved while the absolute values are decreased

by at most 25%, which is larger that what has been observed from the experimental data

sets. It is worth noticing that the plateau exhibited for subsampling values ranging from

40 to 100% in the experimental data is not present anymore in GOTO data. When the

subsampling is larger (values below 40%), the qualitative dependency of σV upon the

Stokes number is affected and does not present maximum anymore. The corresponding

curves look similar to those obtained from CINECA data that were computed from much

smaller particle samples (see table 1). Tagawa and collaborators found consistent values

from another set of numerical data[12]. The shift observed on the curve σV = f(St)

when half the particles are removed as to be linked to results presented in 3.1: we

noticed that CINECA and GOTO data lead to different values of σV and to different

shapes for the V PDFs. The only difference between both simulation is the number of

particles that is 125 times larger in GOTO data. As a consequence, the use of Voronöı

diagrams that does not involve any coarse graining leads to different scales of analysis.
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Figure 4: Top left: PDFs obtained using various sub-sampling ratio from one original

LEGI data experiment at St = 0.25. Top right: dependency of σV upon this ratio α for

the same data. Bottom: dependency upon the sub-sampling ratio α (left) and St (right)

of σV for data created from original 2D slices of thickness Lth = 5.7η from GOTO data.

GOTO data allow probing at dissipative scales while CINECA data are fully in the

inertial range and as a consequence both datasets lead to different results.

All the results presented in 2.2.2 have been recovered from the sub-sampled experimental

datasets. We illustrate this on figure 5 which presents the PDFs of the identified cluster

areas for various sub-sampling ratios. PDFs are compensated by A2

c to evidence that

the algebraic behaviour with a −2 exponent is always roughly preserved even if more

than 50% of the particles have to be kept to observe the scaling over more than one

decade. Direct visualisations of the non compensated PDFs reveal that the departure

from the −2 scaling law appear mostly in the tails that shrink when the number of

particles kept is decreased (see inset).
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Figure 5: PDFs of clusters areas estimated from the sub-sampled data sets used in

fig. 4. PDFs are compensated by a A2

c to evidence the −2 power-law scaling and are

arbitrarily shifted for clarity. Inset: same PDFs without the compensation. For smaller

values of α, clusters can not be identified anymore.

3.3. Mixing Stokes numbers

Figure 6 left presents the distribution of the particles diameters obtained in LEGI

experiment for four values of the air pressure varying from 2 to 5 bars at fixed water

flow rate (1.2 l/mn for each injector) and fixed wind velocity (V0 = 4.5 m.s−1). Each

of them is widely distributed over more than one decade and estimation of a Stokes

number implies to use an average or a most probable Stokes number defined from the

average or the mode of these PDFs (we actually used the mode in [7]). In both cases,

because of the high polydispersity, the standard deviation σSt of Stokes number (based

on measured diameters distribution), which could be interpreted as an error-bar for the

Stokes number estimation, is large (σSt/St easily exceeds 50%). The same happens in

any wind tunnel experiment seeded with liquid dropplets [1, 10] and one may wander

how this polydispersity impacts the dependency upon the Stokes number of the various

quantities measured in experiments. To tackle this issue, we have built polydisperse

data set from GOTO data projected on 2D slices.

In Goto’s work, each Stokes number data set was computed using the same fluid DNS

(see 2.3). As a result, gathering particle fields of various Stokes number makes sense and

properly mimics polydispersity. For each experimental condition, we have estimated

a particle diameter distribution similar to those shown on figure 6 left. Using the

definition of the Stokes number used in this article, these PDFs can be expressed in
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Figure 6: Left: particles diameter Probability Density Function evolution with air

pressure (varying from 2 to 5 bars) at fixed water flow rate (1.2 l/mn for each injector)

and fixed wind velocity (V0 = 4.5 m.s−1); note that PDFs are calculated from particles

volume (and not particles number).

terms of the Stokes number rather than in the particle diameter. In Goto’s work, 8 sets

of particles associated to 8 values of the Stokes number have been simulated. To mimic

one particular experiment, we pick randomly a certain amount of particles from each

of these 8 data sets. The relative proportion taken from each of them is given by the

presented experimental particle diameter PDF. Figure 6 right presents σV as a function

of St for single Stokes data (see figure 3) and for mixed data built as described above.

In spite of the short range of Stokes numbers covered by the polydispersed data, we can

see that quantitative values are changed by less than 15%. The qualitative behaviours

of these two curves are close, even if the one associated to single Stokes number data

presents a maximum while the other does not. Nevertheless, this maximum relies only

on the point at St = 10 and on the range where both curves are present, the two

behaviours are similar.

4. Discussion and conclusions

2D/3D biases studied in section 3.1 and summarized on figure 3 have been shown to

affect less the obtained results. Qualitative results are always recovered when considering

slices of thickness Lth ≃ 2η − 6η. Quantitatively, the estimated values of σV are also

not much affected in this range of slices thickness. This is encouraging regarding the

reliability of experimental results obtained from 2D acquisitions performed in particle

laden turbulent flows.

The study of sub-sampling experimental and numerical data shows that none of the so

far obtained results are affected qualitatively nor quantitatively when half of the detected

particles are removed from the original data. This demonstrates the robustness of the

Voronöı analysis with respect to the almost unavoidable missed detections occurring
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when processing experimental data. On the other hand, the impact of sub-sampling

seems slightly more important for GOTO data than for LEGI data and we noticed

several discrepancies between GOTO and CINECA data. We may wander about the

reasons explaining these important differences. Considering values reported in table

1, it is seen that the ratio between λ, the Taylor micro-scale and η, the Kolmogorov

scale is larger for GOTO data. As a consequence, when sub-sampling the data from

the experiment, we actually probe scales fully included within the inertial range while

when sub-sampling in GOTO data we probe scales ranging from the dissipative to

the deep inertial range. Similar reasoning can be done on the global seeding (N0)

differences between GOTO and CINECA data. Yoshimoto and Goto [16] have shown

that preferential concentration is self similar within the inertial range while Bec and

coworkers [2] insisted on the crucial differences between the mechanisms involved to

achieve preferential concentration in the dissipative and inertial range. The differences

observed here between the numerical and the experimental data on the one hand and

between GOTO and CINECA data on the other hand could thus be explained from this

considerations about the involved scales and the global seeding of the flow. This is also

consistent with the self similarity observed in our experimental results [7]. Similarly,

differences observed between GOTO and CINECA data can also be understood from

this scale argument and help us formulating the obvious warning that one should be

very careful about the scales involved in an experiment or in a simulation according to

the particle seeding density: changing the seeding density (or the number of particles

used for Voronöı calculations) has an impact on the scales that can be probed.

Regarding the polydispersity problem, we have also shown that qualitative behaviour

of σV as a function of St is preserved and that associated absolute values are slightly

affected by polydispersity. This shows that the maximum enhancement of preferential

concentration observed around St ≃ 1− 2 is a very robust effect that is even recovered

when various types of particles are mixed together.

Even if the present study does not address all the possible biases arising from imaging

measurement of concentration in particle laden flows, we have considered the more

relevant in the context of Voronöı analysis. The same work could be undertaken for

the other classical preferential concentration estimators such as pair correlation or box

counting methods for example.
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