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We introduce a hydrodynamical global quantity ¢ that characterizes turbulent fluctuations in
inhomogeneous anisotropic flows. This time dependent quantity is constructed as the ratio of the
instantaneous kinetic energy of the flow to the kinetic energy of the time-averaged flow. Such a
normalization based on the dynamics of the flow makes this quantity comparable from one turbulent
flow to any other. We show that &(¢) provides a useful quantitative characterization of any turbulent

flow through generally only two parameters, its time average & and its variance &. These two
quantities present topological and thermodynamical properties since they are connected,
respectively, to the distance between the instantaneous and the time-averaged flow and to the
number of degrees of freedom of the flow. Properties of & and &, are experimentally studied in the

typical case of the von Kdrman flow and used to characterize the scale by scale energy budget as a
function of the forcing mode as well as the transition between two flow topologies. © 2009

American Institute of Physics. [DOI: 10.1063/1.3073745]

I. INTRODUCTION

Turbulent flows are characterized by a very large number
of degrees of freedom. High spatial resolutions are therefore
useful to investigate turbulence in numerics or experiments.
Nowadays, direct numerical simulations routinely deal with
three-dimensional vector fields spanning over a 1024° array
of grid points. Standard particle image velocimetry (PIV)
measurements of experimental flow provide instantaneous
snapshots of the velocity field over 642—1282 arrays. The
challenge is therefore not anymore to visualize the flow, but
rather to analyze and condense the huge amount of informa-
tion present in a turbulent flow. In classical homogeneous,
isotropic turbulence, this challenge is milder since single
point measurements such as velocity increments or turbu-
lence intensity already provide a representative and yet af-
fordable piece of information." In nonhomogeneous, noniso-
tropic flows, the challenge is still open. Different strategies
have been used in the past, depending on the available infor-
mation: in numerical flows, where all the information about
the flow is accessible, priority has often been given to global
quantities, built through spatial averaging of physically rel-
evant quantities such as the energy, helicity, and enstrophy.
In experiments, the possibilities have long been restricted to
local, single point measure:ments,3‘4 or to nonhydrodynamical
global quantities such as injected power.sf8 The recent ad-
vent of PIV measurements has changed the challenge for
experimental flows. The problem is now to develop the rel-
evant tools enabling the description of turbulence from hy-
drodynamical quantities with as few degrees of freedom as
possible. Successful candidates should ideally enable classi-
fications of turbulent flows. In the absence of systematic
theories of turbulence, such as a thermodynamics (that would
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distinguish between, e.g., “hot” and “cold” turbulenceg_u) or
a topological theory,13 1 one is left with empirical tools.

In this article, we present such an empirical tool, &(¢),
defined as a normalized kinetic energy of the flow that en-
ables characterization of flows with nonzero time average.
First, we introduce and discuss in Sec. II the global time
dependent quantity &(¢). In Sec. III, we present our experi-
mental setup and show how to compute practically &(¢) from
stereoscopic particle image velocimetry (SPIV) measure-
ments. In Sec. IV, we first show that &(r) provides a useful
quantitative characterization of turbulent flows through gen-

erally only two parameters, its time average & and its vari-
ance 0,, that quantify, respectively, the level of fluctuations
compared to the mean flow and their ability to disturb the
mean flow. These two quantities are introduced as a gener-
alization of the classical local turbulence intensity i. Finally,
we discuss applications of these new global measures of tur-
bulence intensity. In particular, we show how these param-
eters may be used to study the influence of the forcing con-
ditions on the flow, and even trace back to critical behaviors
near bifurcations of the mean flow structure.

Il. NORMALIZED KINETIC ENERGY
AS A GENERALIZATION OF THE TURBULENCE
INTENSITY

A. Turbulence intensity

The classical theory of homogeneous isotropic turbu-
lence applies to flows with zero velocity average so that all
the turbulence properties are contained in the temporal ve-
locity fluctuations.! Real turbulent flows, with nontrivial
boundary conditions and external forcing, often possess a
nonzero mean flow that may or may not be stationary. In
most of the early experimental works about turbulence, this
nonzero mean flow is used to transform “local” temporal

© 2009 American Institute of Physics
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information into “extended” spatial information through the
so-called Taylor hypothesis. Actually, velocity measurements
were performed through hot wire probes providing temporal
variations of the velocity at fixed points. A natural parameter
quantifying the intensity of turbulence has therefore been
introduced as

V-2
i= —,

V2

where V is the velocity and X refers to the time average of
variable X. While such a parameter clearly characterizes
fluctuations in a homogeneous flow, one may question its
relevance in more general anisotropic inhomogeneous flows
where turbulence intensity depends on the measurement
point [cf. Figs. 1(a) and 1(d)]. For example, i diverges
around stagnation points or shears so that no robust global
quantity can be built by integrating or averaging i over the
whole flow. An illustration of the importance of that issue
may be given in the typical inhomogeneous anisotropic case
of the von Karman flow. This flow, generated in between two
counter-rotating coaxial impellers, has received a lot of
interest'> " as a simple way to obtain experimentally a very
large Reynolds number flow in a compact design (Re~ 10°
in a table top water apparatus). In the equatorial shear layer
of such a flow, fluctuations are large and exhibit similar local
properties as in large Reynolds number experimental facili-
ties devoted to homogeneous turbulence.*'®20-*! Away from
the shear layer, one observes a decrease in the turbulence
intensity,zz’23 as seen in Figs. 1(a) and 1(d). Overall, the flow
is strongly turbulent so that the instantaneous velocity fields,
measured by means of a PIV system, strongly differ in a
nontrivial manner from their time average [cf. Figs. 1(b) and
1(c)]. To overcome these limitations, we introduce a normal-
ized kinetic energy in order to find a global generalization of
the turbulence intensity.

B. Normalized kinetic energy

The kinetic energy E of a turbulent flow is a conserved
quantity in the inviscid force-free limit. This observation is at
the heart of the description of turbulence through an energy
cascade from large to small scales even if in real stationary
turbulent flows, kinetic energy E(¢) is only conserved in av-
erage. This quantity therefore appears as a natural global
observable to study turbulence. However, without proper
normalization, E does depend on the Reynolds number or on
the forcing conditions (vessel shape, injection device,...). In
numerical simulations, the kinetic energy is therefore classi-
cally normalized using the typical velocity which appears in
the Reynolds number definition. In the sequel, we rather
adopt a global normalization, through the kinetic energy of
the time-averaged flow, to define our normalized global ki-
netic energy

E(1)

on=—-. (1)
E

This normalization finds its relevance in the fact it is based
on the whole velocity field of the flow and not only on the
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forcing amplitude. The kinetic energy of the flow can be
classically computed from the velocity field V(x,?)
=[u(x,t),v(x,t),w(x,f)] as a spatial average E(V(¢))
=(V2(r)). & can therefore be recast as

2
sy =

(V)

where (X) and X refer, respectively, to spatial and time aver-
age of X, and V(x,#)?=u’+v?+w? is the local kinetic energy
density at time ¢.

Note that this scalar parameter is time dependent and
generally widely fluctuates in time (cf. Fig. 2). We then de-

fine two time independent parameters, S and &, that are the
time average and variance of &(f), respectively, as

8= (VA )V,
8= é(r)? - 8(1)°.

We show in Sec. III that these two quantities fully character-
ize &(¢) provided that the considered time series of sampled
fields are uncorrelated.

To our knowledge, these quantities have never been
studied in the analysis of experimental or numerical turbu-
lent flows except within the framework of dynamo theory.24
They have however several built-in thermodynamic and to-
pological characteristics that make them suitable for a clas-
sification of turbulent flows. First, in a homogeneous turbu-

lent flow, 6=i>+1, so that & is a global generalization of the
local turbulence intensity i. Additionally,

(5= 1P = (V=7 =3, J PV - T,
v

where the sum runs over the volume )V of the flow. The
quantity under the overline is nothing but the square of the
mean distance (using norm 2) between the instantaneous
flow and the mean flow in the functional space. Therefore,

the quantity (6—1) is a global measure of how far, on aver-
age, the instantaneous velocity field is from its time average.

If & is close to one, one therefore expects the instantaneous

flow to strongly resemble the mean flow. If & is much greater
than 1, the instantaneous field will be more remote from the

mean flow. This interpretation of &is used in the Appendix to
draw a rough study of the convergence of the von Karman
flow toward its time average.

Second, &, appears as a parameter that has already been
studied if it is rewritten as

5= \/EZ_— E? _Ems
E2

o]

Indeed, as discussed in Ref. 25, this quantity varies in usual
equilibrium systems like 1/ \W, where N is the number of
degrees of freedom of the system. In dissipative forced
flows, Aumaitre e al.”® showed that it might be interpreted
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FIG. 1. [(a) and (d)] Maps of turbulence intensity i, [(b) and (e)] corresponding time-averaged, and [(c) and (f)] typical instantaneous velocity fields for two
von Kdrman flows [(a)—(c) and (d)-(f)] at the same Reynolds number but with slightly different geometry. Both flows correspond to the same experimental
setup—TM60(+)—except for a narrow annulus inserted in the median plane of the flow in (d)—(f). In (a) and (d), for better visibility, the gray scale has been
saturated at i=6 since values up to i~ 10* can be reached in the median plane due to weak mean velocities and large fluctuations. Additionally, vectors of the
instantaneous velocities have been scaled by half with respect to the mean field vectors.

as a measure of the effective degrees of freedom of the sys-
tem. &, therefore includes a thermodynamical information
which will be proven useful in the sequel.

lll. EXPERIMENTAL SETUP AND DATA PROCESSING

A. The von Karman flow
1. Experimental setup

In order to illustrate and apply these concepts, we have
worked with a specific axisymmetric turbulent flow: the von
Karman flow generated by two counter-rotating impellers in
a cylindrical vessel. The cylinder radius and height are R
=100 and 240 mm, respectively. We have used two sets of
impellers named TM60 and TM73.>’ These two models are
flat disks of respective diameters 185 and 150 mm fitted with
radial blades of height 20 mm and respective curvature radii
50 and 92.5 mm. The inner faces of the disks are H
=180 mm apart.

Impellers are driven by two independent motors rotating
up to typically 10 Hz. More details about the experimental
setup can be found in Ref. 28. The motor frequencies can be
either set equal to get exact counter-rotating regime, or set to
different values f; # f,. We define two forcing conditions
associated with the concave (convex) face of the blades go-
ing forward, denoted in the sequel by sense (—) [(+)]. We
also work with two different vessel geometries, allowing the
optional insertion of an annulus—thickness 5 mm, inner di-
ameter 170 mm—in the equatorial plane. Both the forcing

condition and the annulus insertion strongly influence the
level of fluctuation in the flow, thereby allowing to test ex-

perimentally the sensitivity and the relevance of &(r), &, and
6,. The working fluid is water.

2. Control parameters

From the two motor frequencies, f; and f,, we define
two control parameters: a Reynolds number, Re, and a rota-
tion number, 6. For the experiments described in this paper,
the Reynolds number,

Re = 7(f, + fL)R*v!,

where v is the fluid kinematic viscosity, ranges from

Yo

!

520 540 560

,‘
i
Iy

‘ ‘ MR
600 800 1000 1200
time (s)

200 400
FIG. 2. (Color online) Example of the temporal evolution of &(¢) at two time
scales: a full record of about 20 min on the left, and a focus on a 40 s sample

on the right. A schematic illustration of the meaning of & and &, is also
provided over the longest time record.
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1.25X 10° to 5 X 10 so that the turbulence can be considered
fully developed. The rotation number,

hHi=f

_f1+f2’

measures the relative influence of global rotation over a typi-
cal turbulent shear frequency. Indeed, the exact counter-
rotating regime corresponds to #=0 and, for a nonzero rota-
tion number, our experimental system is similar, within
lateral boundaries, to an exact counter-rotating experiment at
frequency f=(f,+f,)/2, with an overall global rotation at
frequency (f,—f>)/2."%*? In our experiments, we vary 6 from
—1 to +1, exploring a regime of relatively weak rotation-to-
shear ratio.

3. Mean flow topology

In the exact counter-rotating regime, i.e., for =0, the
standard mean flow is divided into two toric recirculation
cells separated by an azimuthal shear layer [cf. Figs. 1(b) and
1(e)]. As 6 is driven away from zero, a change in topology
occurs at a critical value 6,.: The mean flow bifurcates from
the two counter-rotating recirculation cells to a single cell.'s
0. depends on the forcing and the geometry. For example,
in the configuration with TM73 impellers, rotation sense
(+) and the annulus, we measure 6,=0.17*=0.01 through
torque measurements. In the case TM60(—), this turbulent
bifurcation becomes highly singular and gives rise to
multistability between the two turbulent flow symmetries,
0(2)-S0(2).'%8%

B. Measurements and data processing

Measurements are done with a SPIV system. The SPIV
data provide the radial, axial, and azimuthal velocity compo-
nents on a 95X 66 point grid covering a whole meridian
plane of the flow through a time series of about 5000 regu-
larly sampled values, for experiments at §=0. The series of
data with a varying rotation number 6 are acquired with a
smaller statistics of 600 samples. The sampling frequency is
set between 1 and 4 Hz, corresponding to one sample record
every 1-10 impeller rotations. The total acquisition time is
about ten minutes, i.e., one order of magnitude longer than
the characteristic time of the slowest patterns of the turbulent
flow. Fast scales are statistically sampled.

The velocity fields are nondimensionalized using a typi-
cal velocity Vy=27R(f|+f,)/2 based on the radius of the
cylinder and the rotation frequencies of the impellers. The
resulting velocity fields are windowed so as to fit to the
boundaries of the flow and remove spurious velocities mea-
sured in the impellers and the boundaries. The resulting
fields consist of 58 X 58 point velocity maps. Two types of
filtering are further applied to clean the data: first, a global
filter to get rid of all velocities larger than 3 X V;; then, a
local filter (based on velocities of nearest neighbors) to re-
move isolated spurious vectors. Typically, 1% of the data are
changed by this processing.

Phys. Fluids 21, 025104 (2009)

C. Data analysis

From a practical point of view, we use two different
methods to compute &(¢) from our PIV measurements. In the
direct method, we compute & by spatially averaging the ki-
netic energy density of instantaneous and time-averaged
flows. Since we measure the full velocity field in a single
meridian plane only, we cannot compute true three-
dimensional (3D) spatial averages. Practically, we estimate
the 3D spatial average of any quantity X assuming its axi-
symmetry such as

l R H/2
(X(r.2)) = ldr f dX (D).

RZH -R -HJ/2

For time-averaged quantities, the statistical axisymmetry of
the von Karmén flow justifies this procedure. For instanta-
neous quantities X(r,z,t), this is not the case. Therefore, our
estimation of &(rf) may be slightly flawed. However, time
averaging and spatial averaging over the angular variable 6,
i.e., over the different meridian planes, are equivalent opera-
tions since spatial structures of the flow in the 6 direction are

rotating. Such “ergodicity” makes our estimation of & cor-
rect. Since velocity fields are discrete in space and time,
spatial integration is done with a classical numerical trap-
ezoid summation method whereas time integration is per-
formed through simple summation.

The parameter 6 can also be obtained by a spectral
method. For this, we compute the spatial power spectral den-
sity (PSD) of the discrete velocity fields as

E(k, k1) = WW*,

where W= W(k,,kz,t) is the two-dimensional spatial Fourier
transform of W(r,z,t)= VWV(r,z,t) and W* its complex con-
jugate. Then, we compute o using Parseval’s identity

f f |r|drdzV? = f f dk,dk, WW*

and get
_ [fdk,dk.E(k.1)
[ etk i Eo(k)

where Eo is the PSD of the time-averaged flow

8t) ()

Eo(k, k1) = WIW".

IV. RESULTS AND APPLICATIONS

A. Basic properties of &
1. Statistical properties

As discussed in Sec. II, &(¢) widely fluctuates in time.
However, its statistical properties in the exact counter-
rotating case are rather simple since its probability density
function (PDF) is nearly Gaussian as illustrated in Fig. 3(a).
Actually, this property holds at different Reynolds numbers
[cf. Fig. 3(a)] and for all forcing and geometry conditions
studied in the present paper [cf. Fig. 3(b)]. A striking feature
is that global rotation does not change the statistical proper-
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FIG. 3. (Color online) Centered and reduced PDF of &(t), (a) for the
TM73(—) configuration with annulus at #=0 and for seven different Rey-
nolds numbers ranging from 1.25X 103 to 5X 10° (5000 samples), and (b)
for the TM73(+) configuration without annulus for 16 experiments per-
formed with different values of rotation number 6=(f,—f,)/(f,+f,) ranging

from 0 to 1 (600 samples). 5*=(5—5)/ &, is the centered reduced value of 8.
The dashed-dotted lines are Gaussian functions of zero mean and unit vari-
ance. Data of (b) are more scattered than those of (a) because of the differ-
ence in statistics.

ties of the flow since the PDFs are nearly Gaussian at any 6.
Consequently, we can describe and fully characterize the to-
tal energy temporal distribution using only the two scalar

parameters & and &,.

Finally, we have to notice that the nearly Gaussian PDFs
of J present however a small asymmetry with high 6 values
in excess [at least in Fig. 3(a)]. We may highlight the resem-
blance between this asymmetry and the one observed in the
PDFs of injected power in a closed turbulent flow, which is
of the same order of magnitude as ours in Refs. 7 and 8 and
much larger in Refs. 5 and 6. However, the theoretical
link between kinetic energy and injected power is
controversial’>! so that no safe analogy can be drawn.

2. Dependence on the Reynolds number

For a given forcing, i.e., for a given impeller shape and a
given rotation sense, we observe a very weak dependence of

& with Re in the studied range as one can see in Fig. 4. The
largest dispersions, of the order of 8%, are observed in the
negative-rotation sense for both TM60 and TM73 impellers
without annulus. For any other forcing condition, the disper-
sion is less than 5%. Similar conclusions hold for &, repre-
sented in Fig. 4 using error bars. This behavior is not sur-

Phys. Fluids 21, 025104 (2009)
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FIG. 4. & as a function of Reynolds number Re for §=0. Negative Re
corresponds to rotation sense (—). (a) and (b) correspond, respectively, to
TM73 and TM60 impellers, with (O) and without (CJ) annulus. Dashed-

dotted lines correspond to the mean value of & for each configuration and &,
is represented using error bars.

prising since in our water experiments the Reynolds number
is so large that we are in the fully developed turbulent regime
where statistical properties have already been shown not to
depend on the Reynolds number.”>?***3 On the contrary, we
expect a different behavior when lowering the Reynolds
number’? since in the limit of very low Re, the instantaneous

flow is laminar and identical to the mean flow: &(r)=5=1.
The study of the transition between laminar and fully turbu-
lent regime requires the use of, e.g., glycerol-water mixing
and is beyond the scope of the present paper. Note however
that this transition has already been studied in the von
Kérmén experiment—TM60(—) without annulus at
0=0—by Ravelet et al® using a one point measurement
laser Doppler velocimetry system. It has been shown that the
local value of the variance of the azimuthal velocity, v%,—z?%,
behaves as (Re-Re,)"? and saturates above Re,=3300, where
Re.=330 corresponds to the transition from steady to oscil-
latory laminar flow and Re, to the onset of the fully turbulent
inertial regime. A similar behavior is encountered in direct
numerical simulations of the Taylor—Green flow,”* where an

increase in & from 1 at low Re to a saturation value of 3 for
Re above 103 has been observed.

B. Influence of forcing and annulus

It is difficult to estimate turbulence intensity by simply
looking at an instantaneous velocity field [cf. Figs. 1(c) and
1(f)]. To achieve this, the local turbulence intensity i maps
[cf. Figs. 1(a) and 1(d)] constitutes a good qualitative tool to
estimate the overall turbulence intensity and structure of the
considered flow. However, a quantity like 6 is needed to
provide a global quantitative tool.
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TABLE I. Values of 6 and &, for various configurations.

Phys. Fluids 21, 025104 (2009)

13 6,
Impellers TM60 T™73 TM60 T™M73
Sense (=) () (=) +) =) (+) (=) )
Without annulus 2.64 2.18 222 2.02 0.30 0.24 0.24 0.18
With annulus 1.52 1.47 1.50 1.48 0.11 0.15 0.11 0.12

1. Effect of impeller and vessel geometry

As reported in Table I, the values of S and 6, allow to
quantify the differences in the turbulence fluctuations level
as a function of the forcing configurations (TM60 and TM73,
with or without annulus). The major result of Table I is the

effect of the annulus which systematically reduces & and &,
meaning that the instantaneous flow is much closer to the
mean flow. A great part of this drop probably reflects the
reduction of the slow fluctuations of the shear layer already
known from time spectral analysis to be responsible for a
major part of the energy fluctuations.”’ From a spatial point
of view, this reduction is the consequence of the expected
locking of the shear layer in the annulus plane which appears
in direct visualizations of the flow. Additionally, we note that

the annulus tends to collapse all values of & to 1.5+0.03. In
contrast, a dispersion of about thirty percents remains on the
variance 6.

2. Qualitative interpretation

To understand the measures presented in the last para-
graph, we report visual observations of the flow seeded with
bubbles [cf. Fig. 5]. Such visualizations allow to unveil spa-
tial structures of turbulence and especially the largest pat-
terns which exhibit the slowest time dynamics. Let us de-
scribe our observations in the TM73 impellers configuration.

Without annulus, the main structure of the free shear
layer at very high Reynolds number consists of three big
fluctuating vortices, i.e., a m=3 azimuthal wave number
mode [cf. Figs. 5(a) and 6]. The size of these vortices is
almost the full free height of the vessel for sense (—) and
somewhat smaller for sense (+). These vortices fluctuate in
azimuthal position as well as in amplitude or apparent size.
Nucleation and merging frequently occur.

In the presence of an annulus, the azimuthal m=3 peri-
odicity remains unchanged. However, the three vortex cores
split into pairs of smaller corotating vortices attached to the
leading edges of the annulus [see Fig. 5(b) and the schematic
view in Fig. 6]. This splitting corresponds to the growth of
an m=6 harmonics: the fundamental m=3 mode is impeded
by the annulus and some of its energy is transferred to its

first harmonics. The strong reduction in & and &, is probably
the trace of this scale change in the shear layer structure. We
can note that within its thermodynamical interpretation given
at the end of Sec. I, the decrease in &, with increasing num-
ber of vortices in the shear layer may also be viewed as due
to an increase in the number of degrees of freedom of the
system in agreement with conclusions drawn in Ref. 8. Fur-

thermore, we observe the temporal dynamics of the shear
layer vortices which is different for both senses of rotation.
For sense (+), the vortices keep high mobility and fluctuation
levels. On the contrary, for sense (—), the vortices are almost
steady: merging, nucleation, and large azimuthal excursions
are inhibited. The only remaining dynamics is an azimuthal
vibration of their center at a frequency of a few hertz. This
qualitative observation is corroborated by the behavior of 6,:

even if 6~ 1.5 in both cases, & is lower in the (—) senses,
where the vortex pairs are more stable.

3. Scale by scale characterization

a. Spatial spectra. By construction, & accounts for the
total fluctuating kinetic energy of the turbulent flow. The use

of PSD as an intermediate step to compute & [cf. Eq. (2)] can
provide useful information about the distribution of the en-
ergy over the various length scales of the flow, as illustrated
in Figs. 7 and 8. Indeed, in Fig. 7, we compare the time-

averaged PSD of the instantaneous velocity fields, E(k), to

the PSD of the corresponding time-averaged field, E(k), for
the two TM73(+) setups, with and without annulus.

In the spirit of the definitions of turbulent intensity i and
of the quantity &, and because we do access the full spatial
spectra, we choose to normalize the PSD by the total kinetic
energy of the mean flow. Therefore, the integrals of the dis-
played curves for the two time-averaged flows are equal to 1.
The wave number k is given by k2=kf+kf.

In the time-averaged PSD of the instantaneous flow, the
major part of the fluctuating kinetic energy is concentrated
close to the forcing scale, where the energy is injected, like
in any homogeneous and isotropic turbulent flow. On the
contrary, at higher k, the slopes of the different PSDs are
close to —2 and larger than the classical —5/3 exponent ob-
served for homogeneous isotropic turbulence.

(a) (b)

FIG. 5. (Color online) Visual observations of the von Kdrmén flow seeded
with bubbles with TM73 impellers, (a) without annulus and (b) with
annulus.

Downloaded 24 Feb 2009 to 132.166.21.91. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



025104-7

Normalized kinetic energy

0 2n/3 4m/3 2n

FIG. 6. Sketch of the shear layer patterns, on the developed cylinder (6,z),
from visual observations at high Reynolds number. Without annulus (top
sketch), the shear produces a triplet of large corotating vortices, correspond-
ing to a m=3 mode. In the presence of the equatorial annulus (bottom
sketch), the pattern is still m=3 periodic but the three vortex cores split into
corotating pairs: Some energy is transferred from the fundamental m=3
mode to its first m=6 harmonics.

b. Comparing instantaneous and time-averaged flows.

We observe in Fig. 7 that the kinetic energy spectra E((k) of
the time-averaged flow are below the average of the instan-

taneous spectra E(k) for all k. Their relative difference

E(k) - Eq(k)

Ak = 25
Eo(k)

measures the average relative excess of kinetic energy at
wavenumber k in the instantaneous flow with respect to the
corresponding amount of energy in the time-averaged flow.
This quantity, which depends on the presence or the absence
of the annulus, is evaluated in Table II. At low wavenumber,
the relative excess of kinetic energy AE(1/D) is 0.8 without
annulus and only 0.2 with annulus, i.e., four times less and
quite a small value. At higher wavenumber, A€ reaches a
plateau close to 2 for both configurations. We conclude that
when annulus is inserted, the instantaneous flow generally
looks much closer to the time-averaged flow than without
annulus, especially at large scale.

T

PSD

10

T

10

o

-
o

FIG. 7. (Color online) Two-dimensional time-averaged PSD of instanta-

neous flows E(k) (solid lines) and PSD of the corresponding time-averaged
flows Ey(k) (dashed-dotted lines) for two experiments performed with setup
TM73(+), without the annulus (A) and with the annulus (O). The PSD are
normalized by the total kinetic energy of the mean flow and wavenumbers
are normalized by the PIV window size D=1.93R.

Phys. Fluids 21, 025104 (2009)

FIG. 8. &(k) as function of k for TM73(+) setups without (A) and with
annulus (O). The specific data point E(I/D) is represented with a large
black symbol (H). The difference Ag(k) between the two curves is also
displayed (+). At high , this difference converges asymptotically to AS and

is of the order of 3(1/ D) without annulus (see text for details). Wavenum-
bers are normalized by the PIV window size D=1.93R.

c. The annulus as a high-pass spatial filter. To quantify
more precisely the weight of each scale in 8(z), we introduce

S(k,?) defined as
k 31,1 (1.1
~ dk'E(k',t
Bk, ) = L0 EULD
Jodk'Eo(k")

so that &(k,) — &(r) when k— . In Fig. 8, E(k) is plotted for
TM73(+) flows with and without annulus. These curves rep-
resent the integrals from O to k of the normalized PSD of

Fig. 7. They converge toward & at large k, i.e., 3(00)=5.
First of all, we see that the contribution of the five first
wavenumbers, i.e., of spatial modes larger than D/5=R/10,

is about 80% of the total value of &.
Additionally, in Fig. 8, we note that the fluctuation level

in the first k=1/D mode of the g(k) curve without annulus

(the data point has been emphasized) and the difference A&
between the two flows—without (w/o) and with (w)
annulus—are of the same order of magnitude,

3w/{)(]/D) = SW/g - (_sw = A(_S

This has also been verified for the three other couples of
flows. The effect of the annulus may thus be seen as a high-
pass spatial filter, filtering the largest patterns of the flow,
which confirms the sketch presented in Fig. 6. Finally, the

quantity Sk, 1) appears as an efficient tool to track the spec-
tral changes in turbulent scales.

TABLE II. A&(k) measures the average relative excess of kinetic energy at
wavenumber k in the instantaneous flow with respect to the corresponding
amount of energy in the time-averaged flow. It is evaluated from the spectra
at low (1/D) and at higher (between 5/D and 10/D) wavenumbers where a
plateau is observed.

k 1/D 5/D-10/D
Without annulus 0.8 2.3
With annulus 0.2 1.7
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FIG. 9. (Color online) [(a) and (b)] Vertical position of the shear layer at 7=0 on the rotation axis (O) and at position r=0.7 (®), [(c) and (d)] 8, and [(e) and
()] 8, as a function of the rotation number 6. Left and right columns correspond, respectively, to setup TM73(+) without and with annulus. In (a) and (b), the

(O) markers correspond to the stagnation point vertical position. In (c)—(f), 5 and &, are computed over the whole flow.

C. Properties of 6 when f,#f,

As already mentioned in Sec. III A 3, depending on the
value of the rotation number 6=(f,—f5)/(f,+/f>), the mean
von Kdrman flow exhibits two different topologies. Indeed,
for |6 < 6., the mean flow is composed of two toric recircu-
lation cells separated by an azimuthal shear layer, as for
[6]> 6., it is composed of a single recirculation cell."® We
have performed a set of experiments for the specific forcing
condition TM73(+) with and without annulus, varying 6
from —1 to 1. In this geometry, 6,=0.17 =0.01 with annulus
and 6.=0.095*+0.005 without annulus. The aim of these
experiments is to study the influence of the global rotation
and of the transition between the two flow topologies on
turbulence intensity.

A way to quantify precisely the turbulent bifurcation of
the mean flow occurring at 6. is to study the position of the
azimuthal shear layer that separates the recirculation cells
when |6|<#6,. A good quantity that allows to localize this
position is the zero isosurface of the stream function ¢/(r,z)
of the mean flow defined through (u_,,O,u_z):V X (r'ipe,) in
cylindrical coordinates. Thus, in Figs. 9(a) and 9(b), we have
plotted two measures of the shear layer vertical position at
r=0, i.e., the stagnation point, and at »=0.7 on the side. The
discrepancies between these two sets of data renders the fact
the shear layer is in general a curved surface expect for the
0=0 configuration. Actually, its vertical position at large r is
always closer to the z=0 equatorial plane of the vessel than
at r=0. As | 6| increases from zero, the shear layer is attracted
by the slowest impeller. Without annulus [cf. Fig. 9(a)], it

results in a global drift of the shear layer34 accompanied by
the appearance of a moderate curvature. With annulus [cf.
Fig. 9(b)], the outer edge of the shear layer remains pinned
on the annulus whereas its center—the stagnation point—
drifts, increasing the layer curvature up to a high level just
below 6.: the annulus strongly stabilizes the shear layer near
the equatorial plane and maintains it to higher rotation num-
bers.

At 6=6., we observe a discontinuity of the shear layer
vertical position which corresponds to the turbulent bifurca-
tion. The discontinuous bifurcation does not present, in the
two studied cases, any hysteresis in . However, close to 6.,
we can observe transitions between two metastable one cell
and two cells states which follow a slow dynamics.35

In this section, we first analyze how the parameters &
and &, behave with the rotation number. Thereafter, using
these tools computed over the two symmetric half of the
flow, we analyze how they can also provide a proper charac-
terization of the symmetry breaking.

1. Variation of 6 with the rotation number

The parameter & can be used to study the changes in
turbulence intensity related to the turbulent bifurcation un-
dertaken by von Karmdn flows at critical 6. Figures
9(c)-9(f) show the variations of & and &,, calculated over the
whole flow as a function 6.

First of all, for ||<6,, & and &, are relatively high
(6=2 and 8,=0.2). This reflects the presence of the highly
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FIG. 10. (Color online) [(a) and (b)] &, and [(c) and (d)] &, as a function of the rotation number 6. Left and right columns correspond, respectively, to setup
TM73(+) without and with annulus. (A) corresponds to & computed over the upper half part of the flow as (V) to the lower half part.

fluctuating shear layer in the flow bulk. On the contrary, for
|0| >0, i.e., for a large rotation-to-shear rate, S and 6, are

quite small (6=1.2 and 8,=0.05) and are almost indepen-
dent of 6.°° This means that the level of global rotation has
no significant influence on the turbulence intensity level un-
less the mean flow topology changes. Actually, & and &,
carefully trace back the flow topology changes induced
through the bifurcation at = 6,.. They might even be used as
order parameters of such turbulent bifurcation and they pro-
vide a reliable measurement of threshold 6.

2. Effect of the annulus

We have seen how the annulus stabilizes the shear layer
and postpones the bifurcation threshold. It has also a strong
effect on the turbulence level. In Figs. 9(c)-9(f), we observe
that for |§| < 6., when the flow is composed of two counter-
rotating toroidal cells, the turbulence level is much larger
without than with the annulus: the results for zero rotation
number (cf. Sec. IV B) extend to —0,< < 6,.

We have already mentioned that the strong reduction in

& and 8, with the annulus is due to the stabilization and the
spatial filtering, especially at large scales, of the shear layer
that is trapped by the annulus. Also, we note that the curva-
ture of &(6) is opposite, with and without annulus, in the
range —0,< < 6. Without annulus, 8,,,(6) decreases with
increasing |6| since the shear layer is free to drift continu-
ously away from z=0 as 6 tend to =6"°. With the annulus,
the shear layer is trapped and we observe that the fluctuation
level 8,(6) increases with | 6] and reaches maxima—and may
even diverge—close to = 6. Actually, we may suppose that
the flow with annulus has a given energy gap to overcome

the trapping of the shear layer and bifurcate from two cells to
one cell, i.e., abruptly break the top/bottom symmetry of the
flow. This may explain why it is necessary to explore larger
6 before turbulent bifurcation occurs, i.e., why 6, is larger
with the annulus than without.

For |6|>6,, the low turbulence intensity, almost un-
changed at first order, is slightly larger in the presence of the
annulus: The one-cell flow is almost insensitive to the annu-
lus presence and the slight increase is probably due to the
vertical step flow over the annulus.

3. Quantifying the symmetry breaking

For further exploration of the turbulent bifurcation and

related symmetry breaking, we now calculate & and &, over
half vessels, i.e., on each side of the annulus equatorial plane
(cf. Fig. 10).

Starting from the exact counter-rotating configuration, as

|6| is increased from zero, & and &, are becoming larger for
the half part of the flow corresponding to the slowest impel-
ler and are decreasing for the other half part. This is directly
connected with the position of the shear layer, which gets
closer and closer to the slowest impeller when 6 increases
[cf. Figs. 9(a) and 9(b)].

In Fig. 10, we observe that as it is generally the case in
the vicinity of bifurcations, the fluctuation indicators S and
0, grow near * 6, in the concerned half vessel and that the

peaks in & and 8, correspond exactly to the bifurcation points
6= * 6.. With the annulus, where the bifurcation is much

sharper, one could detect a critical divergence for (6—1) [cf.
Fig. 10(b)].
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FIG. 11. 5-1 computed with velocity fields averaged over N instantaneous
fields for various setups: TM73(—), without the annulus (M) and with the
annulus (@) and TM73(+), without annulus (CJ) and with annulus (O). A
guide to the eye for the N~! dependency is plotted with a dotted line.

V. CONCLUSIVE DISCUSSION

We have introduced a hydrodynamical global quantity &
that characterizes turbulent fluctuations in inhomogeneous
anisotropic flows. This time dependent quantity is con-
structed as the ratio of the instantaneous kinetic energy of the
flow with the kinetic energy of the time-averaged flow. Such
a normalization based on the flow dynamics makes this
quantity comparable from one turbulent flow to any other.
We have shown that, generally, properties of &(¢) are fully

provided thanks to only two parameters, its time average &
and variance o,. These parameters generalize to inhomoge-
neous anisotropic flows the classical notion of turbulence
intensity, based on local, single point measurements. Addi-
tionally, & and &, present topological and thermodynamical
properties since they are connected respectively to the dis-
tance between the instantaneous and the time-averaged flow
and to the number of degrees of freedom of the flow.

Properties of 6 and &, have been experimentally studied
in the typical case of the von Karman flow for different forc-
ing and geometries. We have shown that in the fully turbu-
lent regime, they are Reynolds independent, like any classi-

cal quantity in the inertial range. However, & and &, depend
on forcing and geometry and faithfully reflect major changes
in the flow topology. They can therefore be used as a tool for
comparison of different turbulent flow. In the present paper,
we provided an example in which & is used to characterize
the turbulent bifurcation in the von Kdrman flow induced

through differential rotation of the two impellers. Finally, &
and o, are used to characterize the scale by scale energy
budget as a function of the forcing mode as well as the tran-
sition between the two flow topologies.

Another interesting application would be the study of the
generation of magnetic field by a turbulent flow, the so-called
dynamo instability. This problem has attracted recently a lot
of experimental attention.”” " In the case where the corre-
sponding turbulent flow has a nonzero mean value, the dy-
namo instability may be seen as a classical instability prob-
lem, governed by the mean flow and the fluctuations.”**4* A
natural question in this case is therefore how to quantify the

Phys. Fluids 21, 025104 (2009)

relative level of fluctuations, and the deviations from the
mean flow they induce, so as to implement efficient control
strategies to decrease or increase their influence. Since our
global parameter quantify the difference between the instan-
taneous and the mean flow, they are natural candidate to
discriminate between different dynamos. This has been re-
cently illustrated in numerical simulations of the Taylor—
Green flow.” No equivalent quantitative analysis has been
performed for experimental dynamos. However, among these
successful experimental dynamos, we can suspect that the
Riga37 and Karlsruhe®® flows are characterized by values of &
lower than in von Karman flows.>>* In the future, we plan to
use these parameters for the analysis of recent results of the
von Kdarmédn sodium (VKS) experiment.
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APPENDIX: CONVERGENCE TOWARD THE MEAN
FLOW

As we have seen in Sec. II, the parameter S can be seen
as the average square distance between the instantaneous and
the time-averaged velocity fields. Therefore, we can use a
slight modification of & to study the convergence toward the
mean flow through statistical averaging. For this, we define
V(N,1) the velocity field averaged around time ¢ over N in-
stantaneous fields. N<N,,,,, where N,,,=5000 is the total
number of instantaneous fields. From a practical point of
view, V(N,,,)=V(t). Then, we define
(VA(N,1))

()
With this definition, &(1)=6 and &(N,,)=1. Moreover,
8(N)—1 measures the average square distance between the

8(N) = (A1)

partially averaged field V(N) and the mean flow V so that its
variations with N can be used to study the convergence to-
ward the mean flow. We can see in Fig. 11 that this square

distance, 8(N)—1, decreases as N~', at least at large N, what
is typical of an uncorrelated fluctuating quantity. However,
for the negative-rotation-sense-with-annulus case, the N~
dependency is observed only at N larger than 100. Actually,
in that particular setup, we have observed, by means of
bubble seeding (cf. end of Sec. IV B 2), that even if the
largest structures of the shear layer where removed by the
annulus, a pair of coupled vortices appeared. These vortices
are smaller than those we observe without the annulus, but
their long time coherent processing must induce long time

correlations that slow down the decrease of S(N).
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