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Abstract— Autonomous vehicles are round the corner. Most
of car manufacturers are racing to become a leader in this
promising market. In this paper, we focus on one of the
remaining challenges to be overcome, namely, the control
of vehicle motion when friction varies. Researchers tend to
estimate the friction coefficient using complex observers based
on simple mathematical equation. We believe that by taken into
account some formerly simplified dynamics, as roll dynamics,
we can reduce the estimations’ errors, and therefore use simple
observers. Co-simulations of the control logic with a high-
fidelity vehicle model proved the relevance of this method.
Results showed that the vehicle can be controlled in severe con-
ditions while the friction changes using only today’s passenger
cars sensors. Vertical dynamics should therefore be taken into
account even for plane motions.

Index Terms— Vertical Dynamics, Friction Estimation, Vehi-
cle Motion Control, Robust Control, Control Allocation.

I. INTRODUCTION

The automotive sector is facing one of its biggest rev-
olutions. Autonomous vehicles promise a lot of potential
in terms of safety, comfort, and time saving. Autonomous
driving may even reinvent mobility. Most of the expertise
that car manufacturers developed regarding the interaction
between human and vehicles is questioned. An autonomous
vehicle should be able to perform like a human when the
driver’s attention is carried away. In this context, active
researches are conducted to perceive the vehicle surrounding,
take an intelligent decision, and control the vehicle motion.
The vehicle should be able for example to detect an obstacle,
update its planned trajectory, and control its dynamics to
follow the desired trajectory. In [1], trajectories have been
calculated using simple clothoids for lane change. What is
more interesting about this research, is the fact that both
the trajectory planning and the velocity profile generation
are closely related to friction constraints. Authors however
suppose that friction values are available and no estimation
method is provided. The same methods have been detailed
in [2] to test an autonomous vehicle at the limits of han-
dling. Here, the controller uses a priori knowledge about
the friction. The vehicle relies afterwards on the controller
robustness to handle surface variations.
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In addition, few studies have been carried out to use the
cameras in order to estimate the road friction rather than
object detection. The vehicle however should be able to
follow the trajectory planned no matter how the friction
varies. However, as the friction coefficient is a representative
ratio between the tire force and the vertical load [3], it cannot
be directly measured. Even the costly sensors equipped
at the tire rubber blocks are usually used for tire force
measurement, e.g., a wireless piezoelectric tire sensor for
the measurements of tire deformations [4]. Important efforts
have been carried out in order to provide an estimate of
the friction coefficient. In [5], an attempt to estimate the
road friction is presented, which is based on vehicle braking
dynamics. Simulation results showed the ability of the ob-
server to provide a good estimation when braking. However,
in combined maneuvers, when the vehicle is accelerating
in steering at the same time for example, combined slip
dynamics should be taken into account [6]. This is mainly
due to the ellipse of friction [6] that shows that the lateral
tire force penalize the longitudinal one, and vice-versa.
Not taking into account the influence of the lateral force
may prevent a good diagnosis of longitudinal tire force
penalization. One cannot tell if it is due to a combined slip
or a friction variation. The same philosophy is exposed in
[7] and [8]. However, in [7] a more complicated sliding
mode observer have been designed based on Dugoff tire
model [9], and in [8] a combination of nonlinear Lipschitz
observer and a modified super-twisting algorithm observer
is developed. Both methods showed good precision as long
as only longitudinal forces are excited. Recently, data-based
techniques have received more attention. For example, an
Auxiliary Particle Filter (APF) have been combined with the
Iterated Extended Kalman Filter (IEKF) in [10] based rather
on the lateral dynamics only. Data-based techniques are used
to correct the errors generated by the unmodeled dynamics,
and fit the signals values to the real ones. Experimental tests
showed promising results. We believe however that the initial
modeling should be precise enough to limit the number of
errors to be corrected by data-based techniques.

In this paper, we focus on the initial modeling putting on
the spotlight the importance of roll and pitch dynamics. Our
investigations showed that particularly the vertical dynamics
have an important influence on variables estimation, but are
neglected in most research papers. The purpose is to approxi-
mate the friction coefficient rapidly without any complicated
observation method, update the control logic, and avoid the
vehicle’s loss of control even in severe conditions. To test our
method, a robust controller with a control allocation strategy



have been designed and implemented in Matlab/Simulink R©.
The overall control has been linked through a co-simulation
procedure with a high-fidelity over-actuated vehicle model
developed in LMS Imagine.Lab AMESim R©. Results show
good performance using simple estimators when taking into
account vertical dynamics. The vehicle can be controlled at
severe conditions even if friction varies without any a priori
knowledge about it.

The rest of the paper is structured as follows: We start in
Section II by presenting the overall control logic adopted for
vehicle motion control. In Section III, the vehicle dynamics
formulas used for estimation are described. Co-simulation
results are shown in Section IV. A discussion about the
relevance of this work and the remaining challenges is
provided in Section V. Conclusions and future works are
outlined in Section VI.

II. VEHICLE MOTION CONTROL STRATEGY

Car manufacturers and equipment suppliers are always
trying to make road vehicles safer and more comfortable.
They constantly try to propose new active safety systems.
Passenger cars have become therefore over-actuated [11].
The number of embedded systems is expected to increase
with the arrival of full autonomous vehicles. Therefore,
systems’ coordination strategies should be ensured in order
to avoid internal conflicts. In [12], a review of integrated
vehicle dynamics control architectures is provided. Authors
concluded that a multi-layered architecture may be a better
choice to handle each complication apart. In this way, the
motion of the vehicle’s center of gravity can be ensured
by a high-level robust controller. The generalized efforts
required to move the vehicle can be distributed in an optimal
manner via optimization-based control allocation strategies
to the four tires. These tire forces can be then transformed
in actuators commands and activate the system concerned
avoiding any internal conflicts. In this paper, a vehicle
equipped with an Active Rear Steering (ARS), a braking-
based Electronic Stability Program (ESP), and two rear in-
wheel electric motors for Torque Vectoring (TV). This choice
is motivated by the fact that it represents one of the case
studies conducted by our collaborators at the Group Renault.

A. High-Level Controller

The objective here is to calculate the required forces at
the vehicle’s center of gravity in order to track the desired
velocities. The dynamics at this point are characterized by
inertial parameters as the mass and moment of inertia.
These parameters are subject to several uncertainties [13],
which require a certain degree of robustness. Moreover,
vehicle motion states are coupled [14]. A Multi-Inputs Multi-
Outputs (MIMO) controller is needed to take into account
the different couplings. As the vehicle is equipped with an
ARS, ESP, and TV, and no access is permitted to active
suspensions, only a plane vehicle model is considered at the
high-level layer. The importance of vertical dynamics will
be emphasized is the vehicle states estimation. The vehicle

high-level model is therefore [14]:
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With:
• Vx : longitudinal velocity of the vehicle,
• Vy : lateral velocity of the vehicle,
• ψ̇ : yaw rate of the vehicle,
• Fxtot

: total longitudinal force at the vehicle’s Center of
Gravity (CoG),

• Fytot : total lateral force at the vehicle’s CoG,
•Mztot: total yaw moment at the vehicle’s CoG,
• M : vehicle’s overall mass,
• Izz : vehicle’s yaw moment of inertia.
Due to parameter uncertainties and the MIMO frame-

work, a MIMO H∞ controller has been selected for the
high-level control. However, depending on the influence of
the coupling terms, Gain Scheduling could be expected to
improve the controller performance. Be that as it may, the
lateral dynamics are fast, and controller parameters variance
can destabilize the overall system [15]. Another alternative
would be to design a stationary MIMO H∞ controller at
a sufficiently high crossover frequency where the velocities
variables are decoupled. In the same time, the crossover
frequency should be kept sufficiently low so that the H∞
synthesis achieves an optimal solution. Details of the design
will not be exposed in this paper as they do not represent
the main focus. The design algorithm achieved successfully
the smallest H∞ norm of γ = 1.14.

B. Control Allocation Strategy

The three chassis systems, namely the ARS, ESP, and
TV, can influence the yaw rate. The ESP can decelerate
the vehicle, while the TV can accelerate the vehicle and so
on. This middle layer aims to coordinate chassis systems
in order to avoid conflicts and ensure generation of the
total forces calculated at the high-level layer. Total forces
should be optimally distributed into the four tires to be
able to activate the right system with the right amount of
effort. As tires are solicited both longitudinally and laterally,
the friction ellipse should be taken into account [6]. This
ellipse representing tires’ potential is closely related to the
friction coefficient and the vertical load, which makes these
variables important to estimate. The problem is to find tire
forces where:
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Where:

• b3,1 = lf sin (δf )− t

2
cos (δf ),

• b3,2 = lf sin (δf ) +
t

2
cos (δf ),

• b3,3 = −lr sin (δr)−
t

2
cos (δr),

• b3,4 = −lr sin (δr) +
t

2
cos (δr),

• b3,5 = −lr cos (δr).
And:
• Fxi,j : i − j longitudinal force, where “i” is front or

rear, and “j” is right or left,
• Fyr : the equivalent lateral tire force of both rear tires,
• δi : front or rear steering angle,
• li : distance between the front or rear axle and the

vehicle’s center of gravity (CoG),
• t : vehicle’s track.
Regarding the online solver, the Weighted Least Squares

(WLS) based on one stage Active Set Algorithm is used [16].
The reader can refer to [16],[17] for further details on solver
algorithms and their comparison.

C. Low-Level Commands

Once the forces are optimally distributed, tire forces
should be transformed into actuators commands before being
fed to any embedded system. Here, engine torques, brake
torques, and the rear steering angle should be calculated. This
layer represent the most inner loop. Hence, it should be the
fastest one. In this work, rather than using additional dynamic
controllers that can complicate the overall design, a static
tire model has been preferred, which is used as an interface
between tire forces and actuators commands. The tire model
should take into account the combined slip phenomenon, be
precise enough in the controllable zone, and invertible. For
these reasons, the Linear tire model with Parameter Varying
(LPV) developed in [18] has been chosen:{

Fx = C∗s (α, µ, Fz)κ

Fy = C∗α (κ, µ, Fz)α

(4)
(5)

where:
• κ : the longitudinal slip,
• α : the side-slip,
• µ : the friction coefficient,
• Fz : the vertical load,
• C∗s (α, µ, Fz) : the tire varying longitudinal stiffness

with respect to the side-slip α, µ, and Fz ,

• C∗α (κ, µ, Fz) : the tire varying cornering stiffness with
respect to the longitudinal slip κ, µ, and Fz .

Detailed expressions of C∗s (α, µ, Fz) and C∗α (κ, µ, Fz) can
be found in [18]. In order to respect the friction ellipse
concept, dynamic constraints are added [18]:

Fx ≤
√

(µFz)
2 − F 2

y

Fy ≤
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(µFz)
2 − F 2

x

(6)

(7)

III. VEHICLE STATES ESTIMATION

In our case study, the vehicle is equipped with four
wheel speed sensors, a steering wheel angle sensor, an
accelerometer, and a yaw rate sensor. The yaw rate can
be then directly controlled. However, both longitudinal and
lateral speeds responses should be estimated. We use then
the accelerometer and the yaw rate sensor to get these
estimations by means of the following equations:

Vx =

∫
ax − Vyψ̇

Vx =

∫
ay + Vxψ̇

(8)

(9)

Where ax and ay represent the longitudinal and lateral
accelerations respectively

The goal is to be able to control the vehicle even when
friction changes, without any a priori knowledge about it.
The main idea is to estimate the overall acceleration starting
from a friction coefficient value of 1 and to compare it
with the measured overall acceleration. If any difference
is detected, this can be interpreted as a loss of adhesion,
and therefore update the value of the friction coefficient as
fast as possible to match the measured accelerations. The
commands can then be reallocated to respect the friction
ellipse and keep the vehicle controllable. In this case, the
error between the measured accelerations and the estimated
ones should come only from a loss of adhesion and not from
a modeling error. As we go through a series of estimations,
each estimation should be precise enough so modeling errors
do not propagate, or worse, get amplified.

A. Tire Slip

The first stop is the tire slip. Tire forces originate from
this phenomenon [6],[9]. We differentiate between the lon-
gitudinal slip and the side-slip.

1) Longitudinal slip: The longitudinal slip is defined most
of the time as follows [6]:

sij =
Rijωij − Vx

max (Rijωij , Vx)
(10)



Where:
• Rij : i− j effective rolling radius of the tire,
• ωij : wheels’ angular speed.

The “max” function is used to avoid singularity.
To simplify, Vx is usually considered as the vehicle’s

velocity at its CoG. But as several authors have reported
[9],[19], it is the component of the tire velocity along its
longitudinal axis that should be considered. While several
works did take into account this aspect by adding the
influence of the yaw rate [14], the tire velocity should be
actually calculated at the tire/road interface as long as the
slip is concerned. The vertical distance between the vehicle’s
CoG and the road level introduces therefore roll and pitch
dynamics. This is mainly caused by the sprung mass motions
by means of suspensions, inducing rubber crushing into
the road surface. This modifies slip values and therefore
tire forces. The longitudinal slip is then calculated here as
follows:

sij =
Rijωij − vwxij

max
(
Rijωij , vwxij

) (11)

Where vwxij
is the component of the tire velocity along its

longitudinal axis at the tire/road interface. It should be noted
that this variable is calculated at the steered non-cambered
frame. Camber has little influence in our case and the vehicle
is not equipped by any camber sensor. Calculation of vwxij

is done in two steps. First, we express the tire velocity in
the non-steered frame using Varignon’s theorem, then we
determine the velocity value at the steered frame. Let us call
“G” the vehicle’s CoG, and “Pfl” the center of the contact
area of the front-left tire and the road surface. We have then:

−−−−→
V (Pfl) =

−−−→
V (G) +

−−−→
PflG ∧

−→
Ω (12)

With
−→
Ω is the rotational vector of the sprung mass. This

gives: ∣∣∣∣∣∣
Vx (Pfl)
Vy (Pfl)
Vz (Pfl)

=

∣∣∣∣∣∣∣∣
Vx −

t

2
ψ̇ − hGθ̇

Vy + lf ψ̇ + hGφ̇

Vz − lf θ̇ +
t

2
φ̇

(13)

Where:
• φ̇ : the roll velocity,
• θ̇ : the pitch velocity,
• hG : height of the CoG with respect to the ground.

Consequently, in the steered frame we have:{
vwxfl

= Vx (Pfl) cos (δf ) + Vy (Pfl) sin (δf )

vwyfl
= −Vx (Pfl) sin (δf ) + Vy (Pfl) cos (δf )

(14)

The same method is adopted for the remaining wheels.
Care should be given to the signs.

2) Side-slip: The side-slip, noted here αij , can be defined
as follows [20]:

tan (αij) =
vwyij
vwxij

(15)

Once again, several papers consider only the longitudinal
velocity of the vehicle’s CoG, and calculate the lateral
velocity at the non-steered tire frame [20],[21]. Even the

most rigorous calculations that take into account the steered
tire frame do not take into account vertical dynamics in the
side-slip calculation [14]. Here, the side-slip is calculated
using expressions as it was shown in equations: (12)-(14).

3) Roll dynamics: Slip calculations are based on addi-
tional variables. These vertical dynamics related variables
are not measured in our case-study vehicle. Effect-based
method are used to estimate these variables. Roll dynamics
are mainly caused by the vehicle’s lateral acceleration [22].
By taking into account the spring and damper ratings of the
four suspensions1, roll dynamics can be expressed as follows:

Ixxφ̈ =MayhG +MsghG

− 4Ksusp

(
t

2

)2

φ− 4Csusp

(
t

2

)2

φ̇
(16)

Where:

• Ksusp : suspension’s spring rate (N/m),
• Csusp : suspension’s damper rate (N/ (m/s)),
• Ms : sprung mass,
• g : gravitational acceleration,
• Ixx : vehicle’s roll moment of inertia.

The advantage is that only lateral acceleration measurement
is needed. A second-order transfer function is then used to
determine the roll angle. The same method can be adopted
for the pitch dynamics using this time the longitudinal accel-
eration measurement. It should be noted that the accelerom-
eter do not differentiate between accelerations induced by
the vehicle and the gravitational acceleration. Care should
be given to signal processing in case of roads with slopes.
Moreover, the considered vehicle is not equipped by anti-roll
bars. This aspect should be considered for passenger cars.

B. Tire Forces

A tire model precise enough is needed in the estimation
process. As tire forces depends on the vertical loads [6],
not only ground forces should be estimated bu also vertical
dynamics variations.

1) Ground forces: Several tire models exist in the litera-
ture. Reviews can be found in [6] and [19]. In contrast with
the control strategy where a simple tire model is needed,
the objective here is to select a precise model, even if
it presents some nonlinearities. The most precise one is
Pacejka’s model, or what is refered to as the Magic Formula
[6]. It is a semi-empirical model fitted to several experimental
data. However, this model depends on numerous parameters
with no physical significance. As our goal is to estimate the
friction coefficient, we prefer to choose a physical model
that depends on one parameter representing fiction variations.
Consequently, Dugoff’s model has been chosen here [9].
This model depicts well the combined slip phenomenon, but
only in the stable zone of the tire. In this work, this do
not represent any drawback, because the control allocation
strategy is based on the friction ellipse. This prevents the

1Considered here identical.



vehicle from entering the non stable zone of the tire. Dugoff’s
model can be expressed as follows:

Fxij
= Cs

sij
1− sij

τij

Fyij = Cα
tan (αij)

1− sij
τij

(17)

(18)

τ is introduced to take account of the combined slip:

τij =

{
(2− σij)σij if σ < 1

1 otherwise
(19)

With:
σij =

(1− sij)µFzij
2
√
C2
s s

2
ij + C2

α tan2 (αij)
(20)

Where:
• Cs : longitudinal stiffness of the tire,
• Cα : lateral stiffness of the tire,
• Fzij : vertical load.
2) Vertical loads: Vertical loads vary with accelerations.

Most of the works use directly accelerations measurement
to represent vertical loads variations [14],[23],[24]. However,

the vertical load impact first the suspensions, then the tires.
Using accelerations signals, which vary sometimes very
quickly, give noisy and imprecise vartical loads signals. Here,
we use rather the roll and pitch dynamics, which give filtered
and more representative signals according to equation: (16).
Vertical loads are then expressed as:
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With L = lf + lr being the wheelbase.

C. Accelerations Estimation

Once tire forces are estimated for each tire,
accelerations can be estimated as follows:

[
axest

ayest

]
=

[
cos (δf ) cos (δf ) cos (δr) cos (δr) − sin (δf ) − sin (δf ) − sin (δr) − sin (δr)
sin (δf ) sin (δf ) sin (δr) sin (δr) cos (δf ) cos (δf ) cos (δr) cos (δr)

]
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The global horizontal acceleration can be then calculated
as follows:

agest =
√
a2xest

+ a2yest (26)

D. Friction Estimation Strategy

All these estimation layers serve to generate a sufficiently
accurate global acceleration estimation. The idea is then to
compare this estimation to the measured one. If the difference
between the two signals starts to grow, this would mean
that friction is no longer sufficient to generate the desired
acceleration, and we can therefore update the control logic
to avoid the loss of control of the vehicle. In fact, as it was
reported in [1] and [2], the speed profile of a path should be
generated while respecting the friction circle2, which can be
represented as: √

a2x + a2y ≤ µg (27)

2Considering an isotropic friction.

“µg” represents then the maximum achievable global acceler-
ation. Therefore, by using an effect-based estimation method,
µ can only be estimated at the limits of handling. In other
words, if the estimated acceleration exceeds the measured
one agmes

, this means that the real acceleration has reached
its maximum “µg”. We can simply divide agmes

by g to
get µ. Moreover, by updating the control in low friction
surfaces, the performance would be limited. The algorithm
should be able to improve the vehicle’s performances when
regaining a high friction surface. In this paper, we simply
increase gradually the value of the friction coefficient without
destabilizing the overall system. The idea is to continually
test the surface potential, and benefit from its maximum
when needed, without jeopardizing vehicle’s stability. It
should be noted that a threshold that takes account of the
remaining modeling errors has been added.



IV. CO-SIMULATION RESULTS

To test the control logic and the estimation benefits, a
co-simulation procedure is followed. Our motivation lays on
the fact that we want to test advanced control algorithms on
complex high-fidelity vehicle models. Matlab/Simulink R© is
chosen to incorporate the control logic with the different esti-
mators due to its efficient numerical computations. The high-
fidelity vehicle model is developed in LMS Imagine.Lab
AMESim R© thanks to its large vehicle dynamics library.
The interesting use-cases to evaluate manifest when vertical
dynamics vary and when the friction changes. The double
lane change maneuver referring to the ISO 3888-1:1999(E)
standard is then selected to excite vertical dynamics in a
severe maneuver. Moreover, to test the controller adaptability
thanks to the estimation process, we force the friction to
change in the middle of the maneuver.

The severe double lane-change maneuver is a dynamic
process consisting of rapidly driving a vehicle from its
initial lane to another lane parallel to the initial one, and
returning to the initial lane. According to the ISO 3888-
1:1999(E) standard, the vehicle’s speed should keep the value
of 80 km/h during all the maneuver. We reproduce this in
AMESim, and we add a little twist, we change the friction
coefficient from 1 to 0.4 at the second lane (at the time
t=3.5s), then we bring it back to 1 at the final lane (Fig. 1).

Fig. 1. ISO 3888-1:1999(E) standard with friction variation.

We compare performance of the control logic without
friction change, with friction change and without vertical
dynamics estimation, then by taking them into account. We
get the results for the controlled variables when vertical
dynamics are ignored, namely, the lateral speed (Fig. 2), and
the yaw rate (Fig. 3).

Fig. 2. Lateral speed control when vertical dynamics are ignored.

We notice the complete loss of control of the vehicle as
soon as we enter the low friction surface. We choose to
represent results when taking into account vertical dynamics

Fig. 3. Yaw rate control when vertical dynamics are ignored.

in a separate figure to show the effectiveness of the control
logic by zooming into the signals (Fig. 4-5).

Fig. 4. Lateral speed control when vertical dynamics are considered.

Fig. 5. Yaw rate control when vertical dynamics are considered.

We can see then the ability of the control strategy to
keep the vehicle controllable. The reason is simply that with
a better estimation of the vehicle dynamics by taking into
account the vertical ones, we can get a better approximation
of the road friction (Fig. 6). This enables updating the friction
ellipse that represents the limits for the control allocation
strategy. The different chassis systems can then produce
commands within the limits of adhesion, and keep the vehicle
stable. Note that ignoring vertical dynamics leads to a drop
in friction estimation at the beginning of the double lane
change maneuver and before the real drop of friction. This
shows that a bad estimation of the lateral acceleration can
simply lead to a bad interpretation.



Fig. 6. Importance of vertical dynamics for friction estimation.

It should be noted that vertical dynamics do not interfere
in the calculation of the vertical loads only, but also in
the slip calculations. These latter change even the shape
of the tire forces while the vertical loads influence their
amplitude. Therefore, taking into account vertical dynamics
in the vertical loads only is not sufficient.

V. RESEARCH TRACKS FOR A BETTER CONTROL

The aim of this paper is to show that thanks to a better
comprehension of vehicle dynamics, a better estimation of
vehicle’s states can be provided. This can help to keep
the vehicle controllable even in extreme and unpredictable
situations. However, there is still some work to be done
in this context. The use of a threshold in the µ estimation
algorithm shows that there are still some modeling errors
that should be separated from environmental changes. Two
different causes can be separated. The first one is the simpli-
fication of static nonlinear phenomena, e.g., camber angles,
aerodynamics effects and so on. And the second one is
more related to dynamic phenomena, e.g., tire wear, actuators
degradation and so on. Even if a robust controller is used
in the high-level layer to overcome parameter uncertainties,
the estimation process makes use of the vehicle’s initial
parameter. Consequently, the additional phenomena would
effect directly the precision of the estimation.

A. Machine Learning

In this paper, we suppose that the lack of acceleration
ability is due only to friction variation. In real life, accel-
erations can be affected by the wind velocity and slopes
[25]. In addition, slopes add the influence of the gravitational
acceleration in the acceleration measurement. This makes
the velocities estimation and the problem diagnosis more
challenging. To top it all off, even the suspensions’ spring
rate and damper rating are variable, axles’ elastokinematics
add additional nonlinearities, the mass varies with respect to
the number of passengers and their objects which can change
the position of the center of gravity, the wheels suffer from
the camber effects that influence slip value [6] and so on.

One possible solution in this case is to consider the
effect of the remaining not modeled phenomena as nonlinear
unknown functions. The estimators presented in this paper
can be separated into simple functions, where each function

can represent a neuron. A Neural Network can be developed
where its inputs could be the online measured variables, its
output would be the global acceleration, and the different
estimation layers would represent hidden layers [26]. As
the proposed inputs and outputs are measurable data, the
neural network can be trained using real experiments data to
estimate the remaining not modeled variations [27].

As the previous method is more adapted to the static not
modeled phenomena, a different method could be needed
for the neglected dynamic variations. A model-based Monte
Carlo method could fill the gap in this case. In [28], this
method has been used for estimating failure probability of
a component subject to degradation. Particularly, the fatigue
degradation is modeled by the Paris-Erdogan law. The robust-
ness of the results suggest applying these methods to estimate
the remaining life of actuators and updating the prediction to
avoid hazardous situations. Both methods can be combined
for eventual better performances using Supervised Machine
Learning as authors of [29] propose.

B. Robotic Vision

Most of autonomous vehicles researches are actually based
on Model Predictive Control (MPC) [30]. This approach does
not need only an accurate vehicle model, but also some pre-
diction of future events. In [30], an a priori knowledge about
µ is assumed. The problem that raises in this configuration is
the fact that we do not need to know the friction coefficient at
the current situation only, but future variations of the friction
should also be known. This cannot be ensured by means
of effect-based estimation techniques. Robotic Vision could
give insights about friction changes in front of the vehicle.
Recently, authors of [31] have proposed a method to estimate
the coefficient of friction by analyzing photo images using
at first a vertical camera, and then a front camera that could
that could be used by a robot by applying a discriminant
analysis. The method consists on taking preliminary pictures
and measure the coefficient friction, and then train the image
processor in order to match new photos to a coefficient
friction value. This was tested in twelve samples of the floor
tiles that the authors have found on their campus at low
velocities. Additional difficulties could be encountered for
high velocities and for real roads going from icy to dry ones.
We believe that a combination of effect-based methods and
robotic vision could be needed. Robotic vision would warn
of a potential friction change, and the effect-based method
would give the right estimation of friction.

C. New Sensor Technology

For more accurate vertical dynamics signals, measured
signals related to the wheel’s load could provide better
performances. In fact, load-sensing bearings and intelligent
tires are capable of providing additional information re-
garding tire/road contact per wheel. In [32] for example,
a novel model based bearing load measurement approach
is presented. Instead of strain filtering and in-situ mapping,
the paper expose a model based reconstruction approach. An
unscented Kalman Filter is used to reconstruct the unknown



wheel loads by analysis of the bearing’s outer-ring. Results
showed good reconstruction of tire forces and moments sig-
nals. Therefore, the remaining states could be more accurate
to ensure a better friction coefficient estimation.

Intelligent tires as in [33] are developed by placing ac-
celerometers on the inner liner of the tire. A noticeable dif-
ference has been shown regarding the acceleration response
when the tire was tested on different surface conditions. This
variation may present an opportunity to characterize directly
the friction coefficient.

VI. CONCLUSIONS
In this paper we showed that more accurate vehicle

dynamics modeling is needed for control problems. Spotlight
has been especially put on vertical dynamics that interfere
in longitudinal slip and side-slip calculations. This rigor in
calculations enabled us to get better estimations of vehicle
states. Therefore, estimations can be compared to available
measures provided by in-vehicle sensors to detect nonlinear
irregularities, e.g. friction variations. The control logic can
be then adapted to control the vehicle in severe conditions.

The simulations presented in this paper consider avail-
ability of accurate measurements. Additional difficulties are
expected in case of real experiments that may need additional
efforts to adapt this strategy. Due to the importance of
friction estimation, we expect more collaboration from car
manufacturers to carry experiments campaigns.
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