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Abstract

We design algorithms for two time scales stochastic optimization problems
arising from long term storage management. Energy storage devices are of
major importance to integrate more renewable energies and demand-side man-
agement in a new energy mix. However batteries remain costly even if recent
market developments in the field of electrical vehicles and stationary storage
tend to decrease their cost. We present a stochastic optimization model aiming
at minimizing the investment and maintenance costs of batteries for a house
with solar panels. For any given capacity of battery it is necessary to com-
pute a charge/discharge strategy as well as maintenance to maximize revenues
provided by intraday energy arbitrage while ensuring a long term aging of
the storage devices. Long term aging is a slow process while charge/discharge
control of a storage handles fast dynamics. For this purpose, we have de-
signed algorithms that take into account this two time scales aspect in the
decision making process. These algorithms are applied to three numerical ex-
periments. First, one of them is used to control charge/discharge, aging and
renewal of batteries for a house. Results show that it is economically signif-
icant to control aging. Second, we apply and compare our algorithms one a
simple charge/discharge and aging problem, that is a multistage stochastic
optimization problem with many time steps. We compare our algorithms to
SDP and Stochastic Dual Dynamic Programming and we observe that they
are less computationally costly while displaying similar performances on the
control of a storage. Finally we show that how one of our algorithm can be

1



used for the optimal sizing of a storage taking into account charge/discharge
strategy as well as aging.
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1 Introduction

We introduce hereby the reasons to study long term management of energy storage
problems and why we use a two time scales stochastic optimization framework to
tackle them. Then we present existing literature on these issues.
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1.1 Context

The integration of renewable energies is of upmost importance to ensure a clean
energy production mix that can face the perpetually rising electrical demand. These
energies and demand are inherently uncertain as they respectively depend on our
environment and on consumers behavior. Electrical storage is used as a buffer to
mitigate uncertainties in new electricity grids. Every battery requires a proper
management strategy able to make charge/discharge decisions in an uncertain setting
to minimize an economical, environmental or energy criterion. These systems are
costly, have a fast dynamical behavior (noticeably changing every minute) but can
last multiple years. The revenues they provide and their lifetime are deeply related
as a battery that is never used lasts many years but does not allow to save energy
while a intensively used battery will last a much smaller amount of years but save
more energy every day.

In this paper we present a two time scales stochastic optimal control formalism to
control systems with fast dynamics that affect long term behavior, as it is the case for
batteries. Using well known results from discrete time stochastic optimal control and
convex analysis theory, we develop two general methods to decompose that kind of
problems by time blocks. Based on these theoretical methods, we develop associated
numerical algorithms. We apply these algorithms to a battery charge/discharge and
renewal management problem, namely two-time scales stochastic dynamic program-
ming and its dual variant. We also combine one of our method with Stochastic Dual
Dynamic Programming and Linear Programming to solve an aging aware sizing-
control problem of a battery.

1.2 Literature review

The management of micro-grids involves different time scales as the dynamic of cur-
rents is faster than the dynamics of voltage/power which is faster than the dynamics
of energy flows. For this reason, micro-grids control architecture is often divided into
hierarchical levels exchanging information at different paces [19]. In this paper we
focus on the energy management level (time step 1 minute) and the long term aging
level (time step 1 day). We survey literature on energy storage operation and long
term aging management using optimization methods.

1.2.1 Stochastic optimization for energy management problems

Stochastic dynamic optimization methods based on the Bellman equation [1] have
often been applied to energy storage management. In [24, 13] or [11] the authors
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apply Stochasic Dynamic Programming with discretized state and control spaces to
solve an energy management problem. This method suffers the so called curses of
dimensionality as introduced in [1, 3, 23] or [6]. Moreover it is demonstrated in [2]
that the convergence of the discretization procedure is of course dependent on the
number of time stages.

A major contribution to handle a large number of energy storage for an electric-
ity system is the well known Stochastic Dual Dynamic Programming (SDDP) algo-
rithm [21]. This method is adapted to problems with linear dynamics and convex
costs. It has been applied to energy management with battery in [20]. Other simi-
lar methods have been developed such that Mixed Integer Dynamic Approximation
Scheme (MIDAS) [22] or Stochastic Dual Dynamic Integer Programming [30] for non
convex problems, in particular those displaying binary variables. These algorithms
performance is sensitive to the number of time steps as stated in [18] and [22].

Other classical Stochastic Programming methods are sensible to the number of
time stages. Solving a multistage stochastic optimization problem on a scenario tree
displays a complexity exponential in the number of time steps [29].

We present algorithms to decompose, in time, problems displaying many time
stages. The algorithms are based on a time block application of the Bellman equa-
tion [7]. The motivation is a problem displaying two decisions time scales, but time
decomposition also helps to enhance classical methods and algorithms whose perfor-
mance is sensitive to the number of time steps.

1.2.2 Energy storage aging management

Batteries are expensive equipment whose long term management strategy signifi-
cantly impacts their economic profitability. The authors of [10] use an energy count-
ing model to model and manage the aging of the battery. It corresponds to measure
the equivalent number of full cycles Ncycles that a battery makes when it charges and
discharges a given amount of energy, for instance when a 10 kWh battery charges or
discharges 3 kWh, it performs a number of 3

2×10
cycles as a full cycle exchanges the

amount of energy of two times the capacity. The health of the battery is managed in
a stochastic infinite horizon setting using Average-Cost Value Iteration [3, 12] that
requires a stationary assumption. A more detailed model for NaS batteries is de-
velopped in [11] that takes into account depth of discharge (DoD) and temperature
in addition to Ncycles. This model is too detailed to be embedded in an stochas-
tic optimization energy management system. In [15] the authors first propose an
abstract model of battery aging to develop continuous time deterministic optimal
control methods. An overview of heuristic methods to handle storage aging in a
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control framework is provided in [14]. In [17] the authors compare different battery
aging models in a stochastic optimal control framework.

In this paper we use the simplest aging model provided in [10]. The main goal
is to design algorithms for discrete time finite horizon optimization problems with
many time steps and two decision time scales, hence without a stationary assumption
(contrary to [10]) and in a stochastic setting (contrary to [14]).

2 Stochastic optimization of an energy storage sys-

tem in a microgrid over the long term

We introduce different methods to solve a “novel class” of stochastic optimization
problems, namely two-time scales stochastic optimization problems. Those are op-
timization problems displaying stochasticity and decisions that have to be made at
different paces.

2.1 Energy system description and notations

We consider the system sketched in Figure 1. This is a micro-grid with the following
features:

1. an electrical load, or demand, that is uncertain (right),

2. solar panels producing uncertain renewable electricity (left),

3. a connection to the national grid if self production is not enough to provide
electricity to the load (top),

4. an electrical storage to ensure supply demand balance (bottom).

All the equipment exchange electricity though a DC grid. The arrows in Figure 1
represent the flow of energy: it is bidirectional in the case of the storage as it can
charge and discharge. The central node can be seen as a very small storage on a
really fast time scale (milliseconds).

The scope of the paper is to propose an Energy Management System (EMS)
that controls both the charge/discharge and health of the battery so as to minimize
the electricity consumption on the national grid while ensuring a good aging for the
battery. We present here a model of this stochastic dynamical system used to design
algorithms to implement the EMS.
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Figure 1: The schematic representation of the DC micro-grid to be managed

2.1.1 Notations for two-time scales

For a given constant time interval ∆t, let M ∈ N∗ such that M + 1 is the number of
time steps in a day, e.g. for ∆t = 60 seconds, M + 1 = 1440. The EMS has to make
decisions on two-time scales over a given number of days D ∈ N∗:

1. one battery charge/discharge decision every minute m ∈ {0, . . . ,M} of every
day d ∈ {0, . . . , D},

2. one potential renewal of the battery every day d ∈ {0, . . . , D + 1}.

In order to take into account the two-time scales, we adopt in the sequel the
following notation. A variable z will have two time indexes zd,m if it changes every
minute m of every day d. An index (d,m) belongs to the following set

T = {0, . . . , D} × {0, . . . ,M} ∪ {(D + 1, 0)} , (1)

which is a totally ordered set when equipped with the lexicographical order

(d,m) < (d′,m′) ⇐⇒ (d < d′) ∨
(
d = d′ ∧m < m′

)
. (2)

In the sequel, we also use the following notations for describing sequences of variables.
For (d,m), and (d,m′) ∈ T with m ≤ m′:

• the notation zd,m:m′ is used to refer to the sequence (zd,m, . . . , zd,m′−1, zd,m′),
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• the notation Zd,m:m′ is used to refer to the cartesian
∏m′

k=m Zd,k.

The following time-line illustrates how time flows between two days in our model:

d,2d,1d, 0 . . . d,M d+ 1, 0
∆t∆t ∆t

Figure 2: Time-line

2.1.2 Uncertainties are modelled as random variables

We write random variables in capital bold letters, like Z , to distinguish them from
deterministic variables z.

Let d ∈ {0, . . . , D} be a given day of the whole time span. Every minute m ∈
{0, . . . ,M}, two uncertain outcomes materialize at the end of the time interval [(d,m−
1), (d,m)) (when m = 0, the time interval is [(d− 1,M), (d, 0)), namely,

• ES
d,m: the solar production in kWh,

• EL
d,m: the electrical demand (load) in kWh.

Another uncertain outcome realizes once a day at the beginning of the time inter-
val [(d, 0), (d,M)) namely,

• P b
d : the price of a battery replacement in e/kWh.

We gather all uncertainties in vectors and build a sequence of random variables
{Wd,m}(d,m)∈T as follows. For all d ∈ {0, . . . , D} we define:

Wd,m =

(
ES
d,m

EL
d,m

)
, for m ∈ {0, . . . ,M − 1}, and Wd,M =

ES
d,M

EL
d,M

P b
d

 . (3)

We assume in this model that, at the end of the last minute of the day, solar
energy production and demand materialize as well as the price of batteries. We
call Wd,m the uncertainty space where this uncertainty takes its values.

Remark 2.1. We assume in this model that the “slow” randomness P b
d materi-

alizes during a minute at the same time as one solar and load “fast” random-
ness (ES

d,M ,E
L
d,M). We could add a virtual minute to avoid this. ♦
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The decision maker take decisions based on observation of uncertainties but
he cannot anticipate on future uncertainties. To describe this non-anticipativity
constraint, for each (d,m) ∈ T, we introduce the σ-algebra Fd,m generated by all the
past noises up to time stage (d,m)

Fd,m = σ
(
Wd′,m′ ; (d′,m′) ≤ (d,m)

)
. (4)

Throughout the paper a random variable indexed by (d,m) refers to a Fd,m-measurable
random variable (the measurability being imposed by constraints or derived through
dynamics equations). The filtration {Ft}t∈T models the information flow of the prob-
lem and the non-anticipativity constraints

∀(d,m) ∈ T σ(Ud,m) ⊂ Fd,m (5)

express the fact that random variables Ud,m are adapted to the natural filtration
{Fd,m}(d,m)∈T, i.e Ud,m only depends on uncertainties up to time (d,m). We define
precisely the decision variables Ud,m in the next paragraph.

2.1.3 Decisions are modelled as random variables

As already mentioned, as time goes on, the noise variables are progressively unfolded
and made available to the decision maker. This is why, as decisions depend on
observations in a stochastic optimal control problem, decision variables are random
variables. On a day d ∈ {0, . . . , D}, the EMS has to make decisions every minute m ∈
{0, . . . ,M} regarding the charge/discharge of the battery as well as the electricity
consumption on the national grid. These decisions depend on all the randomness
unfolded previously, that is, all the prices of batteries of the previous days and
all the solar production and load of the previous days and minutes of the day as
described in Equation (3)). Finally, these decisions are made at the beginning of the
time interval [(d,m), (d,m+1)) (when m = M the time interval is [(d,M), (d+1, 0)):

• EE
d,m: the import from the national grid in kWh;

• EB
d,m: the battery charge (≥ 0) or discharge (≤ 0) in kWh.

At the end of the time interval [(d, 0), (d,M)), the decision maker can replace
the battery by a new one after observing the current price of batteries P b

d . The
decision variable is again a random variable as it depends on the randomness that
materialized the previous minutes of previous days:

• Rd: the size of the new battery in kWh.
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For all d ∈ {0, . . . , D}, we group all controls in vectors as follows:

for 0 ≤ m < M , Ud,m =

(
EE
d,m

EB
d,m

)
and Ud,M =

(
EE
d,M

Rd

)
. (6)

We assume in this model that at the last minute of the day, the national grid
consumption EE

d,M is chosen as well as the potential renewal of the battery Rd.
In order to take intro account the renewal of the battery in a simplified way, we
assume in the model that the battery charge is not chosen at the end of the day. We
call Ud,m the control space where the control takes its values.

On Figure 1, we observe that all flows converge to a central node named ”DC”. At
a very small time scale (milliseconds), it could be described as a small energy storage
to model the voltage stability problem of the DC micro-grid. In practice, it could be
implemented by a controlled DC/DC converter and super-capacitors (see [16]). We
do not model this part and assume that the balance constraint (7) is ensured in this
problem. It states that at a minute time scale we consider that voltage stability is
handled and therefore that we have to ensure energy supply/demand balance at the
central node. This materializes as the following constraint:

EE
d,m+1 +ES

d,m+1 = EB
d,m +EL

d,m+1 . (7)

We observe a difference of indexes between EB
d,m and the other variables. This is due

to the fact that battery charge/discharge is to be implementable on a real system.
We need to be able to provide a charge/discharge target to the battery controller at
the beginning of the minute. The control variable EE

d,m+1 is virtual, it is deduced
when voltage stability is ensured in the grid at a lower control level. Therefore, we
can remove this variable from the optimization problem and replace Equation (6) by
the following equation:

for 0 ≤ m < M , Ud,m =
(
EB
d,m

)
and Ud,M =

(
Rd

)
. (8)

2.1.4 Charge/discharge impacts state of charge and age dynamics

We use a very simple model to describe charging and aging of the battery. We
call ρc ∈ [0, 1] and ρd ∈ [0, 1] respectively the charge and discharge efficiency of the
battery. On day d ∈ {0, . . . , D} at minute m ∈ {0, . . . ,M}, we call Bd,m the state
of charge of the battery in kWh and Hd,m the remaining amount of exchangeable
energy in the battery. As we can change a battery only once a day, we call Cd the
capacity of the battery. For a given capacity a battery can make up to Nc(Cd) cycles
before being considered unusable. At the beginning of the life of the battery with
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capacity Cd, the formula 2×Nc(Cd)×Cd gives the maximum health of the battery
in kWh. This is the maximum amount of exchangeable energy for the battery. A
cycle represents a full charge of the battery plus a full discharge, hence two times
the capacity. Every-time we charge or discharge the battery we change its state of
charge according to the following dynamical equation.

Bd,m+1 = Bd,m −
1

ρd
EB−
d,m + ρcE

B+
d,m , (9a)

where (x)+ = 0 ∧ x and (x)− = 0 ∧ (−x). Moreover, its amount of exchangeable
energy (or health) decreases according to the following dynamical equation:

Hd,m+1 = Hd,m −E
B−
d,m −E

B+
d,m . (9b)

When the battery health reaches zero, it cannot be used anymore. Hence we have
the following health constraint

0 ≤Hd,m . (10)

We constrain the state of charge to remain between two prescribed bounds that are
a percentage of the capacity Cd:

B ×Cd ≤ Bd,m ≤ B ×Cd . (11)

Using Equations (9a) and (9b) repeatedly, we obtain that Bd,M (resp. Hd,M) is

a function of (Bd,0,Ud,0:M−1) (resp. (Hd,0,Ud,0:M−1)) that we call f
B
d (resp. f

H
d ):

Bd,M = f
B
d

(
Bd,0,Ud,0:M−1

)
, (12a)

Hd,M = f
H
d

(
Hd,0,Ud,0:M−1

)
. (12b)

2.1.5 Battery renewal impacts state dynamics

In this paragraph, we model how the decision to renew the battery using the control
Ud,M (= Rd) affects the slow state dynamics. If, at the end of day d, we replace the
battery with capacity Cd by a new battery of capacity Rd, then the capacity Cd+1

becomes equal to Rd. Otherwise the capacity remains unchanged. This gives:

Cd+1 =

{
Rd , if Rd > 0 ,

Cd , otherwise .
(13)
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The renewal decision affects as well the fast variables Bd,M as a new battery is
assumed empty,

Bd+1,0 =

{
B ×Rd , if Rd > 0 ,

Bd,M , otherwise ,
(14)

and Hd,M as a new battery has a renewed health,

Hd+1,0 =

{
2×Nc(Rd)×Rd , if Rd > 0 ,

Hd,M , otherwise .
(15)

We group these state variables at the begining of a day d under the name Xd:

Xd =

 Cd

Bd,0

Hd,0

 . (16)

We call Xd the state space where this state takes its values. We build a mapping

fSd : Cd × Bd,M ×Hd,M × Ud,M → Xd+1

(c, b, h, u) 7→

{
(u,Bu, 2Nc(u)u) if u > 0 ,

(c, b, h) otherwise .
(17)

We thus obtain a state dynamics equation given by

Xd+1 = fSd
(
Cd,Bd,M ,Hd,M ,Ud,M

)
using (13-15) and (17) (18a)

= fSd
(
Cd, f

B
d

(
Bd,0,Ud,0:M−1

)
, f
H
d

(
Hd,0,Ud,0:M−1

)
,Ud,M

)
using (12) (18b)

= fd
(
Xd,Ud,0:M

)
(18c)

with

fd

(
(cd, bd,0, hd,0), ud,0:M

)
= fSd

(
cd, f

B
d

(
bd,0, ud,0:M−1

)
, f
H
d (hd,0, ud,0:M−1), ud,M

)
.

(18d)

Remark 2.2. We note that, in our model, the state dynamics does not depend
directly on uncertainties Wt+1. ♦

11



2.2 Stochastic optimization problem statement

We have introduced all the requested features to state a two-time scale stochastic
optimal control problem dynamics. It remains to define the objective function that
the EMS seeks to minimize.

The objective is a discounted expected sum over a finite horizon. We consider
the following objective to be minimized:

E
[ D∑
d=0

γd

(
P b
d ×Rd +

M−1∑
m=0

ped,m × (EB
d,m +EL

d,m+1 −E
S
d,m+1)+

)]
. (19)

We now comment each term. Over the whole daily horizon D, the decision maker
wants to minimize a discounted sum of all his expenses, that is, the battery re-
newals and the national grid energy consumption. The first term of the sum over
days P b

d ×Rd is the cost incurred by a battery renewal during day d. The second

term
∑M−1

m=0 p
e
d,m ×EE

d,m+1

+
is a sum of the national grid energy consumption every

minute of the day, where EE
d,m+1 is eliminated using Equation (7). We take the pos-

itive part, denoted by +, assuming that an excessive production of solar energy is
wasted. The sum is discounted by an arbitrary discount factor γd. In the sequel, the
discount factor γd changes once a year to model a discount rate of τ = 4.5% every
year

γd =
( 1

1 + τ

)bd/365c−1

. (20)

Using Equations (3) and (8), we obtain that the expectation cost given by Equa-
tion (19) can be rewritten as

E
[ D∑
d=0

Ld(Xd,Ud,Wd) +K(XD+1)
]

(21)

= E
[ D∑
d=0

γd

(
W 3

d,MUd,M +
M−1∑
m=0

ped,m × (Ud,m +W 2
d,m+1 −W

1
d,m+1)

)]
,

where the final cost K is null and the intraday cost Ld is given by

Ld : Xd × Ud,0:M ×Wd,0:M → (−∞,+∞] , (22)

(xd, ud, wd) 7→ γd

(
w3
d,Mud,M +

M−1∑
m=0

ped,m
(
ud,m + w2

d,m+1 − w1
d,m+1

))
.
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3 Two algorithms for two-time scales stochastic

optimal control problems

We introduce hereby a generic two-time scales stochastic optimization problem. For
the sake of simplicity we assume that the constraints on states and controls, that
are not a dynamic or a non anticipativity constraint, are placed in the instantaneous
costs Ld using characteristic functions taking the value +∞. Gathering all the above
equations, we can state the optimization problem to be solved:

V (x) = min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(Xd,Ud,Wd) +K(XD+1)
]
, (23a)

s.t Xd+1 = fd(Xd,Ud,Wd) , (23b)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (23c)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (23d)

σ(Ud,m) ⊂ σ
(
W

d′,m′
; (d′,m′) ≤ (d,m)

)
(23e)

X0 = x . (23f)

The daily cost Ld is given by Equation (22), the final cost is equal to zero and the state
dynamics between days fd is given by Equation (18c). Note that the notation Xd

refers to the state random variable at the minute (d, 0) while the notationUd and Wd

refer respectively to random decision and uncertainty vectors containing all decisions
and uncertainties of the day d.

As stated in Problem (23), the optimization problem is very similar to a classi-
cal discrete time stochastic optimal control problem, except for the non anticipativity
constraint (5) that expresses the fact that the decision vectorUd = (Ud,0, . . . ,Ud,M) at
every time step d does not display the same measurability for each component (in-
formation grows every minute).

We present in this part two methods to decompose the two-time scales stochas-
tic optimal control problem (23). We apply the decomposition schemes to design
tractable algorithms to compute suboptimal policies and values for that kind of
problems.

3.1 Time blocks decomposition

We introduce a daily independence assumption in order to obtain a day by day
decomposition of the optimization problem (23), that is, a dynamic programming
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equation between days. We assume that the sequence of random vectors
{
Wd

}
d=0,...,D

is constituted of independent random variables. However, note that we do not assume
that each random vector Wd = (Wd,0, . . . ,Wd,M) is itself composed of independent
random variables.

Assumption 3.1. The sequence
{
Wd

}
d=0,...,D

is a sequence of independent random
vectors.

We introduce a sequence of slow time scale value functions, {Vd}d∈{0,...,D+1}, de-
fined by backward induction as follows. At time D + 1, we set

VD+1 = K , (24a)

and then for d ∈ {0, . . . , D} we define by backward induction

Vd(x) = min
X
d+1

,X
d
,U
d

E
[
Ld(Xd,Ud,Wd) + Vd+1(Xd+1)

]
, (24b)

s.t Xd+1 = fd(Xd,Ud,Wd) , (24c)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (24d)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (24e)

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) , (24f)

Xd = x . (24g)

Let d ∈ {0, . . . , D} be fixed. To each given pair (xd,Xd+1) ∈ Xd×L0(Ω,F ,P;Xd+1),

we associate an optimization problem denoted by P(d,=)

[
xd,Xd+1

]
and given by:

P(d,=)

[
x,X

]


min
X
d
,U
d

E
[
Ld(Xd,Ud,Wd)

]
, (25a)

s.t fd(Xd,Ud,Wd) = X , (25b)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (25c)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (25d)

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) , (25e)

Xd = x . (25f)

The value of the optimization Problem (25) is denoted by φ(d,=)

(
x,X

)
and we call

this optimization problem the intraday optimization problem with equality target.
Adopting standard conventions, the value function φ(d,=) will take the value +∞,
when Problem (25) does not have an admissible solution for a given pair (x,X ).
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Proposition 3.2. Under Assumption 3.1, the value function V solution of opti-
mization problem (23) coincides with the value function V0 given by the Bellman
equation (24). Moreover, the sequence of value functions given by Equation (24)
coincides with the sequence of mappings given by the following backward induction:

VD+1 = K (26a)

∀x ∈ Xd, Vd(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d,=)

(
x,X

)
+ E

[
Vd+1(X )

])
, (26b)

s.t σ(X ) ⊂ σ(Wd) . (26c)

Proof. Under Assumption 3.1, the optimal value of Problem (23) remains unchanged
when the non anticipativity constraint (23e) is replaced by the constraint:

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) . (27)

Then, the fact that the backward induction (24) is the Bellman equation which
gives the solution of Problem (23) is detailed in [7]. Exploiting the linearity of the
expectation and the fact that minimization can be done sequentially, we rewrite
Equation (24) as

Vd(x) = min
X
d+1
∈L0(Ω,F ,P;Xd+1)

min
U
d
,X
d

E
[
Ld(Xd,Ud,Wd)

]
+ E

[
Vd+1(Xd+1)

]
,

s.t (24c)-(24g) ,

= min
X
d+1
∈L0(Ω,F ,P;Xd+1)

(
φ(d,=)

(
x,Xd+1

)
+ E

[
Vd+1(Xd+1)

])
, (28)

Moreover, if Xd+1 ∈ dom
(
φ(d,=)

(
x, ·
))

, then Xd+1 is given by Equation (24c) and
thus it is a σ(Wd)-measurable random variable. Therefore, adding Constraint (26c)
in the optimization problem (28) yields the same optimization problem. This ends
the proof. �

3.2 Stochastic targets decomposition algorithm

The numerical resolution of intraday problem (25) is most of the time out of reach
due to the target constraint (25b). In order to compute approximations of the daily
value functions (24), we present simplified versions of Problem (25). We introduce a
relaxation of the target constraint (25b), turning the equality into an inequality. Fur-
thermore that makes possible to look for deterministic targets instead of stochastic
ones which simplifies the information constraint (26c). We apply the general results
in § 5.1 to the slow scale Bellman equation (26).
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3.2.1 Relaxed intraday optimization problem

For each d ∈ {0, . . . , D}, we introduce a relaxed intraday optimization problem,
P(d,≥)

[
x,X

]
, which is obtained by considering the optimization problem (25) whith

the equality target (25b) replaced by the following inequality target (29b):

P(d,≥)

[
x,X

]


min
X
d
,U
d

E
[
Ld(Xd,Ud,Wd)

]
, (29a)

s.t fd(Xd,Ud,Wd) ≥X , (29b)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (29c)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (29d)

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) , (29e)

Xd = x . (29f)

We denote by φ(d,≥)(x,X ) the value of the relaxed optimization problem P(d,≥)

[
x,X

]
.

We associate to the relaxed value function φ(d,≥)

(
x,X

)
a sequence of relaxed Bellman

value functions
{
V(d,≥)

}
d∈{0,...,D+1} defined as follows:

V(D+1,≥) = K , (30a)

and for all d ∈ {0, . . . , D}, and for all x ∈ Xd

V(d,≥)(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d,≥)

(
x,X

)
+ E

[
V(d+1,≥)(X )

])
, (30b)

s.t σ(X ) ⊂ σ(Wd) . (30c)

We then consider the case where, in Equation (30), the minimization over the
space L0(Ω,F ,P;Xd+1) is replaced by minimization over the constants x ∈ Xd+1; we
denote by

{
V(d,≥,Xd+1)

}
d∈{0,...,D+1} the associated sequence of Bellman functions.

V(D+1,≥,XD+2) = K , (31a)

and for all d ∈ {0, . . . , D}, and for all x ∈ Xd

V(d,≥,Xd+1)(x) = min
X∈Xd+1

(
φ(d,≥)

(
x,X

)
+ V(d+1,≥,Xd+2)(X)

)
. (31b)

The undefined state space XD+2 in (31a) is introduced for consistency with recursive
equation (31b). It can be any space as it is not used in Equation (31a).
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Assumption 3.3. The value functions {Vd}d=0,...,D are non-increasing.

We show in Proposition 3.4, that under Assumption 3.3, the value functions
V(d,≥,Xd+1) give upper bounds to the original value functions Vd in (28).

Proposition 3.4. The sequence of relaxed Bellman value functions
{
V(d,≥)

}
d∈{0,...,D+1}

given by Equation (30) gives lower bound to the sequence of value functions
{
Vd
}
d∈{0,...,D+1}

given by Equation (24). That is, for all d ∈ {0, . . . , D + 1}, we have

V(d,≥) ≤ Vd . (32)

Moreover, under Assumption 3.3 we have for all d ∈ {0, . . . , D} that

Vd = V(d,≥) ≤ V(d,≥,Xd+1) . (33)

Proof. Let d ∈ {0, . . . , D− 1} and a pair (xd,Xd+1) ∈ Xd × L0(Ω,F ,P;Xd+1) given.
We have that

φ(d,≥)

(
xd,Xd+1

)
≤ φ(d,=)

(
xd,Xd+1

)
. (34)

From Equations (28) and (30), we obtain by backward induction that for all d ∈
{0, . . . , D + 1}

V(d,≥) ≤ Vd . (35)

Now, given d ∈ {0, . . . , D − 1}, since the set of constant random variables taking
values in Xd+1 is a subset of L0(Ω,F ,P;Xd+1) we obtain that V(d,≥) ≤ V(d,≥,Xd+1).
Thus, the only point to prove is that under Assumption 3.3 we have the equality
Vd = V(d,≥). We proceed by backward induction. At time D + 1, the two mappings
V(D+1,≥) and VD+1 are both equal to K which is non-increasing. Then, let d be fixed
in {0, . . . , D} and assume that V(d+1,≥) = Vd+1 and that these two value functions
are non-increasing. We prove that V(d,≥) and Vd coincides using Lemma 5.3 which
applies since Xd+1 is a subset of some finite dimensional space Rnx . �

Remark 3.5. Looking for deterministic targets instead of stochastic targets is made
possible by the fact that we relaxed the almost sure target equality constraint (29b)
into an inequality using the value functions monotonicity. An almost sure equality
constraint requires both sides to have the same measurability, we would have to ensure
that a random variable is always equal to a deterministic one which is most of the
time impossible. ♦
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3.2.2 Statement of the algorithm with deterministic targets and period-
icity classes

In order to compute the daily value functions upper bounds {V(d,≥,Xd+1)}d=0,...,D+1 via
Equation (25), we need the value of the relaxed intraday problems φ(d,≥)

(
xd, xd+1

)
for all d ∈ {0, . . . , D + 1} and for all pairs ((xd, xd+1) ∈ Xd × Xd+1, where we recall
that φ(d,≥)

(
xd, xd+1

)
is given by

φ(d,≥)

(
xd, xd+1

)
= min

U
d

E
[
Ld(xd,Ud,Wd)

]
, (36a)

s.t fd(xd,Ud,Wd) ≥ xd+1 , (36b)

σ(Ud,m) ⊂ σ(Wd,0:m) . (36c)

The computational cost can be significant as we need to solve a stochastic opti-
mization problem for every pair (xd, xd+1) ∈ Xd×Xd+1 and for every d in {0, . . . , D}.
We present a simplification exploiting periodicity of the intraproblems.

Lemma 3.6. Let I ⊂ {0, . . . , D}. Assume that there exists two sets XI and UI such
that for all d ∈ I, Xd = XI and Ud = UI. Assume moreover than there exists two
mappings LI and fI such that for all d ∈ I, Ld = LI and fd = fI. Finally assume that
the random variables {Wd}d∈I are independent and identically distributed. Then,
there exists a function φI such that for all d ∈ I

φd = φI . (37)

Proof. The proof is immediate. �

The set I introduced in Lemma 3.6 is called a periodicity class. We call Np the
number of periodicity classes of Problem (23) and (I1, . . . , INp) the periodicity classes,
that is, the sets of day indices that satisfy (37).

Remark 3.7. When there is no periodicity, Np = D + 1 and the periodicity classes
are singletons. In this case all the intraday problems have to be computed. ♦

Remark 3.8. A periodicity property often appears in long term energy management
problems with renewable energies, due to seasonality of natural processes such as
solar production. In these cases Np < D + 1 and it is enough to solve only Np

intraproblems. ♦
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The algorithm to compute daily value functions approximations, with relaxed
intraday problems, deterministic targets and periodicity classes, is presented in Al-
gorithm 1.

Algorithm 1: Two-time scales dynamic programming with deterministic tar-
gets and periodicity classes

Data: Periodicity classes (I1, . . . , INp)
Result: Daily value functions approximations (V(d,≥,Xd+1))d=0,...,D+1

Initialization: V(D+1,≥,XD+2) = K;
for i = 1, . . . , Np do

Let d ∈ Ii;
for (xd, xd+1) ∈ Xd × Xd+1 do

Compute φ(d,≥)(xd, xd+1);
end

end
for d = D,D − 1 . . . , 0 do

for xd ∈ Xd do
Solve V(d,≥,Xd+1)(xd) = minxd+1∈Xd+1

φ(d,≥)(xd, xd+1)+V(d+1,≥,Xd+2)(xd+1);
end

end

3.2.3 Two further simplifications for the intraday problems computation

Two particular properties can be exploited to lower further the computational burden
of the sequence of intraday problems φ(d,≥).

Initial state, final target pair dimension reduction. We introduce a first par-
ticular property of some problems allowing to lower the computational burden
of the intraproblems by reducing the dimensionality of the initial state/target
pair.

Assumption 3.9.

1. Xd = Xd+1,

2. Ld(xd,Ud,Wd) = ld(Ud,Wd),

3. fd(xd,Ud,Wd) = xd + gd(Ud,Wd).

Under Assumption 3.9, it is enough to solve, the optimization problem for all
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x ∈ Xd − Xd+1 (instead of each (xd, xd+1) ∈ Xd × Xd+1)

φ(d,≥)(x) = min
U
d

E
[
Ld(x,Ud,Wd)

]
, (38a)

s.t fd(x,Ud,Wd) ≥ 0 , (38b)

σ(Ud,m) ⊂ σ(Wd,0:m) . (38c)

Convexity and stagewise independence assumption. When the state dynam-
ics fd are linear and costs Ld and K are convex in (x, u), we can use Stochastic
Dual Dynamic Programming (SDDP) to solve the intraday problems, assuming
stagewise independence of the intraday noises (Wd,0, . . . ,Wd,M). We obtain a
convex polyhedral lower approximation of φ(d,≥). This convex polyhedral lower
approximation can be represented by a linear program hence it makes it possi-
ble to compute a piecewise linear lower approximation V (d,≥,Xd+1) of the daily
value functions upper bounds V(d,≥,Xd+1) using Linear Programming (LP).

Remark 3.10. We are not guaranteed that V(d,≥) ≤ V (d,≥,Xd+1). ♦

Now we can compute efficiently intraday problems and lower bounds for the daily
value functions using a deterministic target decomposition. We present another
method to compute value functions for a two-time scales stochastic optimization
problem relying on a deterministic weights decomposition.

3.3 Stochastic adaptative weights algorithm

In this part we investigate an algorithm based on applying Fenchel-Rockafellar du-
ality [28, 27] to the dynamic programming equation with targets (26), in particu-
lar to the target constraint (25b). This method is connected to the one developed
in [15] called “adaptative weights”, hence the name “ Stochastic Adaptative Weights”
(SAWA). We extend their results in a stochastic setting and a more general frame-
work as we are not tied to a battery management problem. Furthermore we use well
known duality results to reach similar conclusions.

We introduce the dualized intraday problems, whose value is called ψd for d ∈
{0, . . . , D − 1}, such that for all (xd,λd+1) ∈ Xd × Lq(Ω,F ,P; Λd+1), where Λd+1 is
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the dual space of Xd+1 (Λd+1 = Rnx if Xd+1 = Rnx):

ψd(xd,λd+1) = min
X
d
,U
d

E
[
Ld(Xd,Ud,Wd) + 〈λd+1, fd(Xd,Ud,Wd)〉

]
, (39a)

s.t Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (39b)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (39c)

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) , (39d)

Xd = xd . (39e)

We assume that for all d ∈ {0, . . . , D}, for any state xd ∈ Xd, control Ud and
uncertainty Wd, the random variable fd(xd,Ud,Wd) belongs to Lp(Ω,F ,P;Xd+1)
with 1 < p < +∞ and 1

p
+ 1

q
= 1.

For any state xd, admissible controlUd and uncertaintyWd, f(xd,Ud,Wd) is mea-
surable with respect to σ(Wd) due to the non anticipativity constraint (39d). Hence
for any random variable λd+1 ∈ Lq(Ω,F ,P; Λd+1) we have the following equality that
make it possible to restrict the measurability of dual variables [5, Chap. 5.5]:

ψd(xd,λd+1) = ψd

(
xd,E

[
λd+1|σ(Wd)

])
. (40)

Then, we introduce the following daily value functions,

V D+1 = K , (41a)

and, for all d ∈ {0, . . . , D}, and for all xd ∈ Xd,

V d(xd) = sup
λ
d+1
∈Λd+1

ψd(xd,λd+1)− E
[
V ?
d+1(λd+1)

]
, (41b)

s.t σ(λd+1) ⊂ σ(Wd) , (41c)

where V ?
d+1 is the Fenchel transform of the function V d+1. We prove, in the next

proposition, that the value function V d gives a lower bound to the value function Vd.

Lemma 3.11. For every d ∈ {0, . . . , D},

V d ≤ Vd . (42)

Proof. We apply Lemma 5.6 to φ(d,=)(xd, ·) and E
[
Vd+1

]
. �
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Proposition 3.12. Assume that K is convex and that for d ∈ {0, . . . , D} the instan-
taneous costs Ld are jointly convex in x and u and that the dynamics fd are jointly

linear in x and u. If moreover ri
(

dom
(
φ(d,=)(xd, ·)

)
− dom

(
E
[
Vd+1

]))
6= ∅, then we

have the equality
Vd = V d . (43)

Proof. Under the convexity assumptions we are ensured that for all d, φ(d,=) and Vd

are convex. We apply Proposition 5.7 to φd,=(xd, ·) and E
[
Vd+1

]
to obtain that, for

all d ∈ {0, . . . , D}, and for all xd ∈ Xd:

V d(xd) = sup
λ
d+1

ψd(xd,λd+1)−
(
E
[
V d+1

])?
(λd+1) , (44a)

where (
E
[
V d+1

])?
(λd+1) = sup

X∈Lp(Ω,F ,P;Xd+1)

〈λd+1,X 〉 − E
[
V d+1

]
(X ) , (45)

s.t σ(X ) ⊂ σ(Wd) . (46)

Due to the property (40), this is equivalent to

V d(xd) = sup
λ
d+1

ψd(xd,λd+1)−
(
E
[
V d+1

])?
(λd+1) , (47a)

s.t σ(λd+1) ⊂ σ(Wd) . (47b)

Finally we need to invert Fenchel transform and expectation in (47a) to obtain (41).
The proof of [9, Prop. 12], using [26] and [25], can be applied straightforwardly. �

3.3.1 Deterministic weights simplification

It is computationally costly to compute the function ψd in (39) for every d ∈
{0, . . . , D}, initial state xd ∈ Xd and stochastic weights λ ∈ Lq(Ω,F ,P; Λd+1). As
in §3.2.1 we relax the equality target constraint (25b) and restrict the computation
to deterministic weights in Λd+1 which corresponds to dualize an expectation target
constraint as detailed in the sequel.

We build by backward induction deterministic weights value functions:

V(D+1,≥,E) = K , (48a)
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and for all d ∈ {0, . . . , D}, and for all xd ∈ Xd,

V(d,≥,E)(xd) = sup
λd+1∈Λd+1

ψd(xd, λd+1)− V ?
(d+1,≥,E)(λd+1) , (48b)

λd+1 ≤ 0 . (48c)

Relaxing the target equality constraint (25b) into an inequality makes it possible to
constrain to non positive weights in (48c).

Remark 3.13. The notation V(d,≥,E) with the expectation in index comes from the
connection with the dualization of the target constraint in the optimization problem
P(d,≥)

[
xd,Xd+1

]
where the almost sure inequality target constraint is replaced by a

constraint in expectation, see (49b). We denote this new optimization problem by
P(d,≥,E)

[
xd,Xd+1

]
:

P(d,≥,E)

[
xd,Xd+1

]


min
U
d

E
[
Ld(xd,Ud,Wd)

]
, (49a)

s.t E
[
fd(xd,Ud,Wd)−Xd+1

]
≥ 0 , (49b)

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (49c)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (49d)

σ(Ud,m) ⊂ σ(Wd,0:m) , (49e)

That kind of simplification is also applied in [8]. ♦

V(d,≥,E) is the value of a more constrained maximization problem, with unchanged
objective, than V d. Hence we have the following inequality

V(d,≥,E) ≤ V d ≤ Vd . (50)

3.3.2 Statement of the SAWA algorithm with deterministic weights and
periodicity classes

To summarize, the algorithm to compute daily value functions approximations for
relaxed intraday problems with deterministic weights is presented in Algorithm 2,
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once again with periodicity classes as introduced in Lemma 3.6.

Algorithm 2: Two-time scales dynamic programming with weights

Data: Periodicity classes (I1, . . . , INp)
Result: Daily value functions approximations (V(d,≥,E))d=0,...,D+1

Initialization: V(D+1,≥,E) = K;
for i = 1, . . . , Np do

Let d ∈ Ii;
for (xd, λd+1) ∈ Xd × Λd+1 do

Compute ψd(xd, λd+1);
end

end
for d = D,D − 1 . . . , 0 do

for xd ∈ Xd do
Solve V(d,≥,E)(xd) = supλd+1∈Λd+1

ψd(xd, λd+1)− V ?
(d+1,≥,E)(λd+1);

end

end

Remark 3.14. The whole interest of the two algortihms 1 and 2 to compute daily
value functions approximations is that we can solve intraday problems in parallel,
or distribute the resolution of the intraday problems across days. Moreover, we can
theoretically apply any stochastic optimization method to solve the intraday problems.
Without stagewise independence assumption we may use Stochastic Programming
techniques (for example scenario trees) to solve the intraday problems. With the
stagewise assumption we may apply Stochatic Dynamic Programming. ♦

3.4 Producing an online policy using the daily value func-
tions

We assume that we have at disposal daily value functions {Ṽd}d=0,...,D either obtained

by the targets algorithm (Ṽd = V(d,≥,Xd+1)), or by the weights algorithm (Ṽd =
V(d,≥,E)).

Proposition 3.15. Under Assumption 3.3 and Proposition (3.4), we have the fol-
lowing inequality

V(d,≥,E) ≤ Vd ≤ V(d,≥,Xd+1) . (51)

Proof. It is a reminder of Equation (50) and Proposition 3.4. �
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Now, for each given day d ∈ {0, . . . , D} and given a current state xd ∈ Xd, we

can use the daily value functions Ṽd as daily value functions approximation in order
to state a new intraday problem on day d as follows:

min
X
d
,U
d

E
[
Ld(Xd,Ud,Wd) + Ṽd

(
fd(Xd,Ud,Wd)

)]
, (52a)

s.t Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M) , (52b)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M) , (52c)

σ(Ud,m) ⊂ σ(Xd,Wd,0:m) , (52d)

Xd = xd . (52e)

This problem can be solved by any method that provides an online policy as
presented in [6]. The presence of a final cost Ṽd ensures that the long term effect
on battery health of decisions made every minute is taken into account inside the
intraday problem policy.

The simulation of an online policy for a stochastic optimization problem is often
made offline as part of the verification process of a stochastic optimal control prob-
lem resolution. Here it would be time consuming to produce online policies using
the resolution of problem (52) for every day of the horizon in simulation. These
policies are more relevant for the real control of the system, hence the resolution of
problem (52) can be distributed across days. We present in the next two paragraphs
how to simulate two-time scales policies with targets or weights in a smaller amount
of time.

3.4.1 Simulating a policy using targets

In the case we decomposed the problem using deterministic targets, we eventu-
ally solved intraday problems whose values are {φ(d,≥)}d=0,...,D for every couple of
initial state and deterministic target (xd, xd+1) ∈ Xd × Xd+1. In the process, a
policy for every intraday problem has been computed. For d ∈ {0, . . . , D} and
all (xd, xd+1) ∈ Xd × Xd+1, we call πt(d,≥)(xd, xd+1) : Wd → Ud,0×, . . . ,Ud,M a policy

solving P(d,≥)

[
xd, xd+1

]
whose value is φ(d,≥)(xd, xd+1).

We computed the value φ(d,≥)

(
xd, xd+1

)
only on Xd×Xd+1 as we replaced stochas-

tic targets by deterministic ones. Therefore, we can only compute a target decision
solving the problem

xtd+1 ∈ arg min
x∈Xd+1

(
φ(d,≥)

(
xd, x

)
+ V(d+1,≥,Xd+1)(x)

)
. (53a)
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A deterministic target xtd+1 is computed and we apply the corresponding intraday
policy πt(d,≥)(xd, x

t
d+1) to simulate intraday decisions and states drawing a scenario wd

out of Wd. The next state xd+1 at the beginning of day d + 1 is then xd+1 =

fd

(
xd, π

t
(d,≥)(xd, x

t
d+1)(wd), wd

)
.

3.4.2 Simulating a policy using weights

In the case we decomposed the problem using deterministic weights, we eventually
solved relaxed intraday problems whose values are {ψd}d=0,...,D for every couple of
initial ate and deterministic weight (xd, λd+1) ∈ Xd × Λd+1. In the process, a policy
for every relaxed intraday problems has been computed. For d ∈ {0, . . . , D} and
all (xd, λd+1) ∈ Xd × Λd+1, we call πwd (xd, λd+1) : Wd → Ud,0×, . . . ,Ud,M a policy
solving the problem whose value is ψd(xd, λd+1).

At the beginning of day d in a state xd ∈ Xd, we compute a weight λwd+1 ∈ Λd+1

solving the following optimization problem

λwd+1 ∈ arg max
λ∈Λd+1

(
ψd(xd, λ)− V ?

(d+1,≥,E)(λ)
)
. (54a)

Thanks to this deterministic weight λwd+1, we apply the corresponding intraday
policy πwd (xd, λ

w
d+1) to simulate intraday decisions and states drawing a scenario wd

out of Wd. The next state xd+1 at the beginning of day d + 1 is then xd+1 =

fd

(
xd, π

w
d (xd, λ

w
d+1)(wd), wd

)
.

In the next section, we present numerical experiments using the targets and
weights algorithms.

4 Numerical experiments

In this section, we apply the previous theoretical results to three long term battery
management problems. First, we describe the realistic data used for the three exper-
iments. Then, we present the first experiment that consists in solving the battery
charge/discharge, aging and renewal management problem introduced in Section 2,
with targets decomposition. We compare the results with a daily management ap-
proach that ignores aging. Finally, we present a battery aging management without
renewal, with fixed capacity, over a few days. It makes it possible to apply targets
and weights decomposition algorithms and to compare them to a straightforward
application of Stochastic Dynamic Programming and Stochastic Dual Dynamic Pro-
gramming over the whole horizon. Finally, we apply targets decomposition with
SDDP for the sizing of a battery taking aging into account.
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4.1 Experimental setup

We use a realistic instance of the problem: a house with solar panels and battery.
The problem presents three sources of randomness, namely, solar panels production,
electrical demand and prices of batteries per kWh.

4.1.1 Data to model demand and production

We assume that the house is equipped with 12 kW of solar panels. One year scenarios
of solar exposure in Zambia with a time step of 1 minute are openly available1. Using
these solar scenarios, we can generate realistic solar panels production scenarios
using Python library PVlib2. We display in Figure 3 the distribution of solar panels
production every hour as a boxplot.

For the demand data we obtained openly available scenarios from Ausgrid3. This
is electrical demand data from a customer in kWh with 1 minute time step as well.
We display in Figure 4 the hourly distribution of electrical demand.

Figure 3: Daily solar panels production hourly distribution (kWh)

1energydata.info/en/dataset/zambia-solar-radiation-measurement-data-2015-2017
2github.com/pvlib/pvlib-python
3www.ausgrid.com.au/datatoshare
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Figure 4: Daily electrical demand hourly distribution (kWh)

4.1.2 Data to model the cost of batteries and electricity

For the cost of batteries, we obtained a yearly forecast between 2010 and 2030 from
Bloomberg4. We added an arbitrary white gaussian noise to generate synthetic
random batteries prices scenarios. We display in Figure 5 on the left, the forecast
(in blue) and the scenarios we generated (in gray). For the price of electricity, we
use a realistic scenario, displayed in Figure 5 on the right, based on EDF blue tariff5

for a 6 or 9 kVA subscription with peak and off-peak hours.

Figure 5: Batteries cost scenarios between 2010 and 2030, and cost of electricity

4https://www.bloomberg.com/quicktake/batteries
5https://particulier.edf.fr/en/home/energy-at-home/electricity/blue-tariff.html
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4.2 Long term aging and renewal of batteries

We presented the battery aging and renewal problem in Section 2. We recall, with
the problem notations, the expression of the daily Bellman value functions for this
particular problem:

Vd(cd, bd,0, hd,0) = min
EB
d,0:M

,R
d

E
[
γd

M−1∑
m=0

ped,m ×EE
d,m+1 + γdP

b
d ×Rd

+ Vd+1(Cd+1,Bd+1,0,Hd+1,0)
]
, (55a)

s.t (9a), (9b) , (55b)

(13), (14), (15) , (55c)

σ(EB
d,m) ⊂ σ(Cd,Bd,Hd,E

S
d,0:m) , (55d)

σ(Rd) ⊂ σ(Cd,Bd,Hd,P
b
d ) , (55e)

Cd = cd , Bd = bd,0 , Hd = hd,0 . (55f)

Intuitively, the daily value functions are non-increasing in the state of charge b
and the state of health h because it is always preferable to have a full and healthy
battery. We prove in Appendix 5.2 that this problem presents all the features required
to apply our decomposition algorithms, namely, that the value functions Vd are non-
increasing in bd and hd.

4.2.1 Splitting slow and fast decision variables

We introduce the intraday problems for all d ∈ {0, . . . , D + 1}:

φ(d,≥)(cd, bd,0, hd,0,B ,H ) = min
EB
d,0:M

E
[M−1∑
m=0

ped,m ×EE
d,m+1

]
, (56a)

s.t (9a), (9b) , (56b)

Bd,M ≥ B , Hd,m ≥H , (56c)

σ(EB
d,m) ⊂ σ(Cd,Bd,Hd,E

S
d,0:m) , (56d)

Cd = cd , Bd = bd,0 , Hd = hd,0 . (56e)

There is a small difference in the definition of the intraday problem as compared
to Equation (25) because we keep the cost EγdP b

d ×Rd outside. It allows to keep the
capacity dynamic (13) and its associated target constraint (25b) outside the intraday
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problem. All the previous results can still be applied, but this decomposition is
less computationally costly. We obtain the following expression for the daily value
functions with the deterministic targets simplification:

V(d,≥,Xd+1)(cd, bd,0, hd,0) = min
R
d
,b,h

γdφ(d,≥)(cd, bd,0, hd,0, b, h) + E
[
γdP

b
d ×Rd

+ Vd+1(Cd+1,Bd+1,0,Hd+1,0)
]
, (57a)

s.t (13), (14), (15) , (57b)

σ(Rd) ⊂ σ(Cd,Bd,0,Hd,0,P
b
d ) , (57c)

Cd = cd , Bd,0 = bd,0 , Hd,0 = hd,0 . (57d)

It falls down to choose end of the day maximum aging and minimum state of
charge at the beginning of the day as well as battery renewal once price of batteries
is observed. We recall that, due to the dynamics (13), (14) and (15), the random
variables Cd+1, Bd+1,0 and Hd+1,0 depend on b and h in (57).

4.2.2 Simplifying the intraday problem

In this application, we are in the situation described in Assumption 3.9 regarding
the aging dynamics:

φ(d,≥)(cd, bd,0, hd,0, bd,M , hd,M) = φ(d,≥)(cd, bd,0, hd,0 − hd,M , bd,M , 0) . (58)

Finally, as we want to focus on the aging, we neglect the state of charge target
replacing it by an empty state of charge target. In fact, we assume that the battery is
empty at the end and at the beginning of everyday, which is a pessimistic assumption.
We have to compute the following functions:

φ̃(d,≥)(cd, hd,0 − hd,M) = φ(d,≥)(cd, 0, hd,0 − hd,M , 0, 0) . (59)

Then, we can compute the daily value functions approximation V(d,≥,Xd+1) by
exhaustive search in discretized daily states, controls and targets spaces. In our
numerical experimentation, we use the same uncertainties model everyday day for
the noises and we assume that the prices of electricity are the same everyday. Then
we compute only φ̃(0,≥).

To compute the function φ̃(0,≥), we apply the SDDP algorithm, assume stagewise
independence of the noises, for every possible capacities cd ∈ C, that is, in our case
for all C = {0, 1 . . . , 19, 20}. Applying SDDP for a capacity cd, we obtain a convex

polyhedral lower approximation of φ̃(0,≥)(cd, ·).
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4.2.3 Numerical simulation of a two-time scales policy

To simulate a policy, we draw one scenario of solar production and electrical demand
for every minutes step of the 20 years horizon. We display in Figure 6 left, a net
production (solar production minus demand) over one week. We also draw one
scenario of cost of batteries for everyday of the horizon in Figure 6 right. We apply
the simulation strategy described in §3.4.1.

Figure 6: Net production scenario over one week and price of batteries scenario
over 20 years

Our instance has then the following numerical features:

• Horizon: 20 years,

• Number of time steps: 10, 512, 000 minutes,

• Battery capacity: between 0 and 20 kWh,

• One periodicity class: all days are similar.

4.2.4 Comparison of two policies

We compare two policies. One policy is computed using the value functions (57)
with the simplification that the state of charge target is restricted to 0, that is, we
do not constraint the state of charge of the battery at the end of every day. We call
this strategy “aging control” or AC. The other policy is computed using the value
functions (57) without state of charge constraints as well. However there is another
simplification: the health of the battery at the end of the day has only to remain
above 0, that is, there is no health target every day. This policy is called “without
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aging control” or WAC. We compare hereby the two policies on one twenty years
simulation. The reference case is just the electricity bill of the house along the drawn
scenario and without battery at all.

Figure 7: Health decrease comparison

Figure 8: Daily state of charge trajectories comparison (kWh)

We observe unsurprisingly in Figure 7 that the AC strategy renews the battery
one less time than the WAC strategy. We observe that both strategies buy the same
first capacity, that is a 4 kWh battery. The WAC buys one more 4 kWh battery
after about 5 years while the ac ones waits 10 years. At year 10, both strategies buy
a 16 kWh battery that has more health at the end of the horizon than with the WAC
strategy.
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We display in Figure 8 the impact of both strategies on the state of charge of the
batteries everyday. In red is the mean state of charge. We observe unsurprisingly
that the WAC strategy uses more intensively the battery everyday.

Finally, on this single simulation we obtain the following discounted expenses for
electricity bill and battery purchases:

• Reference case (electricity bill without battery and solar panels): 25404 e,

• Without aging control: 24702 e, minus 3 % compared to reference,

• Aging control: 22613 e, minus 11% compared to reference.

On one simulation we observe that the best economical strategy is to buy batteries
and to control their aging, against one particular battery scenario. We should make
many simulations over multiple battery prices to conclude due to the stochasticity
of these battery prices.

Remark 4.1 (On computation time). The targets decomposition algorithm is here
applied because the problem is way too large to apply SDP straightforwardly (10512000
time steps with 3 state variables). The computation time would be tremendous even
if SDP can be parallelized and moreover the memory needed is way above the memory
of a regular computer. With the targets decomposition, we display reasonable com-
putation times: the intraday problem φ̃(0,≥) took around 1 hour to compute, the daily
value functions around 45 minutes and a simulation around 45 minutes as well. We
present a more rigorous discussion on complexity and computation times in the next
experimentation. ♦

4.3 Decomposition methods comparison on a simple aging
problem

In this part, we focus on aging of a battery with a given capacity over five days.
The objective is to compare targets and weights decomposition algorithms to the
results obtained using SDP, and SDDP, straightforwardly over the whole horizon.
We assume that the house is equipped with a battery with a given capacity c0 that
will not change during the five days. This assumption removes the slow scale renewal
decision variable from the previous experiment (in §4.2). In this the application
of this new paragraph, we demonstrate that the decomposition algorithms are also
efficient to solve stochastic optimization problems with many time stages but a single
scale
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4.3.1 Problem instance

We present hereby the different parameters of the problem we solve.

• Horizon: 5 days.

• Time step : 15 minutes.

• Number of time steps : 480.

• Capacity: c0 = 13 kWh battery.

• Initial health: h0,0 = 100 kWh of exchangeable energy.

4.3.2 Target daily value functions without renewal

Without battery renewal, we obtain the following daily target value functions defined
by backward induction:

V(d,≥,Xd+1)(bd,0, hd,0) = min
b,h

φ(d,≥)(c0, bd,0, hd,0, b, h) + V(d+1,≥,Xd+2)(b, h) , (60a)

where φ(d,≥) is the intraday problem defined in (56).
Once again, we decide to neglect state of charge target to focus on health here.

We fix state of charge target to zero, or empty battery. We also take the same
net production uncertainties model everyday of the five days horizon. As in the
previous experimentation, we then compute the single intraday problem φ̃(0,≥)(c0, ·)
with only one capacity this time. In practice, this problem is solved using SDDP
provided a polyhedral lower approximation of φ̃(0,≥)(c0, ·, ·). We call the target value
functions V T

(d,≥,Xd+1):

V T
(d,≥,Xd+1)(hd,0) = min

h
φ̃(d,≥)(c0, bd,0, hd,0 − h, ) + V T

(d+1,≥,Xd+2)(h) . (61a)

As the φ̃(0,≥)(c0, ·, ·) is convex polyhedral, we can solve the backward recursion (61a)
using linear programming. Moreover, we can obtain a convex polyhedral lower
approximation of V T

(d,≥,Xd+1). In the sequel, when we refer to V T
(d,≥,Xd+1), we refer

to this polyhedral approximation.
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4.3.3 Weights daily value functions without renewal

As we focus only on aging we do not dualize the whole intraday dynamics here. We
dualize only the aging dynamic. We define the relaxed intraday problem:

ψd(c0, hd,0, λd) = (62a)

min
EB
d,0:M

E
[M−1∑
m=0

ped,mE
E
d,m+1

]
+ E

[
λd ×

M−1∑
m=0

1

ρd
EB−
d,m − ρcE

B+
d,m

]
, (62b)

s.t Bd,m+1 = Bd,m −
1

ρd
EB−
d,m +

1

ρd
ρcE

B+
d,m , (62c)

Bd,M ≥ B , (62d)

σ(EB
d,m) ⊂ σ(Bd,Hd,E

S
d,0:m) , (62e)

Bd = B , Hd = hd . (62f)

So, as λd deterministic, the objective turns into

E
[M−1∑
m=0

ped,mE
E
d,m+1 +

λd
ρd
EB−
d,m − λdρcE

B+
d,m

]
. (63)

It makes it possible to solve the problem (62) using SDDP producing a convex
polyhedral approximation of ψd(c0, ·, λd). We make the periodicity assumption as
in the targets decomposition.

Then, we compute weights daily value functions solving the backward recursion:

V W
(d,≥,E)(hd,0) = sup

λ∈Λd+1

[
ψ0(c0, hd,0, λ) + min

h∈H

(
− λ · h+ V W

(d+1,≥,E)(h)
)]

. (64)

In this case we computed many intraday problems value ψ0(c0, ·, λ) for different λ ∈
[0, 2]. We need to compute the values ψd only for d = 0 using the periodicity as-
sumption. It appears that, above λ = 0.08, the mapping λ→ ψ0(c0, ·, λ) is constant.
Therefore, we perform the maximization (64) by exhaustive search in the discrete
space {−0.08,−0.0784, . . . ,−0.0016, 0}, that is, all the weights between −0.08 and 0
with step 0.0016, which gives 51 weights. The nested minimization over h in (64) is
performed by exhaustive search in the discretized health space as well.

4.3.4 Computing minute value functions

Both targets and weights decomposition methods provide daily value functions V T
(d,≥,Xd+1)

and V W
(d,≥,E). Next, we compute intraday value functions using these value functions
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as final cost in new intraday problems. For example, in the targets case, we compute
the family of intraday value functions V T

d,m by applying the SDDP algorithm to the
problem, because the final cost V T

(d+1,≥,Xd+2) is convex polyhedral:

min
EB
d,0:M

E
[M−1∑
m=0

ped,m ×EE
d,m+1 + V T

(d+1,≥,Xd+2)(Hd,M)
]
, (65a)

s.t (9a), (9b) , (65b)

σ(EB
d,m) ⊂ σ(Bd,m,Hd,m,E

S
d,m) . (65c)

For the weights case, we apply SDP as we computed an approximation of V W
(d+1,≥,Λd+2)

on a grid.

4.3.5 Two straightforward references

We compare these two daily decomposition methods to two straightforward ap-
proaches because the problem is not too large to apply them. However we will ob-
serve that numerically these classical methods perform poorly to produce the “true”
value functions. We apply SDP and SDDP to the following global problem assuming
stagewise (minutes) independence of the noises:

min
EB
d,0:M

E
[D−1∑
d=0

M−1∑
m=0

ped,m ×EE
d,m+1

]
, (66a)

s.t (9a), (9b) , (66b)

Bd+1,0 = Bd,M , Hd+1,0 = Hd,M , (66c)

σ(EB
d,m) ⊂ σ(Bd,m,Hd,m,E

S
d,m) . (66d)

With both algorithms, we obtain a family of intraday value functions respectively
called V SDP

d,m and V SDDP
d,m . To be consistent with the two previous methods, at the

beginning of each day in a given state bd,0, hd,0 we force the value function V SDP
0 to

satisfy the equality V SDP
d,0 (bd,0, hd,0) = V SDP

d,0 (0, hd,0) in order to ignore the state of
charge at the end and beginning of each day as well. We do the same for SDDP.

4.3.6 Numerical results

We now present numerical results comparing the four methods. Figure 9 presents in-
sample simulation results with the four algorithms along one scenario. It means that
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we have drawn one scenario from the uncertainties distribution we used to compute
the daily value functions. We observe that the aging of the battery as well as its
state of charge over the 5 days seems to be the same for all algorithms. We observed
the same fact on 10, 000 scenarios, that are not displayed here.

Figure 9: Aging and state of charge simulation over 5 days with different methods

Figure 10 presents the distribution of the difference of costs between each pair of
algorithms along 10, 000 scenarios. All the histograms are centered around 0, hence
it seems that all algorithms perform equivalently with a small win for the weights
decomposition over the targets decomposition. The mean difference is approximately
zero between all methods.
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Figure 10: Simulation costs comparison

Figure 11: Daily value functions comparison
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Figure 12: Focus on daily value function on day number 3

Figure 11 displays the six daily value functions, the sixth one being the final cost
equal to zero. We observe that all methods compute approximately the same daily
value functions. On Figure 12 we focus on day 3 and we observe the following order
between value functions: V SDDP

3,0 ≤ V W
(3,≥,E) ≤ V T

(3,≥,X4) ≤ V SDP
3,0 . We observe the

same thing on all the days. This is consistent with the fact that SDDP provides a
lower approximation of the true value functions, while SDP, because of discretization
of state and control spaces, provides an upper approximation. It is surprising to find
the value functions computed using targets and weights decomposition between these
two bounds even with the deterministic weights and targets simplification. We recall
that the “true” value functions Vd satisfy the inequality:

V W
(d,≥,E) ≤ Vd ≤ V T

(d,≥,Xd+1) . (67)
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SDP Weights SDDP Targets
Intraday resolution (SDDP) ∅ 51× 14 sec ∅ 14 sec
Daily values functions ∅ 0.15 sec ∅ 0.59 sec
Minute values functions 22.5 min 5× 4.5 min 3.6 min 5× 14 sec
Total CPU time 22.5 min 34.4 min 3.6 min 84.6 sec
Total time (with parallelisation) 22.5 min 5.0 min 3.6 min 24.6 sec
Gap (200× mc−v

mc+v
) 0.91 % 0.32 % 0.90 % 0.28 %

Table 1: Algorithms numerical results comparison

Table 4.3.6 presents the computation times of the algorithms as well as their
gap which is measured as the relative difference between the initial value V0,0(0, 100)
computed by the algorithm and the mean cost obtained by simulation over 10000
scenarios from state (0, 100). SDP and SDDP do not display intraday resolution
and daily value functions times as they are applied directly to the global problem,
computing both daily and minute value functions.

• We observe that daily value functions computation for targets and weights
algorithms is really fast, but that the intraday problems resolution for weights is
costly. This is due to the exhaustive search in the weights space (of cardinal 51
here). This time is significantly lower in the targets case because SDDP already
explores the initial state space.

• We observe that targets and weights algorithms have the best gaps. We could
improve the one of SDDP but we did not manage to improve it significantly
after more than 1 hour. The convergence of SDDP (measured with the gap) is
sensitive to the number of time stages [18].

• The time required to compute value functions in the weights case is the same
as SDP, as it is 5 times a 5 time smaller SDP. However the weights algorithm
permits to parallelize this phase or even to distribute it accross days, witch is
impossible with SDP.

Finally, we observe that the targets algorithm, where all the intraday problems
are solved using SDDP is the fastest algorithm. It has the best gap, displays approx-
imately the same costs and value functions as the other algorithms. Moreover, the
resolution of the intraday problems with final cost can be parallelized or distributed
accross days. In fact it is a way to accelerate the resolution of the problem with
multiple applications of SDDP, instead of one straighforward application, when a
convex problem displays a high number of time steps, monotonicity and some good
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properties. That kind of approach could be appealing for the algorithm Mixed In-
teger Dynamic Approximation Scheme [22] as it is really sensible to the number of
time steps and relies on monotonicity as well.

4.4 Sizing of a battery using targets decomposition and Stochas-
tic Dual Dynamic Programming

In this part, we use the lower convex polyhedral approximations of the intraday
target problems values φ(d,≥) provided by SDDP, to compute an optimal capacity for
the house.

4.4.1 A sizing problem without battery renewal

We apply the targets decomposition scheme, introduced in §3.2 to the same aging
problem without battery renewals to compute the net present value for a given
battery capacity. We introduce the intraday problems:

φ(d,≥)(cd, hd,0 − hd,M) = min
EB
d,0:M

E
[M−1∑
m=0

ped,m ×EE
d,m+1

]
, (68a)

s.t (9a), (9b) , (68b)

Bd,M ≥ B , Hd,m ≥ 0 , (68c)

Cd,m = Cd,m+1 , (68d)

σ(EB
d,m) ⊂ σ(Cd,Bd,0,Hd,0,E

S
d,0:m) , (68e)

Cd,0 = cd , Bd,0 = B , Hd,0 = hd,0 − hd,M . (68f)

The intraday problem remains unchanged compared to the previous experiment 4.2
except that we augment the state with a constant dynamic for the capacity, see (68d).
We recover the value φ(d,≥) as we can eliminate trivially the capacity state us-
ing (68d). This trick makes it possible to compute a lower convex polyhedral ap-

proximation φ̃(d,≥) by applying the SDDP algorithm with a grid of initial states.
It is then possible to apply SDDP to the daily target value functions recursion

without battery renewal:

V(d,≥,Xd+1)(cd, hd,0) = min
h

γdφ(d,≥)(cd, hd,0 − h) + V(d+1,≥,Xd+2)(cd, hd,0 − h) . (69a)

The application of a two-time scale SDDP is relevant only if daily value functions
are required. Here, only the sizing of the battery matters; hence we can just solve a
linear program to compute the optimal capacity as presented in the next section.
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We worked on an industrial case where the economic profit was not the only
objective. We had to determine also the rate of self consumption and self production
for a given capacity. For this purpose, we needed to compute daily value functions
so as to produce a simulation policy to evaluate these rates using Monte Carlo
simulation.

4.4.2 Computation of the optimal capacity

We obtained a convex polyhedral approximation of φ(d,≥) for every relevant d ∈
{0, . . . , D} possibly using periodicity. We can then compute an optimal capacity at
the first day 0 by solving the following linear program for a given price of batteries
per kWh pb0:

min
c∈[c,c]

min
h0,0,...,hD+1,0

pb0 × c+
D∑
d=0

γdφ(d,≥)(c, hd,0 − hd+1,0) , (70a)

s.t h0,0 = 2Ncycles × c , (70b)

hd,0 ≥ hd+1,0 . (70c)

This is a linear program using the convex lower polyhedral approximation of φ(d,≥).
The constraint (70c) makes it possible to lower the size of the search space but is
implicit as a negative initial age hd,0 − hd+1,0 leads to φ(d,≥)(c, hd,0 − hd+1,0) = +∞.

4.4.3 Numerical results

We compute the value of Problem (68) using SDDP with 500 iterations in 1.7 minute.
We test convergence by MonteCarlo simulation and we reach a gap of 0.1% between
the upper bound, computed by Monte Carlo, and the lower bound, computed by
SDDP. Then, we were able to solve Problem (70) for a given horizon and price of
batteries in 1.7 second for a 1 year horizon and 71 seconds for 12 years horizon using
CPLEX. We present numerical results as contour plots on Figure 13 and 14. The
first one presents the optimal battery capacity (black is 0 kWh, yellow is 20 kWh)
as a function of the investment horizon D and the prices of batteries pb0. The second
presents the corresponding discounted benefit (black is 0 e, yellow is above 2100 e)
as a function of horizon and prices as well. The third one presents the corresponding
expected lifetime for the battery (black is 0 years, yellow is 7 years), as a function
of horizon and prices. We observe that a battery would be economically interesting
if we consider the investment over at least 2 years and below 150 euros per kWh,
below the optimal battery has capacity 0 kWh. Over a 12 years horizon, the best
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capacity is the largest one, that is 20 kWh capacity, and the expected net benefit
would be 2100 euros. We finally observe on Figure 14 that even the largest battery
is not expected to last more than 7 years. This is consistent with the plateau we
observe on Figure 13 above 7 years.

Figure 13: Optimal battery capacity and benefit as a function of prices and horizon

Figure 14: Expected battery lifetime as a function of prices and horizon

Conclusion

We introduced a two-time scales stochastic optimization problem for a battery charge/discharge,
aging and renewal management problem. The motivation for two-time scales mod-
eling originated from the existence of decisions that have to be made every minute
(charge/dicharge) and decisions that have to be made once a day (renewal). We
presented two algorithmic methods to compute daily value functions to solve these
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problems with an important number of time steps and decisions on different time
scales. We applied these algorithms to three realistic applications for the original
problem, a simple aging problem and a sizing problem. We conclude that these
methods make it possible to solve problems with different time scales as well as an
important number of time steps. Moreover, with the aging application (in §4.3) we
observe that these methods make it possible to decompose a single time scale long
problem in time. Our two algorithms perform better on a long problem displaying
periodicity than a straightforward use of SDP or SDDP. It might generally be useful
in order to improve algorithms whose convergence is sensitive to the number of time
steps. It makes it possible for example to parallelize SDP over time, not states, and
to speed up the convergence of SDDP.

Algorithms such as Mixed Integer Dynamic Approximation Scheme produce T×ε
optimal solutions for multistage stochastic optimization problems with binary vari-
ables, where T is the number of stages and ε a user tuned parameter. It might be
interesting to apply such time decomposition methods to improve the quality of the
solution and to speed up the convergence of these algorithms.

Theses methods are to be compared to value iteration and policy iteration applied
to infinite horizon problems. Value iteration and policy iteration require both a
stationary assumption. Our methods relax this assumption, proving efficient for
problems displaying periodicity and monotonicity.

Finally, these methods could make it possible to mix Stochastic Programming and
Stochastic Dynamic Programming methods. Stochastic Programming and scenario
decomposition methods display a complexity exponential in the number of time steps.
Targets and weights decomposition could be a way to make these methods more
tractable on problems with an important number of time steps by splitting into
subproblems with less time steps.

5 Appendix

In this section, we present theoretical results to decompose two-time scales stochastic
optimization problems as well as proofs of monotonicity and convexity of a battery
management problem.

5.1 An abstract optimization problem

Let (nv, nu) ∈ N∗ × N∗ be given and two subsets V ⊂ Rnv and U ⊂ Rnu equipped
with the element-wise partial order ≤. Let two proper extended real valued functions
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l : U→ (−∞,+∞] and V : V→ (−∞,+∞] and a mapping f : U→ V. We study
different ways to solve or approximate the following optimization problem:

v = inf
u∈U

(
l(u) + V (f(u))

)
(71)

where U is a subset of U. We call equation (71) an abstract Bellman equation.

Remark 5.1. We study this general equation for its application in two-time scales
dynamic programming. We assume that a decision maker has to make one decision
every minute. The function l represents a cost incurred daily by the decision made
every minute. V models a cost of the future incurred by the decision made every
minute that change a state through a dynamic equation f . The decision maker wants
to minimize a compromise between these two costs. ♦

In the whole section, we make a monotonicity assumption to decompose the
optimization problem (71).

Assumption 5.2. V is a non decreasing function.

5.1.1 Decomposition by targets

For all α ∈ V we introduce the following parametrized problems:

L(=)(α) = inf
u∈U∩f=α

l(u) and L(≤)(α) = inf
u∈U∩f≤α

l(u) , (72)

where the level sets f=α and f≤α are respectively given by

f=α = {u ∈ U|f(u) = α} (73)

and
f≤α = {u ∈ U|f(u) ≤ α} . (74)

In the next lemma, we use the value functions L(=) and L≤ to obtain lower bounds
to the optimization problem (71).

Lemma 5.3. The value v(=) and v≤ of the two optimization problems

v(=) = inf
α∈V

(
L(=)(α) + V (α)

)
, (75)

v(≤) = inf
α∈V

(
L(≤)(α) + V (α)

)
, (76)
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give lower bounds to the optimization Problem (71):

v(≤) ≤ v(=) = v . (77)

Moreover, under the monotonicity Assumption 5.2 we have that

v(≤) = v(=) = v . (78)

Proof. (v(=) = v):

v(=) = inf
α∈V

(
L(=)(α) + V (α)

)
= inf

α∈V
inf
u∈U

l(u) + V (α)

s.t f(u) = α

= inf
u∈U

inf
α∈V

l(u) + V (α)

s.t f(u) = α

= inf
u∈U

l(u) + V (f(u)) = v

(v(≤) ≤ v): Let u ∈ U be given and set α = f(u). We successively have

v(≤) ≤ L(≤)(α) + V (α) (by (76))

≤ l(u) + V (α) (u is admissible for L(≤)(α))

≤ l(u) + V (f(u)) (α = f(u))

so finally, as the inequality holds for any u ∈ U :

v(≤) ≤ inf
u∈U

(
l(u) + V (f(u))

)
= v (by (71))

(v ≤ v≤ under monotonicity assumption). For any ε > 0 let αε ∈ V be a ε-optimal
solution for the optimization problem v(≤) and uε ∈ U be an ε-optimal solution for
the optimization problem L(≤)(αε).

v(≤) + 2ε ≥ l(uε) + V (αε)

≥ l(uε) + V (f(uε)), ( monotonicity of V and admissibility of uε for L(≤))

≥ v

The proof is complete. �

Remark 5.4. The same relation holds between v(=) and v(≥) in the converse case
where V is non-increasing. ♦
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5.1.2 Decomposition by weights using Fenchel duality

Let (Λ,≤) be a subset of Rnλ equipped with the element-wise partial order ≤
and 〈·, ·〉 : Λ × V → [−∞,+∞] a bilinear coupling. For all λ ∈ Λ we introduce
the following relaxed version of L=:

H(λ) = inf
u∈U

l(u) + 〈λ, f(u)〉 . (79)

We introduce as well the Fenchel conjugate of a function φ.

φ∗(λ) = sup
α∈V

〈λ, α〉 − φ(α) . (80)

Lemma 5.5. The following equality holds

H(λ) = −L∗=(−λ) . (81)

Proof. For any function φ we have −φ∗(−λ) = infα∈V φ(α) + 〈λ, α〉.

H(λ) = inf
u∈U

l(u) + 〈λ, f(u)〉 ,

= inf
u∈U

inf
α∈V

l(u) + 〈λ, α〉 ,

s.t α = f(u) ,

= inf
α∈V

inf
u∈U

l(u) + 〈λ, α〉 ,

s.t α = f(u) ,

= inf
α∈V
〈λ, α〉+ L=(α) = −L∗=(−λ) .

�

This makes it possible to apply a weak duality theorem to our original prob-
lem (71). Without further assumptions we can state the following lemma.

Lemma 5.6.
v ≥ sup

λ∈Λ
H(λ)− V ∗(λ) . (82)

Proof. We recall that v = infα∈V L=(α) + V (α). l is proper so L= is proper as well.
Applying twice Fenchel-Young inequality [4] we know, that for all (λ, α) ∈ Λ× V,

• L=(α) ≥ −L∗=(−λ) + 〈−λ, α〉,

• V (α) ≥ −V ∗(λ) + 〈λ, α〉.
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Therefore, summing the inequalities, we obtain:

L=(α) + V (α) ≥ −L∗=(−λ)− V ∗(λ) = H(λ)− V ∗(λ) . (83)

This ends the proof. �

Proposition 5.7. If L= and V are convex and one of the following condition holds

• 0 ∈ ri(dom(L=)− dom(V )),

• or the stronger dom(L=) ∩ cont(V ) 6= ∅,

then the following equality holds:

v = sup
λ∈Λ

H(λ)− V ∗(λ) . (84)

Proof. We apply Fenchel duality theorem [4, 27]. �

Proposition 5.8. Let λ ∈ Λ such that the function 〈λ, ·〉 : α ∈ V 7→ 〈λ, α〉 is
non-decreasing. Then the following equality holds:

H(λ) = −L∗≤(−λ) . (85)

Proof. It is a direct application of Lemma 5.3 with V = 〈λ, ·〉. �

5.2 Proving monotonicity and linearity of a battery man-
agement problem

We show in this part that we can linearize a battery control problem with aging,
which is useful to apply Model Predictive Control or SDDP.

We focus on the following problem where the decision variable Ut is the charge
discharge of the battery at time t and Wt the uncertain net production of the grid
connected to the battery. The objective is to minimize to consumption of power of
the national grid, that is, the charge/discharge minus the net production. We take
the positive part assuming that we cannot sell electricity to the grid. We call x+ =
max(0, x) the positive part of a variable x and x− = −min(0, x) the negative part.
We write the problem in an hazard-decision setting for the sake of simplicity; the
results are the same in a decision-hazard setting. For the sake of simplicity as well,
we assume that the noises (W0, . . . ,WT ) are stagewise independent. It makes it
possible to restrict the search to functions Ut+1(Bt,Ht,Wt+1) of the state and the
next noise. The problem we study is the following:
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inf
U
t=0,...,T−1

E
[ T−1∑
t=0

ct ×
(
Ut+1 −Wt+1

)]+

, (86a)

s.t Bt+1 = Bt + ρcU
+
t+1 − ρ

−1
d U

−
t+1 , (86b)

Ht+1 = Ht −U
+
t+1 −U

−
t+1 , (86c)

B ≤ Bt ≤ B , (86d)

Ht ≥ 0 , (86e)

U ≤ Ut ≤ U , (86f)

σ(Ut) ⊂ σ(Bt−1,Ht−1,Wt) , (86g)

B0 = b0 , H0 = h0 . (86h)

First, we prove that the value functions V ]
t of problem (86) are non increasing in

state of charge b and health h. The value functions satisfy the following backward
recursion

V ]
T = 0 , (87a)

V ]
t (b, h) = EVt(b, h,W ), ∀(b, h) ∈ B×H , (87b)

where

Vt(b, h, w) = inf
u
ct × (u− w)+ + V ]

t+1(b+ ρcu
+ − ρ−1

d u−, h− u+ − u−) , (87c)

s.t B − b ≤ ρcu
+ − ρ−1

d u− ≤ B − b , (87d)

u+ + u− ≤ h , (87e)

U ≤ u ≤ U . (87f)

Lemma 5.9. The value functions {V ]
t }t=0,...,T are non-increasing.

Proof. The last value function V ]
T is obviously non-increasing.

Assume that V ]
t+1 is non increasing. Vt is obviously non increasing in h as

decreasing h constrains the problem further and increases the objective as V ]
t+1 is

non increasing.
Let b′ ≥ b, let ε > 0 and let uεb an ε-optimal for Vt(b, h, w). By definition, we have

ct × (uεb − w)+ + V ]
t+1(b+ ρcu

ε
b
+ − ρ−1

d uεb
−, h− uεb

+ − uεb
−) ≤ Vt(b, h, w) + ε . (88a)

We distinguish two cases.
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uεb ≤ 0: then uεb is admissible for Vt(b
′, h, w) because

B − b′ ≤ B − b ≤ ρcu
ε
b
+ − ρ−1

d uεb
− = ρ−1

d uεb ≤ 0 ≤ B − b′ , (88b)

moreover as Vt+1 is non increasing

V ]
t+1(b′+ρcu

ε
b
+−ρ−1

d uεb
−, h−uεb

+−uεb
−) ≤ V ]

t+1(b+ρcu
ε
b
+−ρ−1

d uεb
−, h−uεb

+−uεb
−) ,

(88c)
then we have

Vt(b
′, h, w) ≤ Vt(b, h, w) + ε . (88d)

uεb > 0: let uεb′ = min(ρ−1
c × (B − b′), uεb). uεb′ is admissible for Vt(b

′, h, w) as

U ≤ 0 < uεb′ ≤ uεb ≤ U , (88e)

B − b′ ≤ 0 < ρcu
ε
b′ ≤ ρcρ

−1
c × (B − b′) = B − b′ , (88f)

uεb′
+ ≤ uεb

+ ≤ h . (88g)

Moreover we have

b′ + ρcu
ε
b′ = b+ ρcu

ε
b , (88h)

or

b′ + ρcu
ε
b′ = B ≥ b+ ρcu

ε
b , (88i)

so

b′ + ρcu
ε
b′ ≥ b+ ρcu

ε
b , (88j)

so these inequalities and the fact that Vt+1 in non increasing lead to

ct× (uεb′ −w)+ +V ]
t+1(b+ ρcu

ε
b′ , h−uεb′) ≤ ct× (uεb−w)+ +V ]

t+1(b+ ρcu
ε
b, h−uεb)

(88k)
Finally

Vt(b
′, h, w) ≤ Vt(b, h, w) + ε , (88l)

then we conclude that Vt is non increasing.

�

Now we would like to remove the positive and negative parts from the problem
to apply SDDP or linear programming in a Model Predictive Control method.
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Lemma 5.10. The value functions {V ]
t }t=0,...,T are convex polyhedral.

Proof. V ]
T is trivially convex polyhedral. Assume that V ]

t+1 is convex polyhedral.

Let B : V ]
t+1 7→ V ]

t = EVt. We prove that this is a linear Bellman operator as it is

demonstrated in [18] from [4] that in this case V ]
t is convex polyhedral. We introduce

a new equivalent definition for Vt:

Vt(b, h, w) = inf
uc,ud,l

l + V ]
t+1(b+ ρcuc − ρ−1

d ud, h− uc − ud) , (89a)

s.t B − b ≤ ρcuc − ρ−1
d ud ≤ B − b , (89b)

uc + ud ≤ h , (89c)

0 ≤ uc ≤ U, 0 ≤ ud ≤ −U , (89d)

uc × ud = 0 , (89e)

l ≥ 0 , (89f)

l ≥ ct × (uc − ud − w)+ . (89g)

In this new formulation, we introduce three non negative control variables l, uc, ud.
The first non negative one l is used to linearize the objective by adding the con-
straint (89g). This is a classical trick. The other two (uc, ud) are used to replace the
positive and negative parts on controls of the original problem but require to intro-
duce the nonlinear (binary) constraint (89e). We show hereby that we can remove
this binary constraint (89e).

Let (l, uc, ud) be an admissible solution to Vt(b, h, w) without the binary constraint
such that uc × ud > 0. We distinguish two cases.

uc ≤ ud We introduce a new solution (l′, u′c, u
′
d) such that u′c = 0 and u′d = ud − uc

with l′ = l ≥ ct × (u′c − u′d − w)+ = (uc − ud − w)+. This solution satisfies the
binary constraint u′c × u′d = 0. And this solution is admissible as

0 = u′c ≤ U, 0 ≤ u′d ≤ ud ≤ −U ,

u′c + u′d = ud − uc ≤ ud + uc ≤ h ,

and as ρc ≤ 1 and ρd ≤ 1 ,

B − b ≥ 0 ≥ ρcu
′
c − ρ−1

d u′d = ρ−1
d uc − ρ−1

d ud ≥ ρcuc − ρ−1
d ud ≥ B − b .

These inequalities plus the fact that V ]
t+1 is non-increasing makes it possible to

say that (l′, u′c, u
′
d) is admissible and achieves the same cost.

uc > ud We introduce a new solution (l′, u′c, u
′
d) such that u′c = min(uc−ud, ρ−c 1(B−b))

and u′d = 0 with l′ ≥ ct× (u′c−u′d−w)+ ≤ (uc−ud−w)+. So at optimality we
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have l ≤ (uc−ud−w)+. This solution satisfies the binary constraint u′c×u′d = 0.
And this solution is admissible as

0 ≤ u′c ≤ ucU, 0 = u′d ≤ −U ,

u′c + u′d = uc − ud ≤ uc + ud ≤ h ,

B − b ≥ ρcu
′
c − ρ−1

d u′d ≥ 0 ≥ B − b .

Moreover we have

b+ ρcu
′
c = b+ ρcuc − ρcud ≥ b+ ρcuc − ρ−1

d ud ,

or

b+ ρcuc = B ≥ b+ ρcuc − ρ−1
d ud ,

so as V ]
t+1 is non increasing we have an admissible solution that achieves a

better cost.

We conclude that, from any admissible solution without the binary constraint, we
can build an admissible solution satisfying the binary constraint and achieving a
lower cost. We prove recursively that this cost is strictly lower if ρc < 1 and ρd < 1.
Hence, we can remove the binary constraint. The function Vt is therefore the value
of a linear program where constraints are linear in the parameters b, h, w. Due to
the linearity of the expectation, we conclude that B is a linear Bellman operator. �

Remark 5.11. In the battery renewal problem, we show that the intraday problems
are also non-increasing in the capacity cd because a lower capacity constrains the
problem further without changing the objective. We prove by backward induction
that the daily value functions are decreasing because in the targets decomposition the
instantaneous cost is decreasing and the value function as well. Moreover the problem
does not have any constraint. ♦
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