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Abstract

Nonlinear flexural vibrations of slender beams holding both an Acoustic Black Hole termi-
nation and a contact non-linearity are numerically studied. The Acoustic Black Hole (ABH)
effect is a passive vibration mitigation technique, which has shown attractive properties above
a given cut-on frequency. In this contribution, a vibro-impact acoustic black hole (VI-ABH)
is introduced, the contact nonlinearity being used as a mean to transfer energy from low to
high frequencies. A numerical model of a VI-ABH is derived from an Euler-Bernoulli beam.
The contact law is handled with a penalization approach, the visco-elastic layer with a Ross-
Kerwin-Ungard model and the problem is solved with a modal approach combined with an
energy-conserving time integration scheme. Numerical results show that the VI-ABH brings
about important modifications, and changes the nature of more traditional black holes, by
redistributing all the vibrational energy. It can lead to a strong decrease of the resonance
magnitude at low frequencies. Under steady state noise excitation, parametric studies are
realised in the cases of a single contact, a grid of contacts and bilateral contacts layouts, in
order to find some optimal designs. Transient dynamics is also studied through the analysis
of displacement signal envelope and energy decay time. All the numerical results constantly
show that the combination the ABH effect and an energy transfer provided by contact
nonlinearity leads to very attractive mitigation template including low frequencies.

Keywords:
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1. Introduction

Effective reduction of unwanted vibrations for mechanical structures such as beams and
plates represents an important concern in various industrial applications. Classical methods

∗Corresponding author.
Email address: lihaiqin1992@yahoo.com (Haiqin Li)

Preprint submitted to Journal of Sound and Vibration April 1, 2019



for passive vibration damping generally consist in the use of heavy damping layer [1] or tuned
mass dampers [2–4]. These methods have been widely studied and proved to be efficient,
but their implementation also result in a strong added mass which are detrimental in many
fields from transportation industry to aerospace engineering. Therefore, the development
of vibration mitigation techniques without added mass is clearly of interest.

The Acoustic Black Hole (ABH) effect is a passive technique for mitigating vibrations
based on the propagation properties of flexural waves in thin structures of variable thickness.
Its usual implementation for a beam end consists in smoothly decreasing the thickness by
following a power-law profile [5], and coating the thin zone with a viscoelastic layer [6]. The
local inhomogeneity of complex stiffness leads to a strong vibration field trapping in the
tapered area and induces a particularly effective mitigation of the vibration energy above a
threshold frequency that depends on the ABH relative size as compared to the wavelength.
As a result, excluding low frequencies, the reflection coefficient of the beam end is very small
and the beam displays a non resonant response, as if being of infinite extension.

Theoretical and numerical works have been realised to model the reflection coefficient
of ABH beam termination [7, 8], to study the increase of modal damping ratios and modal
overlap factor [9], and to optimize the design of ABH structures and its damping layer [10–
13], including new shapes of ABH such as spiral [14] or distributions of ABHs embedded
in plate-like structures [15]. Other studies consider the ABH effect as a mean for energy
harvesting [16]. Experimental evidence of ABH effect using a variety of beam-like and plate-
like structures are also numerous [10, 17–21]. All these studies have confirmed the high
efficiency of ABH for vibration damping. However, a known and constant drawback of
any implementation is that ABH are generally inefficient in the low-frequency range [9, 15].
As a rigorous explanation, a cut-on frequency exists, below which the ABH may lose its
effectiveness [22]. Although the cut-on frequency may somehow be reduced by modifying the
characteristic parameters of an ABH, it is still unfortunately unavoidable in the traditional
linear framework of ABH design.

To improve its overall efficiency in mitigating vibrations, the ABH effect should be advan-
tageously associated with another effect able to address low frequencies. The idea of using
a nonlinear mechanism to transfer energy from low frequencies - where the black hole is
ineffective - to high frequencies - where the black hole is very efficient, has emerged recently.
Geometric nonlinearity as a mean to realize this transfer has been successfully studied in a
previous work [23]. However, the time scale of this mechanism is large as compared to typical
periods of the targeted low frequency waves, so that the expected gains remain limited and
cannot be obtained immediately.

The aim of this work is to use a vibro-impact as nonlinear mechanism to rapidly transfer
energy to the high frequency range, in order to improve the efficacy of acoustic black holes.
More recently, vibro-impacts have been used in a number of studies concerned with the
concept of Nonlinear Energy Sink (NES), defined as nonlinear vibration absorber having no
linear restoring force. As shown e.g. in [24–26], an NES is able to transfer energy in an
irreversible fashion from a primary structure to the attached device. In order to realize the
needed essential nonlinearity (i.e. without linear term), the idea of using vibro-impacts has
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been used theoretically and experimentally [27–31]. However, using contact nonlinearity as
a mean to transfer energy and damp vibrations of structures with an added acoustic black
hole effect, has never been reported, to the authors’ knowledge. As it will be underlined in
the course of the present paper, the vibro-impact brings about strong modification of the
nature of the ABH itself, transforming a linear mechanism to a strongly nonlinear one, and
redistributing energy among all frequencies. As a very important change in the damping
mechanism itself is proposed, it has been decided to name this new device as VI-ABH for
vibro-impact acoustic black hole.

The article presents a numerical investigation of the nonlinear behaviour of such a VI-
ABH. It is composed of two main sections. In Section 2, a numerical model is detailed. A
special attention is paid to taking into account the variable thickness, to the modeling of the
added viscoelastic layer (section 2.2) and the contact points (section 2.3). The numerical
scheme for the time integration is detailed in sections 2.4 and 2.5. In a second part, the
numerical results are presented and discussed. The beam design is reported in section 3.1,
then a convergence study is highlighted (section 3.2). Section 3.3 considers the case of a
single contact points, while multiple contacts (section 3.4) layouts are further investigated.
Finally, the behaviour of the VI-ABH in transient dynamics is investigated in section 3.6.

2. Numerical modeling of a vibro-impact acoustic black hole

In this section a model of vibro-impact acoustic black hole (VI-ABH) is developed. A
VI-ABH consists in a classical ABH in interaction with a rigid barrier via several contact
points, as shown in Fig. 1. The dynamics of a beam with variable thickness is first recalled.
The modeling of damping induced by the viscoelastic layer and the collision mechanism are
then detailed. Finally the numerical method combining a modal approach computed with a
finite-difference scheme, and an energy-conserving scheme for time integration, is explained.

2.1. Statement of the problem

The flexural vibrations of an ABH beam of length L and width b in contact with a discrete
set of points is considered. Fig. 1 shows the layout of the system, characterized by the black
hole profile and its wedge power-law for x ∈ [xabh, L], and a number of Nc contact points
located below the beam, at x = xci for i = 1, ...Nc, where the ABH can impact during its
vibration. The location of the contact points can be controlled horizontally and vertically
by adjusting the gap hc. The thickness hb(x) of the beam depends on the spatial variable x
only, following the power-law

hb(x) =


h0, for x ∈ [0, xabh]

h0

(
x− xend
xabh − xend

)2

, for x ∈ [xabh, L]
(1)

For such an ABH beam, the area of the cross-section A(x) and the inertia moment I(x)
respectively reads A(x) = bhb(x) and I(x) = bhb(x)3/12.
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Fig. 1. General layout a VI-ABH composed of an ABH beam in contact with a barrier having a set of discrete
contact points. L is the total length of the beam, h0, hb(x) and ht are the thickness of the beam respectively
in its uniform area, in the ABH profile, and in the truncated termination, while hl is the thickness of the
damping layer.

Let u(x, t) denote the transverse displacement of the beam. In the framework of Euler-
Bernoulli theory for flexural vibration of beams, the equation governing the transverse vi-
brations writes [32, 33]

ρ(x)A(x)
∂2u

∂t2
+

∂2

∂x2

(
D(x)

∂2u

∂x2

)
= p(x, t) + f(x, t). (2)

where D(x) = E(x)I(x) is the bending stiffness, p(x, t) represents the external excitation
force located at x = xF , and f(x, t) stands for the contact force exerted by the barrier
on the beam when the contact is activated. In a usual configuration of an ABH beam
as shown in Fig. 1, a viscoelastic layer is added in order to improve locally the damping
capacity of the device. Consequently the local mass density ρ(x) and bending stiffness D(x)
are space dependent, they will be subsequently modified in order to take into account the
added viscoelastic layer, see Section 2.2.

Finally the beam is assumed to be clamped in x = 0 and free in x = L so that the
boundary conditions read:

∀ t, u(0, t) = 0,
∂u

∂x

∣∣∣∣
x=0,t

=0,
∂2u

∂x2

∣∣∣∣
x=L,t

= 0,
∂3u

∂x3

∣∣∣∣
x=L,t

= 0. (3)

The next subsection is devoted to the losses modeling.

2.2. Modeling of added viscoelastic layer: formulation in the frequency domain

The damping properties of ABH are usually obtained by adding a viscoelastic layer
of thickness hl on the wedge profile, as shown in Fig. 1. The effect of this viscoelastic
layer can be taken into consideration by using the Ross-Ungar-Kerwin model [1, 23], which
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proposes an expression of the complex bending stiffnessD∗(x), where ()∗ refers to the complex
representation of the term. For an added viscoelastic layer located in the interval [xabh, L],
the complex bending stiffness D∗(x) writes

D∗ (x) =



EbIb(x) (1 + jηb) , ∀x ∈ [0, xabh] ,

EbIb(x)

[
(1 + jηb) +

El
Eb

(
hl

hb(x)

)3

(1 + jηl) +

3
(

1 + hl
hb(x)

)2
Elhl

Ebhb(x)
(1− ηbηl + j (ηb + ηl))

1 + Elhl
Ebhb(x)

(1 + jηl)

 , ∀x ∈ [xabh, L] ,

(4)

where j is the imaginary unit, Eb, Ib, and ηb are the bending stiffness, the Young modulus,
the moment of inertia and the loss factor of the beam alone, while El and ηl corresponds to
the Young modulus and the loss factor of the viscoelastic layer. The real bending stiffness is
simply obtained by taking the real part of the previous expression as D (x) = Re (D∗ (x)).

The added mass due to the presence of the damping layer is considered via the following
equivalent mass density,

ρ (x) =


ρb, ∀x ∈ [0, xabh] ,

ρbhb(x) + ρlhl
hb(x) + hl

, ∀x ∈ [xabh, L] ,
(5)

where ρb and ρl stand respectively for the mass densities of the ABH beam and the damping
layer. The total thickness of the beam is also modified by the presence of the layer and reads

h (x) =

{
hb(x), ∀x ∈ [0, xabh],

hb(x) + hl, ∀x ∈ [xabh, L] .
(6)

2.3. Contact force modeling

The collisions between the barrier and the beam are assumed to be pointwise at the
abscissas xci, i = 1, ..., Nc of the contact points. The contact force f(x, t) must describe
the strong, local, nonsmooth repelling force acting on the beam each time the gap between
the vertical position of the beam and a contact point vanishes. In this contribution, a
penalty approach is adopted to describe . Let g(x) represents the vertical location of the
contact points and η(x, t) = g(x)−u(x, t) the distance between the beam and the unilateral
constraint imposed by the contact points. Following [34–36], a repelling force of Hertz-like
type can describe the contact as

f(x, t) = Kc [η(x, t)]α+ , (7)

where [η]+ = 1
2

(η + |η|). The notation [η]+ is used to represent the positive part of η. The
contact force vanishes when η < 0 and takes the power-law form as soon as an interpenetra-
tion occurs. The description of the contact force depends on a stiffness parameter Kc ≥ 0
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in N ·m−α and an exponent α > 1, which are functions of the elastic properties and geome-
tries of the contacting bodies. These two parameters can be selected either from physical
measurements, see e.g. [37], or by using ad-hoc values (as in the penalty approach employed
here). In our case, the interpenetration must remain small, leading to very large values of
Kc, usually in the range of 107 N ·m−α to 1013 N ·m−α. The value of the exponent α shall
be taken as 1.5 if one considers a Hertz collision between two spheres, however other choices
are also admitted, see e.g. [35, 36, 38, 39].

One property of the contact force (7) is that it derives from a potential ψ(x, t):

f(x, t) =
∂ψ

∂η
, with ψ(x, t) =

Kc

α + 1
[η]α+1

+ . (8)

As shown in [34–36], this property is useful to write the energy of the system and derive an
energy-conserving scheme at the discrete level.

Eqs. (7) and (8) describe a collision without any dissipation of energy either due to
friction or damping at the contact points. The model can be enhanced by adding a local
damping term in the contact force, following Hunt and Crossley [35, 40]. However in this
paper, it is assumed that contact is without dissipation.

2.4. Modal approach

A modal approach is used to solve for the dynamics of the VI-ABH in time. In this
Section, the computation of the eigenproblem, which needs special care due to the impor-
tant change in thickness, is first introduced. Modal damping ratios are then obtained from
the complex eigenfrequencies in section 2.4.2. The modal expansion is finally derived in
Section 2.4.3.

2.4.1. Real eigenmodes of the conservative ABH beam

At first the eigenmodes of the beam without losses are computed, so that Eq. (2) is
considered, without the right-hand side term : f = p = 0. For this computation, the real
part of the bending stiffness D, the modified density ρ in Eq. (5) and the thickness h in
Eq. (6) are used.

In order to cope with the large variations of the thickness along the ABH edge, a finite
difference method with a non-uniform grid spacing is introduced, following [9, 23, 41]. A
coordinate change is introduced so as to transform the physical mesh grid into a transformed
one where a modified equation of motion is solved [41]. Practically, a coordinate change is
introduced that maps the physical coordinate x ∈ [0, L] onto a uniform mesh grid λ ∈ [0, 1].
The one-to-one map between λ and x is selected according to the variations of the flexural
wavelength and reads :

λ(x) =
1

X̄

∫ x

0

1√
h (θ)

dθ , with X̄ =

∫ L

0

1√
h (θ)

dθ . (9)

The partial derivatives are then rewritten following

∂u

∂x
=
∂u

∂λ

∂λ

∂x
=
h−1/2

X̄

∂u

∂λ
, (10)
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in order to obtain the transformed equation to be solved on the λ domain. The uniform
grid spacing λl is then simply introduced as λl = l∆λ, for l = 1, ..., Nλ, with ∆λ = 1/Nλ the
spatial step. All the functional fields appearing in the linearized Eq. (2) are computed on
these grid points, with for example Dl = D(λl), ρl = ρ(λl), ... The transverse displacement
is written as u(x, t) = ϕ(x) ejωt for the eigenvalue analysis, with ϕ(x) the unknown, which is
discretized accordingly, with ϕl = ϕ(λl), and ω the radian eigenfrequency. The second-order
derivative appearing in Eq. (2) is approximated with the following discrete operation:

∂2u

∂x2
≈ h

−1/2
l

X̄2
δλ+

((
µλ−h

−1/2
l

)
δλ−ul

)
, (11)

where the discrete operators for space δλ+ and δλ− and for averaging µλ− are given in
Appendix. These discrete operators lead to a positive-definite definition of the discrete
energies of the system, hence ensuring a good convergence and stability of the method [41].

Considering (11), the eigenfrequencies and eigenvectors are found by solving numerically
the following equation:

−ρlAlω2ϕl +
h
−1/2
l

X̄4
δλ+

((
µλ−h

−1/2
l

)
δλ−

(
Dlh

−1/2
l δλ+

((
µλ−h

−1/2
l

)
δλ−ϕl

)))
= 0. (12)

The boundary conditions are also expressed at the discrete level following the same scheme.
Their complete expressions are given in Appendix. The numerical solution of Eq. (12)
together with the boundary conditions give the undamped eigenmodes of the system, denoted
as ϕk(x) for the eigenmode shape and ωk for the radian eigenfrequency, with k = 1, ..., Nm,
where Nm is the number of modes considered.

2.4.2. Complex eigenvalues

A second computation is realized for taking losses into account. More specifically, Eq. (12)
with the associated boundary conditions is solved by now considering the complex bending
stiffness D∗ introduced in Eq. (4). As a result of this computation, complex eigenfrequencies
ω?k are retrieved. The relationship between the new complex eigenfrequencies and those
computed in the conservative case ωk is known and reads

jω?k = ωk

(
−ξk ± j

√
1− ξ2

k

)
, (13)

where ξk is the modal damping ratio. Hence from the computation with damping included,
the real part of (13) is used in order to identify the modal damping ratios ξk that will serve
as input to the modal equation.

2.4.3. Modal expansion

Using the standard modal expansion method, the unknown beam displacement is written
as

u(x, t) =
Nm∑
k=1

ϕk(x)qk(t), (14)
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where qk(t) is the modal coordinate associated to mode ϕk(x), andNm is the number of modes
used for the expansion. For any two modes ϕk(x) and ϕp(x), the eigenshape functions are
orthogonal and have been normalized with respect to the mass,∫ L

0

ρ (x)A (x)ϕk (x)ϕp (x)dx = δkp, (15)

with δkp the Kronecker delta function.
Inserting (14) in the complete equations of motion (2), multiplying by another test func-

tion ϕp(x), integrating over the size of the domain and using the orthonormality properties
of the eigenmodes, one obtains :

q̈k + 2ξkωkq̇k + ω2
kqk = pk + fk (16)

where q̇k and q̈k are the first and second derivative of the modal amplitude with respect to
time, ωk and ξk represent respectively the eigenfrequency and modal damping ratio computed
as explained just before, pk and fk stand respectively for the modal projection of the external
excitation and contact force to each mode such that pk =

∫ L
0
p (x, t)ϕk (x)dx and fk =∫ L

0
f (x, t)ϕk (x)dx.
The last step of the numerical model consists in solving the problem in the time domain.

A special attention is paid to take into account the non-smooth contact law, this is the
subject of the next Section.

2.5. Time integration

The temporal scheme used for the numerical integration has been introduced in [36] for
string vibrations. It is based on earlier works using other space discretizations and not
referring to a modal approach [35, 38, 41]. An adaptation to the case of VI-ABH beam is
here proposed. The interested reader is referred to [36] for a complete presentation of the
scheme and its properties. distinctive feature of the method is to rely on a modal approach
in order to treat properly the losses as individual modal loss factors that can be tuned at will.
Another advantage of using the modal expansion is that an exact scheme for computing the
solution when no contact is at hand can be applied. Finally, the contact force is computed
in space domain, leading to an overall conservative scheme with unconditional stability.

The contact force occurs only on the set of discrete contact points, the space locations of
which are known. One can take advantage of this feature in order to compute the collision
term only at these points. It will result in important gain savings in computation [42]. Let
us introduce X = [xF , xc1, xc2, ... , xcNc ] the vector consisting of all the discrete contact
points xci plus the point location of the excitation force xF . Let un = u (X, n∆t) be an
approximation of the transverse displacement selected at position X for time tn = n∆t.
The relationship with the modal expansion (14) allows one to write un = Sqn, where qn =
[q1 (n∆t) , ..., qNm (n∆t)]T the vector of modal amplitudes and S is a rectangular matrix with
entries Sij = ϕj (Xi) , ∀ (i, j) ∈ {1, ..., Nc + 1} × {1, ..., Nm}.

8



The update for the displacement vector un+1 is directly computed from previous modal
displacements qn, qn−1. Using un+1 = Sqn+1, we have :

un+1 = SCqn − SC̃qn−1 + ∆t2SST (pn + fn) . (17)

In this update equation, pn and fn are respectively the vectors of external and contact forces
computed at time n. C and C̃ are two diagonal matrices with entries :

Ckk = e−ωkξk∆t
(
eωk

√
ξ2k−1∆t + e−ωk

√
ξ2k−1∆t

)
, C̃kk=e

−2ωkξk∆t. (18)

Note that this particular choice is related to the exact scheme for the free flight phases of
the vibration where no contact is involved [36, 41]. Finally the contact force fn is computed
via

fn =
ψ(ηn+1)− ψ(ηn−1)

ηn+1 − ηn−1
, (19)

this choice being related to the derivation of a conservative scheme, as shown in [35, 36].
Note finally that the scheme is of order two and implicit; a Newton-Raphson procedure is
needed to compute the update because of the nonlinear character of the regularized restoring
force describing the contact.

3. Numerical Results

In this Section, a typical ABH beam is selected and analysed firstly without collision. The
convergence of the numerical method with respect to discretization parameters is outlined.
Then the effect of the vibro-impact to enhance the damping efficiency is investigated.

3.1. Modal parameters and mobilities of a typical ABH beam

A typical ABH beam is considered: it is made of aluminum and its profile is given by
Eq. (6). All geometrical and material parameters are listed in Table 1. The overall resulting
design is close to the one of experimental beam demonstrators of previous works [9]. Note
that the uniform beam with constant thickness defined in the first line of Table 1 will be used
as a reference case. From this design and following [22], the cut-on frequency of the ABH
effect is found to be fc = 374 Hz, which corresponds well to Fig. 2 in which the first peaks
above fc start to be attenuated, the other ones above 500 Hz being pretty much damped.

The solutions of the eigenvalue problem are computed with a non-uniform grid such that
Nλ = 2000. Fig. 2 shows that as expected, the modal damping ratios of the uniform reference
beam (blue circles) are constant with frequency while those of the ABH beam (red stars)
are approximately 10 times larger above the cut-on frequency due to the ABH effect, which
leads to a typical increase in amplitudes and shrinkage of wavelengths of the modal shapes
in the tapered area. Fig. 3 shows 6 eigenmode shapes computed. One can observe that for
the higher modes (e.g. modes 15 and 30 shown in Fig. 3(e-f)), the vibration amplitude is
especially important in the ABH region. On the other hand, ξk remains small for the first
four modes due to the weak efficiency of the ABH effect at low frequency, which results only
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Beam parameters
L(m) h0(mm) b(mm) Eb(pa) ρb(kg ·m3) ηb(%)
0.8 4 20 70G 2700 0.2
ABH termination parameters
xabh(m) xend(m) ht(µm)
0.71 0.80685 20
Visco-elastic layer at [xabh, L]
hl(µm) El(Pa) ρl(kg ·m3) ηl(%)
400 10M 1000 160

Tab. 1: Geometrical and material parameters selected for the studied ABH beam.

in a slight modification of the modal shapes. These results are fully in line with simulations of
previous works [9]. Note that three contact points locations are also included in Fig. 3(a-b),
this will be discussed later.
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Fig. 2. Modal damping ratio ξk versus eigenfrequency ωk for the uniform beam (blue circles) and ABH beam
(red stars), following parameters given in Table 1.

The response to a [0, 5000] Hz white noise excitation applied in xF is then simulated.
The simulation is 4s long with sampling frequency Fs = 6× 44100 Hz. A Fourier transform
is applied to both the velocity and driving force that are recorded at xF . Fig. 4 shows the
input mobility defined as the ratio between the velocity and the input force spectra at xF .
As expected, the excellent damping properties of the ABH above the cut-on frequency leads
to strongly attenuate the resonance peaks of more than 20dB, while the first low frequencies
resonances remain sharp with large amplitude. The goal of the next Sections is to study the
possible enhancement of low-frequency efficiency of the ABH effect when combined with an
added vibro-impact.

3.2. Convergence study

This section aims at correctly setting the numerical parameters in order to obtain con-
verged results in the next sections.
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Fig. 3. Comparison of a few mode shapes between the uniform beam (blue line) and the ABH beam (red
line), following parameters given in Table 1. Also included in panels (a)-(b): location of three contact points,
at xc=35 cm, 48 cm and 72 cm.
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Fig. 4. Point mobility of the uniform beam (blue line), compared to that of an ABH beam (red line). Beam
parameters are given in Table 1. Excitation and measurement points are both located at xF = 24 cm, with
a large band white noise excitation on [0, 5000] Hz, with amplitude 1 N. Simulation parameters are: grid
number Nλ=2000, Fs = 6× 44100 Hz and truncated mode number Nm=50.

First, the number of grid points, only used to calculate the eigenmodes, is set to Nλ =
2000. The first 100 modes are converged with a maximal error of 0.2% on the modal fre-
quencies ωk and 5% on the modal damping factors ξk, when compared to a reference case
calculated with Nλ = 3000. The computing time for this operation is negligible as the result
is obtained immediately on a standard computer. Consequently, Nλ = 2000 is selected for
all following simulations.

Concerning the number of modes Nm, one has to ensure that Nm is large enough so as
to represent properly the small wavelength dynamics produced by the contacts. As shown
in Table 2, the eigenfrequency of mode 75 is at 51.1kHz and mode 100 at 90.9kHz. As the
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computational time for simulations with 100 modes is not too important, Nm = 100 has
been selected for all the simulations, ensuring for a correct representation.

Mode n 1 2 3 4 5 6 7
fn(Hz) 5.9 36.7 101.4 196.2 278.5 336.5 478.9
Mode n 8 9 10 25 50 75 100
fn(Hz) 611.4 732.3 916.0 5.6k 22.6k 51.1k 90.9k

Tab. 2: Eigenfrequencies of the ABH beam

The most difficult parameter to select is the sampling frequency Fs. The contact dynamics
brings about strong nonlinearities and the numerical problems for contact dynamics are
known to be stiff, so that very large Fs values are generally used for accurate simulations of
vibro-impact problems [43]. In order to properly select Fs, a detailed convergence study is
then conducted.

The case study is that of the ABH beam with parameters given in Table 1, excited
with a band-limited white noise in the range [0, 1000] Hz, the excitation point being located
in the uniform region of the beam, at xF = 24 cm. The amplitude of the band-limited
noise excitation is set to 1 N. As the impact dynamics is critical for determining the correct
sampling frequency Fs to be retained, two cases with respectively one and three contact
points are selected, with a gap hc equal to zero in each case, which means that the contact
points are flush with the lower part of the beam. The single contact point is located at xc1
= 72 cm, i.e. one centimeter after the beginning of the wedge profile. The three contact
points are located at xc1 = 70 cm, xc2 = 72 cm and xc3 = 74 cm. These two cases have
been selected as giving a representative dynamics allowing one to select properly a correct
sampling frequency Fs.

To evaluate the convergence, the L2 relative error between a given tested vector Vc and
a reference vector Vref is defined as

R =
‖Vref − Vc‖
‖Vref‖

, (20)

with ‖·‖ the L2 norm.
First, the convergence of time signals is shown in Fig. 5(a). The simulated signals are

0.5 s long, involving around 50 impacts, which is considered as sufficiently large to represent
correctly the full dynamics of the system. The vectors in (20) are thus taken as the output
displacements along these 0.5 s, either at the excitation point xF , or at the contact point
xc1. The behaviour of the convergence curves shown in Fig. 5(a) is in the line of previous
studies, see e.g. [36]. One can observe that the convergence is almost independent from
the ouput point, meaning that the rich spectral content generated by the contact is spatially
distributed uniformly along the beam. The tested sampling frequencies Fs range from 10 kHz
to 211 × 10 kHz, i.e. approximately 20 MHz, so that Vref . For a single contact, a plateau
followed by a linear convergence with a slope around 2 (the order of the scheme) is observed
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and leads to a residual error of about 10−3 with Fs = 210 × 10 kHz=10.24 MHz. For three
contacts layout, the convergence is harder to achieve and an error of about 7 × 10−2 is
obtained with Fs = 10.24 MHz.
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Fig. 5. Convergence study as function of the sampling frequency Fs. Relative L2 error following Eq. (20) on
(a) the time signal, (b) the frequency spectrum. Different cases are : 1 contact point located at xc1 = 72 cm,
ouput measurement as the displacement at either the excitation point xF (blue circle) or the contact point
xc1 (blue star); 3 contact points located at xc = [70, 72, 74] cm, ouput measurement as the displacement
at the excitation point (red circle) or the first contact point (red star). Stiff contact with α = 1.5, Kc =
1011 N ·m−1.5, and no gap between the and the beam : hc=0. Temporal convergence with signals computed
in the first 0.5 seconds of simulation for the beam excited with a [0, 1000] Hz band limited noise. Spectral
convergence with spectrum computed from 3 seconds of simulations and up to 20 kHz.

As already noticed by several investigations on contact dynamics [36, 43, 44], the con-
vergence of time signals is especially difficult to achieve rigorously, due to inevitable residual
phase shifts. Consequently the error on time signals may not be the best indicator to en-
sure convergence. Furthermore, the key point of this work is to study the energy transfer
from low to high frequencies, due to contact dynamics. Hence, the convergence of Fourier
spectrum may be more representative of the accuracy of the simulated results. From this,
the convergence study now focuses on the Fourier spectrum: the vectors Vc, Vref in Eq. (20)
corresponds to the Fourier spectrum of 3.3s time signals, estimated over the frequency range
[0-20] kHz. This means that the following convergence study only concerns the audible range,
ultrasonic frequencies being of no interest here. Fig. 5(b) shows the results obtained with
the reference case simulated with Fs = 29 × 10 kHz=5.12 MHz. A decrease of the error is
clearly observed, showing a uniform convergence with a slope near the order of the scheme.
With the last sampling frequency tested Fs = 2.56 MHz, the error is close to 10−4, which
means that the frequency content up to 20 kHz is very accurately simulated.

In conclusion of this convergence study, all forthcoming simulations are done with Nλ =
2000, Nm = 100 and Fs = 2.56 MHz.
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3.3. Vibro-impacts with a single contact

3.3.1. Description

To reveal the effect of the contact nonlinearity and the potential improvement it can
bring to the low-frequency ABH performance, the dynamical behaviour of a VI-ABH with a
single contact point is first analysed. For this first investigation, the contact point is located
at xc1 = 35cm, i.e. in the region of constant thickness, far from the ABH wedge profile (see
Fig. 3(a-b)). Note that at present this location is selected arbitrarily, the search for a location
giving the best gains in efficacy will be investigated after. The constants of the contact force
have been selected as α = 1.5 and Kc = 1011 N · m−1.5, corresponding to a stiff contact
between the two bodies. Four different configurations are compared in order to assess the
different physical effects: case 1 corresponds to the reference beam with uniform thickness
(first row of Table 1), case 2 to the ABH beam (second and third rows of Table 1), case 3 is
the uniform beam with the single contact point as defined, and finally case 4 corresponds to
the VI-ABH.

3.3.2. Response to a broadband excitation ([0, 5000] Hz)

Fig. 6 shows the response of the beam to a wide-band white noise excitation in the range
[0, 5000] Hz, and an amplitude of 1 N. The location of the external force on the beam is
at xF = 0.3L = 24cm, and this value will remain the same in all subsequent simulations
shown in the article. Fig. 6 shows the spectrum of the velocity response V (ω) divided by
the spectrum of the excitation force F (ω), both at the excitation point. This quantity
corresponds to the driving mobility for a classical linear system, even though this quantity
has a well-defined sense in the linear case , it is used in this first illustration in order to see
the effect brought by the nonlinearity as compared to the usual linear case without contact.
The Fourier spectra are computed from a simulation lasting 5 seconds.

The two curves corresponding to cases 1 and 2 are the same as those already reported in
Fig. 4. The effect of the contact nonlinearity is to bring about a very rich, high-frequency
content to the response’s spectrum as displayed by cases 3 and 4. This is a very important
modification in the dynamics of the ABH and the question is to quantify if this drastic change
brings about an improvement to the damping capacity of the device. In Fig. 6(a), one can
clearly see the effect of the ABH termination by comparing cases 3 and 4: the generation of
the high-frequency content is much more damped in case 4, showing that the key mechanism
consisting of transferring the low-frequency content to high frequencies by the nonlinearity,
where the damping properties are much more efficient due to ABH effect, is at hand. The
effect may be better appreciated by looking at the zoom on the low-frequency part shown
in Fig. 6(b). One can see that the contact nonlinearity replaces a smooth Fourier content
with sharp resonances to a blurred and nonsmooth spectrum, which is generally lower in
amplitude, especially in the vicinity of the eigenfrequencies. This means that the contact
nonlinearity somehow breaks the sharp resonances where most of the energy is concentrated,
in favour of a broadband Fourier spectrum with smaller amplitudes.
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Fig. 6. (a) Driving mobility for the uniform (reference) beam, case 1; the ABH beam, case 2; the uniform
beam plus single contact, case 3; and the VI-ABH with single contact, case 4. Beams excited with a
[0, 5000] Hz band limited noise, spectra calculated from the response at exciting point during time interval
[1 5]s. (b) Zoom in the low frequency part. α=1.5, Kc = 1011 N ·m−1.5, no gap hc=0.

3.3.3. Response to a band-limited excitation ([0, 500] Hz)

In order to quantify more precisely the improvement in the low-frequency part, the same
simulation is now realised with a white noise excitation with a band limited to [0, 500] Hz.
Fig. 7 shows the velocity spectrum of the response at the excitation point for the same four
cases. Note that from now on, only the spectrum of the output velocity is considered in
order to quantify the different dynamical behaviours.

Fig. 7(a) shows that for the reference and ABH beam, case 1 or 2, the behaviour is linear;
energy is only present in the excitation band as expected. As the contact is present, cases
3 and 4, a strong nonlinearity is at hand resulting in a rapid and efficient transfer to high
frequencies. Comparing case 3 and 4, once again the ABH effect is clearly visible with a
more important decrease in the amplitudes of the high frequency part, showing that the two
effects searched for an improvement are playing their roles. The energy transfer allows to
reduce the vibrational amplitudes in the low-frequency part of the spectrum, before 500 Hz,
as confirmed by the zooms presented in Figs. 7(b,c,d). The effect underlined in Fig. 6 is
evidenced again, as the sharp resonance peaks obtained with linear cases 1 and 2 are replaced
by a bumpy, irregular spectrum without outstanding peaks. The decrease of the resonance
peaks is particularly impressive around 35 Hz, see Fig. 7(c), i.e. in the vicinity of the second
eigenfrequency, showing that the desired effect works perfectly well there. This fact can be
explained by the location of the contact point for this study, at xc1 = 35 cm, corresponding
to a local maximum of mode 2 (see Fig. 3(a)). On the other hand, this location is close to
a node of mode 3 (see Fig. 3(b)), and one can observe in Fig. 7(d) that the effect is not so
important in the band [85, 105] Hz. This point will be further discussed when considering
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Fig. 7. Velocity spectrum for a low frequency [0, 500] Hz band-limited noise excitation, amplitude 1 N.
Comparisons between four different cases, spectra computed from 4 seconds steady state time simulation.
(a) global view on the band [0, 2500] Hz, (b,c,d) : zooms on different parts of the spectra.

variations of the position of the contact point in order to find a better location.

3.3.4. Efficiency of the energy transfer

In order to offer a more quantitative view of the improvement brought by the nonlinearity,
an indicator is introduced that compares the power spectrum in different frequency bands.
More precisely, the indicator I is defined as

I = 10log10

( ∫ fend

f0
a2
c df∫ fend

f0
a2
ref df

)
, (21)

where a denotes the power spectrum of velocity at excitation point, the subscript c or ref
referring respectively to the current case and the reference case (i.e. the uniform beam
corresponding to case 1). This energy performance indicator is used to assess the gains
obtained in vibration reduction in the range [f0, fend]. More precisely, three indicators are
introduced. The first one is I[0, fe], where fe = 500 Hz corresponds to the cut-on frequency
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found in Fig. 4. The two other indicators are I[fe, 5fe], which is concerned with the high-
frequency part of the spectrum; and I[0, 5fe] which quantifies the overall performance.
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Fig. 8. Indicators I[0, 5fe], I[0, fe] and I[fe, 5fe] calculated from the responses to (a) full band noise excitation
[0, 5000] Hz, (b) low frequency noise excitation restricted to the band [0, 500] Hz, amplitude 1 N. Case 1:
uniform beam. Case 2 : ABH beam. Case 3 : uniform beam and a single contact point at xc1 = 35cm. Case
4 : VI-ABH with single contact at xc1 = 35cm. α=1.5, Kc = 1011 N ·m−1.5, no gap hc=0.

Fig. 8 shows the different values of the three indicators, for the two cases shown in
Fig. 6 and Fig. 7, where the reference used for the comparisons (aref in Eq. (21) is case 1,
the uniform beam. The consequence of this choice is that in Fig. 8, the value of case 1 is
always zero. Negative values of the indicator give a quantitative idea of the gain brought
by the different configurations tested. Fig. 8(a) refers to the white noise excitation on the
band [0, 5000] Hz. The main observation is that the two curves for I[0, 5fe] and I[0, fe] are
very close, meaning that most of the energy is effectively concentrated in the low frequency
domain of the spectrum, i.e. in the band [0, 500] Hz where the most proeminent peaks are
found. Comparing case by case, one can see that the ABH effect offers a global decay of
energy down to -4 dB. A very important reduction is obtained in the high-frequency range,
as attested by the behaviour of I[fe, 5fe] which goes rapidly down to -13 dB. Case 3, the
uniform beam with a single contact point, is very interesting as it shows that a global decay
of I[0, 5fe] down to -5 dB can be obtained only thanks to the contact nonlinearity, and without
considering any black hole effect. Here the energy transfer due to the non-smooth nonlinear
characteristic already gives good results with a very important decrease of energy in the low
frequency range (I[0, fe] is a bit lower than -6 dB). This means that the contact nonlinearity
can already be considered as an effective vibration damper since a large amount of energy is
transferred rapidly to high frequencies where the losses are naturally more important. On the
other hand, I[fe, 5fe] observes a very small decrease, but since less absolute energy is present
in the high-frequency part of the spectrum, the global gain is very important. Considering
the VI-ABH, case 4, shows that the combination of both nonlinear and damping effect is
impressive and results in a global energy decay around -9 dB, with a strong gain in low and
high frequency ranges.
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Fig. 8(b) shows the indicators’ behaviour when excited with noise excitation the band
[0, 500] Hz. Once again I[0, 5fe] and I[0, fe] have almost the same values, which means that
most of the energy is concentrated in the excitation band. On the other hand I[fe, 5fe] appears
to rise to very large values, but one must keep in mind that this is relative to very small
absolute values of the energy in the high-frequency band, consequently these important values
does not reflect an incorrect performance of the cases tested, the most important information
being the observed decrease for I[0, 5fe] for case 3 and 4. Case 2, the ABH beam, shows an
increase as compared to case 1, underlining once again the underwhelming behaviour of the
ABH in the low frequency part, under the cut-on frequency. Comparing with case 3, the
uniform beam with single contact point shows an improvement with a decrease of I[0, 5fe] down
to -6.3 dB. Of course, as also attested in Fig. 7, this is at the expense of the generation of a
high-frequency part and a strong increase of I[fe, 5fe]. This increase can be counterbalanced
by adding the black hole effect, in order to obtain both a global decrease, with I[0, 5fe] down
to -7.2 dB for case 4, and a smaller increase of I[fe, 5fe]. Optimizing the damping properties
of the visco-elastic layer or decreasing the thickness at the ABH truncation may increase
the high-frequency damping and could be used to achieve a better picture to the vibration
mitigation.

3.3.5. Influence of contact point location and gap

To conclude this section, the location of the single contact point is now varied in order to
find the location of the contact points that give the best efficacy. To complete the analysis,
the gap hc is also varied in order to understand its effect. Fig. 9 illustrates the variation
of indicators I[0, fe] and I[fe, 5fe] when modifying the location of the contact points on the
abscissa: 8 different locations are tested, the positions of which are given as inset in the
figure. For each case, three different values of the gap are tested: hc = 0 (no gap), hc = 0.2
and 0.5 mm. It is emphasized that from hereafter, we will focus on the improvement one
can bring to the ABH beam, consequently the reference case used in the calculation of
indicators, Eq. (21), is selected as the ABH beam without contact. Also, the excitation is
always band-limited to the low frequency range [0, 500] Hz.

The effect of the gap hc is generally to decrease the efficiency of the contact ABH beam,
as it could have been expected. Indeed, the behaviour of I[0, fe] clearly evidenced that the
best results are obtained with hc = 0, and increasing hc decreases the performance, as the
contact nonlinearity is less excited in the presence of a gap. Recalling that the values of
I[0, fe] and I[0, 5fe] (not shown in the figure), are almost the same, the behaviour of I[0, fe]

depending on the 8 cases tested shows that the device can be remarkable at some positions
(1, 3, 6 and 8), but unsatisfactory at other positions such as 4 or 5. The best point is case 3
with the optimal performance corresponding to a physical location on the beam where both
modes 2 and 3, which are the most important in the vibrational energy present below the
cut-on frequency, have a local maximum (see Fig. 3(a-b), with contact point corresponding
to case 3 at xc = 48 cm). Consequently their sharp resonance peaks are broken down by the
contact nonlinearity resulting in an important global gain in performance. The results for
the other locations can also be interpreted in the light of the position of nodes and maxima
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Fig. 9. Indicators I[0, fe] and I[fe, 5fe] as a function of the contact location xc1 for single contact case, and
for three different values of the gap, hc=0, hc=0.2 mm and hc=0.5 mm. The exact location of the contact
points for cases 1 to 8 are respectively: 16 cm, 35 cm, 48 cm, 56 cm, 64 cm, 72 cm, 74 cm, and 76 cm.
Excitation amplitude A = 1 N, Contact coefficients α=1.5, Kc = 107 N ·m−1.5.

of eigenmodes, showing that the knowledge of the low-frequency eigenmode shapes is crucial
in order to offer an optimal control of the energy transfer in the low-frequency part of the
spectrum.

3.4. Vibro-impacts with multiple contact points

Based on the interest shown above of associating vibro-impacts with the black hole effect,
the goal is now to investigate if the damping mitigation can be enhanced by considering a
set of contact points, instead of a single one. In parallel, the contact stiffness Kc and the
excitation amplitude A will also be varied in order to understand the effects of all parameters
so as to provide an optimized solution for the location of contact points. Following previous
conclusions, the contact points are located at the local maxima of the first modal shapes:
the first contact point is at xc1= 35 cm, corresponding to the maximum of eigenmode shape
2, xc2= 52 cm, corresponding to the maximum of eigenmode shape 3, and so on till 7 contact
points.

Tab. 3: Interpenetrations .

Kc(N ·m−1.5) 107 109 1011

Mean Value (mm) 1.75× 10−2 1.09× 10−3 4.97× 10−5

Maximum Value (mm) 6.38× 10−2 5.55× 10−3 5.91× 10−4

Fig. 10 shows the evolution of the indicators I[0, fe] and I[fe, 5fe] when increasing the
number of contact points, for three values of the contact stiffness Kc. It reveals that the
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Fig. 10. Variations of I[0, fe] and I[fe, 5fe] as the number of contact points increases, compared among three
different values of contact stiffness, Kc = 107 N ·m−1.5 (blue solid lines), Kc = 109 N ·m−1.5 (black dashed
lines) and Kc = 1011 N ·m−1.5 (red dash-dotted lines). The exact location of the contact points for cases 1
to 7 are chosen as the local vibration maxima of the eigenmodes 2 to 8. Excitation amplitude A = 1 N, no
gap hc = 0, α=1.5.

larger is Kc, the better are the mitigation performances. This is clearly related to the fact
that the stiffer the contact is, the more high frequencies are created at each contact and
thus the energy transfer is improved. In order to give physical insight to the values of Kc

used in the simulations, the mean and maximal values of the interpenetrations are given in
Table 3, revealing that Kc = 1011 N ·m−1.5 is very stiff with a mean interpenetration between
the two contacting bodies on the order of 10−5 mm, whereas when Kc = 107 N ·m−1.5, the
interpenetration is not negligible anymore, around 10−2 mm.

Second, only very few contact points are needed to improve the mitigation performance at
low frequencies. In the simulated examples, I[0, fe] shows a significant decrease when adding
a second contact point but seems to be ceiled or even downgraded for more added contact
points. This can be related to the fact that a very small number of modes (only 4 under
the cut-on frequency) are concerned. The conclusions may be changed for other holding
structures and ABH designs where more modes are in the low-frequency range. Other types
of arrangements for the of contact points could also be tested, and, as it will be shown after,
in some cases more than two contact points may be more optimal.

3.5. Other rules for contact points location

For that purpose, three different ideas are numerically tested. The first arrangement
considers that the interdistance between contact points has to match the wavelength corre-
sponding to the first modes of the beam. More precisely, interdistance corresponding to 1/8
of the wavelengths are considered so as to fit with the length of the beam. Note also that
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as the wavelength depends on the thickness, the interdistance is computed by taking wedge
variations into account. This choice results to configuration 1 shown as inset in Fig. 11,
where the distance between the first two points is 1/8 the wavelength of mode 1, and so
on. Two other configurations with a constant interdistance, thus creating a Dirac Comb, are
also tested, leading to configurations 2 and 3 shown as inset in Fig. 11. For configuration 2,
a fixed interdistance of 2 cm from xc1 = 64cm to xc8 = 78cm is selected. For configuration
3, the first four points are placed in the uniform area from xc1 = 40cm to xc4 = 70cm with
a fixed interdistance of 10 cm, then the latter four contact points are in the acoustic black
hole area, from xc5 = 72cm to xc8 = 78cm, with a smaller interdistance of 2 cm.

Fig. 11. Variations of I[0, fe] and I[fe, 5fe] as number of contact points increases, compared among three
different configurations of contact points. Configuration 1: interdistance determined by the wavelength
corresponding to the first modes of the beam, the distance between the first two points is 1/8 the wavelength
of mode 1, and so on. Configuration 2, Dirac Comb with fixed interdistance of 2 cm from xc1 = 64cm to
xc8 = 78cm. Configuration 3, the first four points placed in the uniform area from xc1 = 40cm to xc4 = 70cm
with interdistance of 10 cm, the latter four points posed in the acoustic black hole area, from xc5 = 72cm to
xc8 = 78cm, with a smaller interdistance of 2 cm. α=1.5, Kc = 107 N ·m−1.5, A = 1 N, hc = 0.

Fig. 11 shows the behaviour of I[0, fe] and I[fe, 5fe] for these three configurations, by also
selecting an increasing number of points, and for Kc = 107 N ·m−1.5. One can observe that
for a small number of points, the deviations between the three layouts are important, the
second one being the less effective. But from 3-4 points, the values of I[0, fe] are very close so
that the dependence on the configuration becomes less important. Note also that the effect
of increasing the number of contact points is more important than for the cases simulated in
Fig. 10, however the indicator values obtained at convergence are roughly the same, showing
that from a number of contact points an optimal damping capacity is obtained which does
not depend too much on their locations.
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3.6. Transient dynamics

We now turn to the case where the beam is excited by an impact in order to assess
the damping capacity in a transient regime instead of a permanent regime as studied in the
previous sections. This will allow for a different view of the improvement that can be awaited
from the device, by observing the decays in the temporal regime. The ABH beam is thus
now excited by a raised cosine at the same excitation point xF where the harmonic force was
located. The external excitation p(x, t) in Eq. (2) now reads p(x, t) = r(t)δ(x − xF ) with δ
the Dirac delta function and r(t) the temporal content which reads:

r(t) =

{
A
2

[1 + cos (π(t− t0)/Tw)] if |t− t0| ≤ Tw;
0 if |t− t0| > Tw.

(22)

Fig. 12(a) shows an example of the temporal content, where the amplitude A in N has been
set to 1, t0 refers to the time where the impulse force is maximum and equal to A (t0 = 50 ms
in the figure). Tw is half of the time where the input force is non-zero (Tw = 2 ms in the
figure). The spectral content of this input force is similar to a sine cardinale, and the
maximum of the input energy is located between 0 and the first minimum at 1/Tw. In order
to be in the line of the previous investigations, Tw = 2 ms in all subsequent simulations, so
that the energy sent to the beam is concentrated below 500 Hz.

Fig. 12(b) shows the displacement of the beam after the impact, measured at point
x = xF = 0.3L, and compares the case of the uniform beam with the VI-ABH having 7
contact points. For this computation, the seven contact points are located following the rule
of using the maximal values of the first eigenmodes (see configuration 1 in Fig. 11), and the
stiffness of the contact is selected as Kc = 107 N ·m−1.5, in order to see the effect in the less
optimal case. In this case of transient vibrations, the effect of the impacts to damp out the
vibrations is impressive. Whereas the vibration of the uniform beam takes around 10 seconds
to be damped out, being completely driven by the very small values of modal damping ratio
of the modes present in the excited frequency band, the energy transfer due to the contact
nonlinearity spreads out this energy, leading to a very fast decay of the vibration, which is
damped out in less than 2 seconds.

Fig. 12(c) compares four cases, where the envelope of the displacement signals have been
extracted for better readability. The envelope is computed using the Hilbert transform. The
four cases compared are the same as in Section 3.3 : the uniform beam, the ABH beam
without contact, the uniform beam with contact and the VI-ABH. In the last two cases,
seven contact points are used following the rule of the maximum of the first eigenmode
shapes. Fig. 12(c) shows undoubtedly that when the frequency content of the excitation is
below the cut-on frequency, the ABH beam brings only a little improvement as compared to
the uniform beam. This, once again, underlines the poor damping capacity of the ABH in
the low-frequency range. On the other hand, one can observe that for transient responses,
the uniform beam with contacts shows a better mitigation capacity, only by transferring
energy to higher modes. Adding the ABH effect shows that the faster decay of energy is
obtained with the VI-ABH.
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Fig. 12. (a) Temporal content r(t) of the impulse force, having the shape of a raised cosine with amplitude
A and temporal width Tw. (b) Displacement of the beam at xF , comparison between the case of the uniform
beam (dark blue) and the VI-ABH (pink). The case of 7 contact points is here investigated, with the contact
stiffness as Kc = 107 N ·m−1.5. (c) Enveloppe of the displacement curves for four different cases : uniform
beam (dashed dark blue), ABH beam (light blue), uniform beam with contact points (dashed red), and
VI-ABH with contact points (pink). (d) Energy decay computed from the temporal responses shown in
panel (c).

In order to draw out a more quantitative comparison, the energy decay of each of these
vibration signals are extracted and compared in Fig. 12(d). The energy decay at a given
time τ > 0 is introduced as

Eσ (τ) =

∫ Tf
τ
w2 dt∫ Tf

0
w2 dt

, ∀ τ ∈ [0, Tf ], (23)

where Tf is the total time of the time response and w the displacement of the beam. The
numerator of Eσ is homogeneous to the total energy of the displacement signal, and when
τ = 0, Eσ = 1. Increasing the value of τ leads to a decreasing value of Eσ which is represented
in Fig. 12(d) for the same four cases. It clearly underlines that the energy decay is almost ,
with the largest slope obtained for the case of the vibro-impact ABH. The slope of this energy
decay will be used hereafter in order to compare quantitatively the relative performances of
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different configurations.
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Fig. 13. Transient dynamics under impulsive impact with width Tw = 2 ms and amplitude A = 1 N, VI-ABH
composed of a single contact point at position xc = 48 cm. Stiffness of the contact Kc = 109 N ·m−1.5. (a):
Envelope of displacements for four different cases. (b): Energy decay following Eq. (23).

Another case of transient response is shown in Fig. 13, for the same excitation but for
only one contact point, located at one of the best positions found in Section 3.3, see Fig. 9.
More precisely, the contact points is here selected at xc1 = 48 cm, and a stiffer contact is
considered with Kc = 109 N·m−1.5. Fig. 13 compares once again the same four cases (uniform
beam with and without contact, ABH beam with and without contact). It underlines how
the presence of the single contact point is important in order to rapidly damp vibrations,
the two curves of beam with contact decreasing very rapidly to zero in less than one second.
The energy decay shown in Fig. 13(b) shows that a double decay phenomenon is at hand for
the VI-ABH. A first slope allows to reduce the energy down to 10−2 in 0.6 seconds, and a
second behaviour is observed with an important change of slope, though it occurs once the
vibration amplitude is very small.

A parametric study is conducted in order to assess the performance of the different
configurations of contact points on the temporal performance in transient regime. For that
purpose, the slope of the energy decay curves is extracted by a linear fitting. The values
of the slopes for different cases, in dB/s, is used as a quantitative indicator to compare the
results. Fig. 14 shows the obtained results when varying the following parameters:

• The number of contact points is increased from 1 to 7, following the rule given by the
maximum values of the eigenmode shapes. This will allow to judge the efficacy of using
a small or a large number of contact points.

• Two values of the contact stiffness are considered in order to contrast the results with
that obtained in previous sections, showing that the larger the contact stiffness is, the
better vibration mitigation is obtained, and the lesser contact points are needed.
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Fig. 14. Energy decay indicator as a function of the number of contact points number, for two different
values of the contact stiffness: (a) Kc = 107 N · m−1.5, (b) Kc = 109 N · m−1.5. Three different values of
impulse width Tw are compared in each case.

• The input force parameter Tw is also varied in order to verify the mitigation behaviours
when varying the frequency band exciting the structure with the initial impulse. Three
values are considered: Tw = 1 ms (maximum frequency 1000 Hz), Tw = 2 ms (maximum
frequency 500 Hz) and Tw = 4 ms (maximum frequency 250 Hz),

Fig. 14 shows that Tw has a small impact on the damping of vibration, as all the curves
have a similar trend in Fig. 14(a) and (b). When the contact is smooth with Kc = 107 N ·
m−1.5, it is found that increasing the number of contact points have more effect than when
the contact is stiff with Kc = 109 N ·m−1.5. All these conclusions meet those already derived
from the parametric studies led in the permanent regime, showing the robustness of the
results found for different excitations.

4. Conclusion

A vibro-impact acoustic black hole (VI-ABH) has been proposed and studied in order to
improve the low-frequency efficiency of more traditional acoustic or vibrational back holes,
defined as tapered beams with a wedge profile equipped with a visco-elastic layer. The
nonlinearity brought by the contact dynamics is used as a way to transfer energy to the
high-frequency range where the damping capacity of black holes are much more efficient.
By doing so, the nature of the passive damper is significantly modified: the vibrations are
strongly nonlinear, with a broadband Fourier spectrum and significant energy in the mid
and high frequencies.

The main conclusion that can be drawn from this numerical study is that a valuable
improvement can be obtained. In particular, our results show that even without the tapered
edge, the damping capacity of a uniform beam is increased by adding a contact nonlinearity in
its vibrational behaviour. The conjunction of the vibro-impact nonlinearity with the tapered
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profile allows one to obtain concurrent effects, the first one transferring the vibrational energy
to the higher frequencies while the second one ensures an optimized passive damping.

Numerical results have shown that the stiffer the contact, the more efficient the energy
transfer is, and the better are the improvements in terms of damping capacity. Parametric
studies on the optimal locations of contact points also shows that the best strategy is to
use the anti-nodes of the low-frequency eigenmodes. Indeed, this method ensures that the
resonance peaks of the modes below the cut-on frequency, containing most of the vibrational
energy, are broken down. Also, the positive effect of considering bilateral contact points have
been clearly underlined.

This study opens the door to other researches on the same topic in order to improve
again the device. In particular, larger values of the losses due to the tapered profile (and/or
viscoelastic layer) may be seeked in order to obtain more efficiency. Experiments have to be
realized for testing the findings of the present study in a real experiment, and coping with
experimental limitations. Finally, further numerical studies, for example considering plate
models instead of beams, or including geometric nonlinearity, might also be useful in order
to fully understand the potentiality of the VI-ABH.
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Appendix A. Finite difference operators and boundary conditions

Regarding to the operators appearing in Eq. (11), the difference operators δλ+ and δλ−
are defined as

δλ+u =
ul+1 − ul

∆λ

, (A.1)

δλ−u =
ul − ul−1

∆λ

, (A.2)

and the averaging operator µλ− is

µλ−u =
ul + ul−1

2
. (A.3)

The discrete boundary conditions in Eq. (3) can be expressed as

u0 = u1 = 0, (A.4)

for the clamped boundary condition in x = 0, and

δλ+

((
µλ−φ

−1/2
)
δλ−uN

)
= δλ+

((
µλ−φ

−1/2
)
δλ−uN−1

)
= 0, (A.5)

for the free boundary condition at x = L, respectively.
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[29] E. Gourc, G. Michon, S. Séguy, and A. Berlioz. Targeted energy transfer under har-
monic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental
developments. Journal of Vibration and Acoustics, 137(3):031008, 2015.

[30] M. A. Al-Shudeifat, A. F. Vakakis, and L. A. Bergman. Shock mitigation by means of
low– to high–frequency nonlinear targeted energy transfers in a large–scale structure.
Journal of Computational and Nonlinear Dynamics, 11(2):021006, 2015.

[31] G. Pennisi, C. Stephan, E. Gourc, and G. Michon. Experimental investigation and
analytical description of a vibro–impact NES coupled to a single–degree–of–freedom
linear oscillator harmonically forced. Nonlinear Dynamics, 88(3):1769 – 1784, 2017.

[32] R.P. Goel. Transverse vibrations of tapered beams. Journal of Sound and Vibration,
47(1):1 – 7, 1976.

[33] J. R. Banerjee and F. W. Williams. Exact Bernoulli-Euler dynamic stiffness matrix for
a range of tapered beams. International Journal for Numerical Methods in Engineering,
21(12):2289–2302, 1985.

[34] R. A. Ibrahim. Vibro-impact dynamics: modeling, mapping and applications, volume 43.
Springer Science & Business Media, 2009.

[35] S. Bilbao, A. Torin, and V. Chatziioannou. Numerical modeling of collisions in musical
instruments. Acta Acustica united with Acustica, 101(1):155–173, 2015.

[36] C. Issanchou, S. Bilbao, J.-L Le Carrou, C. Touzé, and O. Doaré. A modal-based
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