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Abstract

Optimal control is a prominent approach in robotics and movement neuroscience, among other fields
of science. Methods for deriving optimal choices of action have been classically devised either in deter-
ministic or stochastic settings. Here, we consider a setting in-between that retains the stochastic aspect
of the controlled system but assumes deterministic open-loop control actions. The rationale stems from
observations about the neural control of movement which highlighted that relatively stable behaviors can
be achieved without feedback circuitry, via open-loop motor commands adequately tuning the mechani-
cal impedance of the neuromusculoskeletal system. Yet, effective methods for deriving optimal open-loop
controls for stochastic systems are lacking overall. This work presents a continuous-time approach for
the efficient computation of optimal open-loop controls for a broad class of stochastic optimal control
problems. We first consider simple synthetic examples showing that non-trivial departure from the opti-
mal solutions of classical deterministic and stochastic approaches arises, and to stress the originality of
the framework. We further exemplify its potential relevance to the planning of biological movement by
showing that a well-known phenomenon in motor control, referred to as muscle co-contraction, occurs
spontaneously. More generally, this stochastic optimal control framework may be suited to all fields where
the design of optimal open-loop actions is relevant.
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1 Introduction

In fields such as robotics or movement neuroscience, a preliminary motion planning stage is generally con-
sidered before movement execution (Todorov, 2004; LaValle, 2006). Optimality is a significant principle
to rationalize this stage (Schoemaker, 1991; Berret et al., 2019). Motion planning can thus be stated as
an optimal control (OC) problem to figure out how to best drive a system to desired states, according to5

some optimality criterion or cost function. Originally, either deterministic or stochastic settings have been
assumed to mathematically formulate OC problems (Fleming and Rishel, 1975). In deterministic optimal
control (DOC), a powerful set of theoretical results and numerical tools exist to solve a broad variety of
problems (Kirk, 1970; Trélat, 2008). Regarding motion planning, deterministic modeling is therefore a com-
pelling approach but robustness/stability concerns may significantly hamper its relevance in presence of noise.10

Stochastic modeling is more appropriate to account for uncertainty in the control system, which naturally
leads to stochastic optimal control (SOC) (Yong and Zhou, 1999). However, this framework poses several
issues. Besides the linear-quadratic-Gaussian (LQG) scenario (Bryson and Ho, 1969; Athans, 1971), available
methods are overall less efficient than in DOC and more sensitive to the curse of dimensionality. Indeed, going
beyond dimension three or four may often become a real challenge (Fahim et al., 2011; Falcone and Ferretti,15

2014). Part of these difficulties arise because in the usual SOC settings the control is itself a stochastic
variable through its dependence on the random observed data. Computation and application of the optimal
controls typically require on-line feedback measurements and sophisticated state estimation procedures. Yet,
considering stochastic control variables may not be required or even desired to formulate certain motion
planning problems.20

Indeed, regarding the planning of biological movement for instance, several influential studies have empha-
sized that our brain can purposely modulate the mechanical impedance of the neuromusculoskeletal system
via feedforward co-contraction mechanisms (Hogan, 1984; Burdet et al., 2001; Franklin et al., 2003). Humans
and animals are thus able to generate relatively stable motor behaviors even in the absence of on-line feedback
circuitry (Polit and Bizzi, 1978, 1979; Ghez et al., 1995). These findings suggest that on-line sensory feedback25

is not necessarily critical for stability, thereby suggesting that open-loop motion planning may be relevant
piece of the neural control of movement. Yet, the sensorimotor system is affected by noise (Faisal et al., 2008)
which makes it stochastic by nature. These observations led us to consider a more restricted subclass of SOC
problems where admissible controls are deterministic open-loop and the controlled system is stochastic. We
refer to it as “stochastic optimal open-loop control” (SOOC). As such, we neglect on purpose the use or30

availability of on-line feedback from sensory data at this stage of motion planning. Feedback can always be
exploited subsequently, for instance during movement execution to track a planned trajectory (Athans, 1971;
Todorov and Li, 2005) or in a model predictive control scheme (Mayne et al., 2000). To our knowledge,
this hybrid setting where the control is deterministic and the dynamics is stochastic has not been studied
in depth in optimal control theory. A difficulty is that the principle of optimality does not simply apply35

in this case and, therefore, methods for solving general SOOC problems are lacking overall. Here we show
that under practical modeling choices it is possible to exploit the powerful and well-established deterministic
machinery to efficiently compute solutions for a broad class of SOOC problems. More precisely, we consider
stochastic processes described by Itô stochastic differential equations (SDE) and model costs/constraints
as expectations. This is a classical approach to reformulate the problem from stochastic to deterministic.40

However, instead of considering the evolution of the probability density function (which evolves according
to a partial differential equation and leads to infinite-dimensional problems, e.g. Palmer and Milutinovic
2011; Annunziato and Borzì 2013), a critical feature of our approach consists of focusing on propagation
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of the mean and covariance of the stochastic process, and on designing a DOC problem depending only on
these variables via appropriate statistical linearization techniques. The rationale is that in many applications45

these two first moments are quantities of major interest. For example, mean and variance of endpoints are
typically investigated to assess the quality of motor behaviors in movement neuroscience (e.g. van Beers et
al., 2004). The present considerations may be relevant to other fields such as robotics, especially for robots
with variable impedance actuators that mimic the nonlinear spring-like characteristics of biological muscles
(Migliore et al., 2005; Vanderborght et al., 2012). More generally, the SOOC framework may be significant50

to the control of stochastic systems with intermittent, long-latency or even absent on-line sensory feedback.
The study is organized as follows. In the Section 2, we introduce the mathematical settings of the SOOC

framework under investigation. We show that a SOOC problem exactly reduces to a DOC problem with
augmented mean-covariance state when the motion can be described by linear SDE. For nonlinear SDE, a
Gaussian statistical linearization approach is proposed to get an approximately equivalent DOC problem55

that can be solved efficiently via state-of-the-art numerical techniques for deterministic optimal control. In
Section 3, we compare the SOOC framework with DOC and SOC frameworks on synthetic examples that
make derivations analytically tractable. In particular, we highlight that SOOC solutions may exhibit drastic
qualitative changes of behavior depending on noise magnitude. These simple examples are also used to
stress and discuss the differences between the SOOC and SOC approaches. In the Section 4, we consider60

an application of the SOOC framework to the field of the neural control of movement. This suggests that
the SOOC framework may be particularly well-suited to describe motion planning for systems with tunable
mechanical impedance like the neuromusculoskeletal system. In Section 5, we provide some conclusions and
orientations for future works.

2 Stochastic optimal open-loop control framework65

2.1 Mathematical formulation

The considered motions are modeled by stochastic dynamical systems of the form

dxt = f(xt,u(t), t) dt+G(xt,u(t), t) dWt, (1)

where xt ∈ Rn denotes the state variable and u(t) ∈ Rm the control variable. The state of this Itô stochastic
differential equation (SDE) is subject to deterministic infinitesimal increments driven by the vector valued
drift function f , and to random increments proportional to a multi-dimensional Wiener process Wt ∈ Rk,70

with stochastically independent components. The (n× k) dispersion matrix G is full rank. The initial state
is assumed to be a random variable x0 with known distribution.

The distinctive feature of our approach is that we consider open-loop control, i.e., u is a (deterministic)
function of the time (for instance u ∈ L2([0, T ],Rm) where T is a fixed time). We will look for controls that
minimize a cost expressed as an expectation,75

C(u) = E

[∫ T

0
L(xt,u(t), t) dt+ ψ(xT )

]
, (2)

with possibly terminal constraints also expressed as expectations such as E[φ(xT )] ∈ S, where S is a given
target set. To summarize, we consider the following stochastic optimal open-loop control problem:
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(SOOC) minimize the cost C(u) among all controls laws u(t), t ∈ [0, T ], such that the corresponding solution
xu

t of (1) with xu
0 = x0 satisfies E[φ(xu

T )] ∈ S.

Such an optimization problem is in general very difficult to solve, and theoretical tools are lacking. One way80

to tackle the problem would be to characterize the stochastic process xt by its density, whose evolution is
modeled by a Fokker–Planck equation (see Annunziato and Borzì, 2013 for instance). One obtains in this way
a formulation as a DOC problem on a partial differential equation (PDE). However, solving such a problem
requires heavy computational efforts even in small dimension.

We present here an alternative approach based on a slight restriction of the framework motivated by85

applications in neuroscience and robotics. Indeed in these fields (and in many other engineering applications),
it appears that the data of the problem have in general the following distinctive features: first, the cost is
formulated as a quadratic function of both state and control (often for the sake of simplicity); second, the
terminal constraints are expressed in terms of mean value and covariance in order to specify both the intended
target and the requested precision/accuracy. Thus we make the following Assumptions in (SOOC), where90

mx(t) = E[xt] and Px(t) = E[(xt −mx(t))(xt −mx(t))>] denote respectively the mean and covariance of
xt:

(i) The infinitesimal cost L and the terminal cost ψ are quadratic functions, that is L(x,u, t) =
u>R(t)u + x>Q(t)x + u>S(t)x + c1(t)>x + c2(t)>u and ψ(x) = x>Qf x + c>f x, where R(t),
Q(t), S(t), Qf and c1(t), c2(t), cf are respectively matrices and vectors of appropriate dimensions;95

(ii) the terminal constraint writes as ϕ(mx(T ), Px(T )) ∈ S;

(iii) the initial state x0 has a multi-normal distribution N (m0, P 0).

The crucial observation is that under Assumption (i), a simple computation shows that the cost in (2) takes
the following form,

C(u) =
∫ T

0
(L(mx(t),u(t), t) + tr(Q(t)Px(t)) dt+ ψ(mx(T )) + tr(QfPx(T )). (3)

Thus all the data of the problem (both the cost and the initial/terminal constraints) only depends on the100

mean and covariance of the process xt. We will see below that within this framework it is possible to reduce
(SOOC) to a deterministic optimal control problem, up to an approximation of the dynamics.

Remark 1. The hypothesis that the infinitesimal cost is quadratic in the control plays actually no role here.
In fact, we can consider infinitesimal costs in a much more general form, with explicit dependence on mean
value and covariance, i.e. L = L(mx, Px,x,u, t), and require in Assumption (i) that L is quadratic with105

respect to x only. The corresponding cost C(u) is again of the form (3). Moreover, it is noteworthy that
further assumptions about dynamics and cost would be necessary to ensure the existence of solutions, but
we do not consider this problem here.

2.2 Reduction to deterministic optimal control (DOC) problems

2.2.1 Case of a linear SDE110

Consider the case where the dynamic is a linear SDE, i.e.,

dyt =
(
A(u(t), t)yt + b(u(t), t)

)
dt+H(u(t), t) dWt, (4)
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where A(u(t), t) is an (n× n) matrix, H(u(t), t) is an (n× k) matrix, and b(u(t), t) ∈ Rn. Since the control
is deterministic, the process yt is a Gaussian process, which is fully determined by its mean m(t) = my(t)
and covariance P (t) = Py(t).

The propagation of m and P is given by the following ordinary differential equations (e.g. Stengel, 1986):115  ṁ(t) = A(u(t), t)m(t) + b(u(t), t)),

Ṗ (t) = A(u(t), t)P (t) + P (t)A(u(t), t)> +H(u(t), t)H(u(t), t)>,
(5)

and the initial values m(0), P (0) are the mean and covariance m0, P 0 of the initial state y0. Since moreover
the cost C in the form (3) depend only on the state variable (m, P ), the problem (SOOC) in the case of a
linear SDE is exactly equivalent to the following deterministic one:

(DOC) minimize the cost (3) among all controls u(t), t ∈ [0, T ], such that the corresponding solution
(mu(t), Pu(t)) of (5) with (mu(0), Pu(0)) = (m0, P 0) satisfies ϕ(mu(T ), Pu(T )) ∈ S.120

Importantly, this DOC problem has a nonlinear dynamics but it is in finite dimension and can thus be solved
and analyzed with classical tools (e.g. Bryson and Ho, 1969; Kirk, 1970).

Remark 2. From a control theory point of view, what is usually called a “linear system” is the case where the
drift is linear with respect to both state and control, and the dispersion matrix H is constant. The dynamics
then writes as125

dyt =
(
Ayt +Bu(t)

)
dt+H dWt. (6)

In this case, the control does not enter at all in the dynamics of the covariance in (4). As a consequence
the terms of the form tr(QP ) do not depend on the control and can be removed from the cost. Hence
(DOC) is reduced to a linear-quadratic optimal control problem on the mean value m(t), the covariance
P (t) remaining uncontrolled. In other terms, for linear control systems our open-loop approach only consists
of replacing the SDE by its deterministic part ẏ = Ay +Bu, the effect of the noise being completely ignored130

in the determination of the control. Therefore, our approach is mostly relevant for non-linear dynamics such
as bilinear systems where product terms between the components of the control and the state are present
in the dynamics (e.g. Hogan, 1984, for a movement neuroscience example). The necessity of working with
non-linear dynamics to get non-trivial outcomes may partly explain why relatively little attention has been
dedicated to SOOC.135

2.2.2 Gaussian statistical linearization

Consider now the general case of (1) and let us focus on the first two moments as motivated above. A classical
computation using Itô’s formula shows that mean and covariance satisfy the following differential equations, ṁx = E [f(x,u)] ,

Ṗx = E
[
f(x,u)(x−mx)>

]
+ E

[
(x−mx)f(x,u)>

]
+ E

[
G(x,u, t)G(x,u, t)>

]
.

(7)

Let us introduce the following functions (we omit some of the dependence w.r.t. t to simplify notations),

Au(t) = E
[
f(x,u)(x−mx(t))>

]
Px(t)−1, bu(t) = E [f(x,u)] ,

Hu(t), (n× k) matrix s.t. Hu(t)Hu(t)> = E
[
G(x,u, t)G(x,u, t)>

]
.

(8)
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Note that the expectations E = Ext are taken with respect to the distribution of the solution xt of (1). As a140

consequence, Au(t), bu(t) and Hu(t) depends on all past values u(s), s ∈ [0, t], of the control, and not only
on u(t).

With these notations, mean and covariance are the solutions of the control system ṁx(t) = bu(t),

Ṗx(t) = Au(t)Px(t) + Px(t)Au(t)> +Hu(t)Hu(t)>,
(9)

with mx(0) = m0 and Px(0) = P 0. Since the cost C and the initial/final conditions in (SOOC) depend
only on the first and second moment of xt, we obtain that (SOOC) is formally equivalent to a DOC problem145

associated with the above control system in the variable (mx, Px) and the cost (3).
Thus we are left with the problem of computing the parameters Au(t), bu(t) and Hu(t), or at least

an approximation of them. Indeed, with these coefficients, solving (SOOC) amounts to solving a finite-
dimensional deterministic optimal control problem. This may be appealing because, for this type of problem,
advanced numerical tools and theoretical results are available.150

Remark 3. Actually we have shown that, as far as only the first two moments are concerned, we can replace
the nonlinear stochastic dynamics (1) by the linear SDE

dyt =
(
Au(t)yt + du(t)

)
dt+Hu(t) dWt, y0 = x0, (10)

where du(t) = bu(t) − Au(t)mx(t). This kind of method for probabilistic analysis of nonlinear stochastic
dynamical systems is called statistical (or stochastic) linearization. We direct the reader to the recent survey
(Elishakoff and Crandall, 2017) and to the monographs (Roberts and Spanos, 2003; Socha, 2008) for details.155

It should be stressed that the averaging operations appearing in formula (8) are with respect to the
distribution of xt. Since this distribution is not known exactly, we cannot calculate the parameters Au, bu,
and Hu. Furthermore, even if the distribution is known, it is not always possible to calculate analytically
these parameters especially when f is nonlinear. The difficulty in the method based on statistical linearization
is to solve these two problems: first find a good approximation of the distribution of xt, and second compute160

efficiently the corresponding parameters Au, bu, and Hu.
As for the first problem different solutions exist, we present here the most popular one called Gaussian

statistical linearization. This technique has been widely used for sixty years in the field of mechanics and has
shown to be in most cases a very efficient numerical method. The Gaussian statistical linearization consists in
approximating the distribution of xt by the one of the solution yt of (10). The latter being a Gaussian process,165

its distribution is the multi-normal distribution N (m(t), P (t)) characterized by the mean and covariance of
yt. Replacing in (8) the averaging E = Ext by the averaging Eyt with respect toN (m(t), P (t)), we obtain new
parameters Ã = Ã(m(t), P (t),u(t), t), b̃ = b̃(m(t), P (t),u(t), t) and H̃ = H̃(m(t), P (t),u(t), t). Therefore
(m(t), P (t)) is determined as a solution of the following nonlinear control system, ṁ = b̃(m, P,u, t),

Ṗ = Ã(m, P,u, t)P + PÃ(m, P,u, t)> + H̃(m, P,u, t)H̃(m, P,u, t)>,
(11)

and the control u(t) is obtained by solving the (DOC) problem associated with the above dynamics.170

Note that, using the properties of the multi-normal distributionN (m(t), P (t)), the formula for Ã simplifies
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as
Ã = Eyt

[
∂f
∂x (x,u)

]
. (12)

Remark 4. Thus the Gaussian linearization consists in replacing the drift term f in the SDE (1) by

Eyt [f(x,u)] + Eyt

[
∂f
∂x (x,u)

]
(yt −m(t)). (13)

As a consequence, a first-order Taylor series expansion of f at m(t) appears as a particular case of Gaussian
linearization with zero covariance.175

The second problem that occurs now is to compute efficiently Ã, b̃ and H̃, that is to obtain an analytic
approximate expression of the expectations

Eyt [F(x)] for F(x) = f(x,u), ∂f
∂x (x,u), or G(x,u)G(x,u)>. (14)

When F(x) is a polynomial function of x, its expectation Eyt may be computed explicitly as a function
of m and P since the distribution of yt is Gaussian (moments for Gaussian distributions can be computed
by integral by parts). When F(x) is not polynomial, different techniques exist, such as sigma-point approx-180

imations and Taylor expansions (see Särkkä and Solin, 2019 for a survey). Let us describe for instance the
second approach which is very common in filtering theory (see the description of the 2nd order compensated
extended Kalman filter in Maybeck, 1982, or the discussion in Gustafsson and Hendeby, 2012).

The method consists in approximating F by its Taylor expansion at a given order N around the mean
value, i.e.185

F(x) ∼
N∑

k=0

1
k!
∂kF
∂xk

(m) · (x−m, . . . ,x−m). (15)

Thus we are reduced to calculating the expectation of a polynomial function. Such an approximation is
justified when the covariance is sufficiently small (and is exact when the functions are polynomial with
respect to the state).

In our case, taking for instance Taylor expansions at order N = 1, we obtain the following approximations
(an alternative approximation which higher-order Taylor expansions is provided in Appendix):190

b̃ ∼ f(m,u), Ã ∼ ∂f
∂x (m,u), and H̃H̃> ∼ G(m,u)G(m,u)>. (16)

By putting everything together we are finally led to approximate the solutions of (SOOC) by the ones of
the (DOC) problem associated with the cost (3) and the dynamics

ṁ(t) = f(m(t),u(t)),

Ṗ (t) = ∂f
∂x (m(t),u(t))P (t) + P (t) ∂f

∂x (m(t),u(t))>+

G(m(t),u(t), t)G(m(t),u(t), t)>.

(17)

The method described above is based on two approximations whose validity must be discussed. The first
one occurs from the replacement of the distribution of xt by the one of yt. If these distributions are close
to each other, then the method will predict accurately the mean and covariance of the system. It is worth195

noting that this condition does not even seem necessary since it seems that the parameters A and b are
in many cases not very sensitive to the assumed form of the distribution (see Beaman, 1984). The second
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approximation is to replace the functions f , ∂f
∂x , and GG> by their Taylor expansion at order 1 (or more)

for computing the expectations, which is meaningful when the covariance is sufficiently small. This is a
reasonable assumption in our context since we minimize costs that indeed penalize the covariance. Moreover,200

our open-loop approach is designed to plan motions over relatively short times (relative to the time constants
of the dynamics), starting from positions that are a priori fairly well known. Under these conditions the
covariance will remain small.

The quality of these approximations was tested during simulations (see next sections). Our approach
was as follows. Once the optimal control of the above (DOC) problem was calculated, we introduced the205

corresponding open-loop optimal control into the original SDE (1) and estimated by a Monte Carlo procedure
the mean value and the covariance of the process xt. We could then verify that the control propagated the
estimated mean and covariance of xt in agreement with the approximations. We refer the reader to the
human motor control application below for such a comparison.

Finally note that the (DOC) problem proposed above is convenient but it is not the only way to approx-210

imate the solutions of (SOOC) via statistical linearization. Indeed, for both steps of approximation, other
choices are available (see for instance Crandall, 2006; Socha, 2008 on the choice of non-Gaussian distributions
for the first point, and Ghusinga et al., 2017; Särkkä and Solin, 2019 for computations of expectations).

3 Comparison with classical deterministic and stochastic frame-
works215

3.1 Comparison with DOC

To illustrate the fundamental difference between the DOC and SOC frameworks, a enlightening thought
experiment is often used: the drunken spider problem (see Kappen, 2005b). In this example, a spider has to
reach its home by either crossing a tiny bridge over a lake (shortest path) or by safely moving around the
lake (longest path). In the deterministic case, the shortest path is the optimal solution. However, when there220

is noise (induced by alcohol in this thought example), the optimal solution is to take the longest path (as
otherwise the spider may fall off the bridge into the lake due to the effects of noise). This example illustrates
that significant qualitative changes of behavior between the DOC and SOC frameworks may be observed
depending on noise magnitude. Here we highlight that the SOOC framework can exhibit similar qualitative
changes of behavior.225

To this end, we designed a toy example that captures the essence of the above thought experiment.
Consider a dot moving in a plane, governed by the following first-order stochastic dynamics:

dxt = ϕ(yt)u(t)dt,
dyt = v(t)dt+ gdωt.

(18)

where the function ϕ(y) defines a landscape in the plane as follows: ϕ(y) = c where c is a constant if x ≤ 0

and ϕ(y) = σ√
2π

exp( y
2

2σ ) otherwise. The parameter σ can be chosen in order to make this (Gaussian)

landscape more or less sharp (i.e. the bridge more or less narrow in the spider example). The noise ωt is230

supposed to be a Wiener process and the parameter g specifies noise magnitude (i.e. the spider more or less
drunk). As in the rest of the study, the controls u and v are assumed to be deterministic.
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We denote by xt = (xt, yt)> the stochastic state of the system and fix the distribution of the initial state,
x0 ∼ N

(
m0, P0

)
. For our purpose, we consider two possible terminal mean states, m1 and m2. The first

one implements the close target location (i.e. shortest path solution) whereas the second one implements the235

far target location (i.e. longest path solution). The goal is thus to reach the state m1 or m2 in time T (the
final state covariance being left free) that yields the minimal energy cost

C(u, v) =
∫ T

0

(
u(t)2 + v(t)2) dt. (19)

This problem can be solved explicitly by Gaussian statistical linearization and by computing the expected
values of (11) analytically. Then, numerical methods to solve the associated nonlinear DOC problem can
be employed to get the optimal solution for each target separately. As there are two possible targets in this240

example, we just need to find the one that yields the smallest cost. The results of simulations are shown
in Figure 1 with m0 = 0, P0 = diag(10−3, 10−3), m1 = (1, 0)> and m2 = (−2, 0)>. It is noteworthy that,
while we used two targets here, only a single target could have been used if we had modeled the problem on
a cylinder instead of a plane (the x coordinate would then become an angle in this case). However, this does
not change the important conclusion which is about the qualitative change of optimal strategy that arises245

depending on the amount of noise g. In particular, when noise level is large enough, it becomes optimal to
reach the far (leftward) target whereas the close (rightward) target was optimal for lower noise levels and in
deterministic settings (optimal costs are emphasized in bold in Fig. 1).

3.2 Comparison with SOC250

To stress the difference between the proposed SOOC framework and the classical SOC framework –standard
LQG here–, let us introduce another toy example. This example is inspired by the considerations given
in Introduction about the role of co-contraction on regulating the mechanical impedance of a limb (e.g. its
stiffness). To keep calculations tractable we consider a noisy 1 degree-of-freedom system, the speed of which is
directly controlled either by a stochastic –feedback– control (emulating “stiffness” control through an optimal255

feedback gain) or by a deterministic –open-loop– control (setting an optimal intrinsic “stiffness” directly).
For a stochastic control, the first-order dynamics we consider writes

dxt = vtdt+ gdwt, (20)

where the control vt is a random process (wt is a Wiener process and g is a scalar parameter to set the level
of noise). The aim is to find the control strategy which minimizes the cost

C(v) = 1
2E
[∫ T

0

(
v2

t + qx2
t

)
dt+ qfx

2
T

]
, (21)

where T is a fixed time. Therefore, the aim of the problem is to stabilize the system around its origin with260

minimal control effort and variance. It is known from LQG theory that the optimal solution is the feedback
control vt = k(t)xt where the gain k (which is an analog of stiffness) is the solution of the following ordinary
differential equation:

k̇ = q − k2, k(T ) = −qf . (22)
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Figure 1: Comparison of DOC and SOOC. A. Deterministic case (g = 0) and final state m2. The colormap
illustrates the landscape defined by the function ϕ(y). The thick black path indicates the optimal mean
trajectory. The 3 subplots on the right depict the time evolution of mean positions along the x and y
axes, and the optimal open-loop controls (black for u(t) and gray for v(t)). B. Same information for the
deterministic case (g = 0) and final state m1. In the deterministic settings, as the optimal cost to move to
m1 is smaller than the optimal cost to move to m2, the optimal strategy is thus to use the shortest path
(i.e. to move rightward, the optimal cost being emphasized in bold). C. Stochastic case (g = 1) and final
state m2. In addition to the colormap and the optimal mean trajectory, here we also display three instances
of noisy trajectories to illustrate the stochastic nature of the paths. The 3 subplots on the right depict the
same information as before but, here, mean trajectories were estimated from 1 000 samples (depicted in thick
traces). Shaded areas depict standard deviations. D. Same information for the stochastic case (g = 1) and
final state m1. Here, we see that the optimal strategy is to reach to the left target because the cost is smaller
(emphasized in bold). This is because, in the right part of the plane (x ≥ 0), the controller has to steer
quickly the system to the target before it is shifted away from the midline, toward locations where it will be
more difficult (i.e. energy consuming) to move. Parameters were as follows: c = 4, σ = 0.01 and T = 1.
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Assume now that we only allow open-loop control but that we add a mechanical device such that the
action on the velocity is proportional to the position (in other terms we control stiffness directly). For the265

open-loop control, the first-order dynamics of the system then writes

dxt = u(t)xtdt+ gdwt, (23)

where the control u(t) is a (deterministic) function of the time. Assume that the aim is to minimize the same
cost as before, that is:

C(u) = E

[∫ T

0

(
(u(t)xt)2 + qx2

t

)
dt+ qfx

2
T

]
. (24)

The optimal solution of this problem is obviously u(t) = k(t) since it can be embedded into the first one by
setting vt = u(t)xt. This can also be checked directly by solving the equivalent (DOCP) –via Pontryagin’s270

maximum principle (Pontryagin et al., 1964), see Section 6– which is associated with the dynamics{
ṁ = um

Ṗ = 2uP + g2 , where m = E[x], P = E[(x−m)2], (25)

and with the cost
C(u) =

∫ T

0

(
(m2 + P )(u2 + q)

)
dt+ qf

(
m(T )2 + P (T )

)
. (26)

The result is that applying the respective optimal controls in (20) and in (23) will produce exactly the
same trajectories (although the underlying philosophy is totally different).

Now, let us compare the SOC and SOOC frameworks if we minimize a cost that penalizes the control275

quadratically for each system. That is, we now use the cost

C̃(u) = E

[∫ T

0

(
u(t)2 + qx2

t

)
dt+ qfx

2
T

]
(27)

in the open-loop case (i.e. the aim of the task is now to stabilize the system around its origin in open-loop
with minimal effort –measured as stiffness– and variance).

It is not possible anymore to transform the open-loop problem into a LQG problem by the change of
control variable v = ux. We can however compute again the solution using Pontryagin’s Maximum Principle,280

and we obtain that the optimal control is solution of an ordinary differential equation of the form

u̇ = H− u2 + q(m2 + P ), (28)

where the constant H depends on q, qf , and g (see Section 6). This equation can be compared with (22)
characterizing the gain of the LQG solution. Whereas k(t) does not depend on noise magnitude (parameter g),
the optimal control u(t) is sensitive to noise magnitude. Figure 2 illustrates the differences between the SOOC
and SOC approaches. For clarity we compared stiffness-like quantities, i.e. u(t) and k(t). The important285

result is about the dependence of the optimal “stiffness” on the cost weight and the noise magnitude in SOOC
but not in LQG. In SOOC, when noise magnitude increases, the magnitude of the optimal open-loop control
increases. On the other hand, both solutions do depend on the weight of the variance cost: when q and qf

increase, the magnitude of the optimal control gain and of the optimal open-loop control also increase).

290
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Figure 2: Illustration of the differences between SOOC and SOC (classical LQG) with quadratic costs. The
first-order systems dxt = u(t)xtdt + gdwt (open-loop control) and dxt = vtdt + gdwt (feedback control) are
considered. A. Influence of increasing the cost weight q = qf = 10, 20, 40, 80 for the open-loop SOC case
and q = qf = 1, 2, 4, 8 for the LQG case (in black, red, green and blue respectively). The top graphs
represent the controls (i.e. open-loop control or feedback gain for LQG). The bottom graphs represent the
displacement around 0 (mean in thick solid line and standard deviation as a shaded area). B Influence of
increasing noise covariance (g2 = 0.1, 0.2, 0.3, and, 0.4, in black, red, green and blue respectively). Note that
the LQG feedback gain does not depend on this parameter. Parameters were as follows: P (0) = 0, m(0) = 0,
T = 20 seconds.
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In summary, the SOOC approach can yield optimal solutions that differ in a non-trivial way from the
solutions given by the LQG (or SOC) framework. In particular, we emphasized that SOOC solutions may
significantly depend on noise magnitude. In the following, we stress important differences (both at conceptual
and computational levels) between the SOOC framework and the LQG or SOC frameworks.

• In general settings, SOC produces a feedback control that requires state estimation from sensory mea-295

surements throughout motion execution. This loop inevitably induce certain delays that may reveal
critical in certain situations, especially for unstable tasks or systems with long transmission latencies.
In the human sensorimotor system for instance, feedback delays are relatively long compared to that of
robots (muscle responses to a mechanical perturbation occur after ~20 ms for the stretch reflex; however,
long-latency responses occur after >50 ms for proprioceptive and visual feedback loops passing through300

supraspinal centers, which are thought to be crucial for state estimation processes, e.g. Scott, 2012).
These delays may cause issues for the control of accuracy in fast movements and for the realization of
unstable tasks. In such situations, humans tend to regulate the impedance of their musculoskeletal sys-
tem via feedforward muscle co-contraction mechanisms (e.g. Gribble et al., 2003; Burdet et al., 2001).
The analog in robotics is to design mechanical systems with modifiable mechanical impedance, which305

may be implemented via variable stiffness actuators (Berret et al., 2011b, 2012; Vanderborght et al.,
2012; Fiorio et al., 2019). Note that the toy example illustrated in Figure 2 captures this characteristics
via the open-loop control of stiffness (hence the bilinear control system in (23)).

• Aside from the LQG case, it can be very difficult to solve a SOC problem numerically in dimen-
sions greater than 3 or 4 (a case frequently encountered in human or robot movement control). The310

assumptions of linear dynamics and quadratic cost are therefore often crucial for efficient numerical
SOC methods. Conversely, the present SOOC approach applies to nonlinear systems and a wide class
of cost functions. Efficient numerical and theoretical methods exist once an approximate equivalent
DOC problem is defined and are only slightly limited by the dimension of the problem. Some frame-
works more general than LQG have also been developed within SOC theory. Besides numerical scheme315

for the resolution of the Hamilton-Jacobi-Bellman equation (Fahim et al., 2011; Falcone and Ferretti,
2014), iterative techniques such as iLQG (Li and Todorov, 2007) or differential dynamic programming
(Theodorou et al., 2010b) exist, based on successive first or second order approximations of the dynam-
ics around a current trajectory. More recently, a class of non-linear SOC problems leading to a linear
Bellman equation has been described (Kappen, 2005a, 2011; Todorov, 2009; Theodorou et al., 2010a).320

Some limitations apply to the latter framework: re-computing the optimal control at each current state
is necessary (e.g. using some Monte Carlo sampling techniques to evaluate path integrals), the control-
dependent term of the cost function must be quadratic, the noise model is limited such as it must act
in control space, the dynamics must be control-affine, and some relation between the noise magnitude
and the control penalization in the cost function must hold. It is worth noting that in certain works,325

whereas the control is stochastic by nature, open-loop approximations were found numerically to avoid
having to re-sample at each time of the actual trajectory (e.g. Berret et al., 2013).

• The gain of the optimal control in the LQG solutions does not depend on the amplitude of additive noise,
though this amplitude will affect the control indirectly via the feedback. Extensions with multiplicative
noise are needed to get optimal feedback gains that depends on the noise magnitude (Todorov, 2005).330

SOOC, on the other hand, depends explicitly on the noise level even for a simple additive noise (because
it deals with non-linear dynamics, e.g. bilinear system, see Fig. 2 and (23)).
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• In SOC, and more specifically in the LQG theory, the constraints on the terminal point must be taken
into account indirectly by adding a penalty term in the cost. This may be problematic since tuning
the compromise between this penalty and the original cost may be tricky. Inadequate choices of cost335

weights can lead to irrelevant controls and trajectories. This issue does not appear in our open-loop
framework as hard constraints can be set, that is, we can deal with explicit terminal constraints on the
mean and the covariance of the stochastic process.

Despite their differences, the SOOC and SOC approaches may be complementary. A natural scheme in many
applications could be to use the present open-loop approach at the stage of the planning process, and then to340

use the SOC framework to track a planned trajectory (for instance, one could employ a LQG method after
linearization around the mean trajectory –and quadratization of the cost– like in the iterative LQG method
of Li and Todorov, 2007) at the execution stage. Moreover, it is worth noting that the SOOC method at
least requires knowledge of the initial state (or its distribution), which means that sensory feedback is at least
required for that purpose (but it is not required in real-time as the control is open-loop). We next illustrate345

the SOOC approach in the context of human motor control. This application is interesting because it shows
that the method can be applied to relatively complex problems. Moreover, it shows that it can account for
the ability of our central nervous system to tune the intrinsic impedance of the neuromusculoskeletal system
in a feedforward manner, in particular via co-contraction of antagonist muscles.

4 Application to the neural control of movement350

We now apply the SOOC framework to a realistic movement planning problem to emphasize its potential
relevance in this field. Here we focus on the control of reaching movements in humans with a model of
the arm taken from Katayama and Kawato (1993). The arm is viewed as a two-link system moving in the
horizontal plane and actuated by 6 muscles. Two pairs of muscles involve single-joint muscles acting around
the shoulder and elbow joints respectively. The last two muscles are double-joint muscles. This model was355

shown to predict realistic limb stiffness. Here use this model to test our modeling framework on a realistic
and relatively complex system. More precisely, the state of the arm is modeled as x> = (q>, q̇>) ∈ R4 where
q = (q1, q2)> denotes the joint angle vector (1st component for shoulder and 2nd component for elbow) and
q̇ = (q̇1, q̇2)> denote the corresponding joint velocity vector.

The skeletal dynamics of the arm follows a rigid body equation of the form:360

q̈ =M−1(q)
(
τ(q, q̇,u)− C(q, q̇)q̇

)
(29)

whereM is the inertia matrix, C is the Coriolis/centripetal matrix, τ is the net joint torque vector produced
by muscles and u ∈ R6 is the muscle activation vector (i.e. the deterministic control variable here).

Precisely, the terms of the inertia and Coriolis/centripetal matrices are:

M11(q) = I1 + I2 +M2L
2
1 + 2M2L1Lg2 cos(q2)

M12(q) = I2 +M2L1Lg2 cos(q2)
M21(q) = M12(q)
M22(q) = I2

(30)
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and
C11(q, q̇) = −2M2L1Lg2 sin(q2)q̇2

C12(q, q̇) = −M2L1Lg2 sin(q2)q̇2

C21(q, q̇) = M2L1Lg2 sin(q2)q̇1

C22(q, q̇) = 0

(31)

with Ii, Li, Lgi and Mi denoting moments of inertia, lengths of segments, lengths to the center of mass and365

mass of the segments.
Regarding the net joint torque vector, we have τ(q, q̇,u) = −A>T (l, l̇,u) where A is the moment arm

matrix (constant here), T is the 6-D muscle tension vector and l = lm −Aq is the muscle length vector (lm

being the muscle length when the joint angle is zero; hence l̇ = −Aq̇). The matrix A is defined as follows to
define how the 6-D muscle tensions convert to 2-D joint torques:370

A =
(
a1 a2 0 0 a5 a6

0 0 a3 a4 a7 a8

)
. (32)

In this model, the tension vector generated by muscles comes from the following function:

T (l, l̇,u) = K(u)
(
lr(u)− l

)
−B(u)l̇, (33)

where K(u) = diag(k0 + ku), B(u) = diag(b0 + bu) and lr(u) = l0 + diag(r1, ..., r6)u. All the parameters of
the model (k0, k, b0, b, lm − l0, ri, ai, Ii, Li, Lgi, Mi) can be found in the Tables 1, 2, and 3 in Katayama
and Kawato (1993).

Finally, by introducing noise (Wt a 2-D Wiener process with unit covariance), we obtain the following375

SDE modeling the noisy musculoskeletal dynamics of the human arm:

dxt = f(xt,u(t))dt+GdWt (34)

with

f(xt,u(t)) =
(

q̇t

M−1(qt)
(
τ(qt, q̇t,u(t))− C(qt, q̇t)q̇t

) ) (35)

and

G =
(

diag(0, 0)
diag(σ1, σ2)

)
. (36)

The parameters σi are used to set the magnitude of additive noise. Here we used a simple additive noise
model for simplicity but more complex noise models including state or control dependent noise could be380

implemented (for instance, if noise is assumed to act at torque level, we would need to replace the second
component of G byM−1(qt)diag(σ1, σ2), which would make the noise state-dependent, G(xt)). Importantly,
it must be noted that the drift term of this SDE is relatively complex. For instance, f includes quadratic
terms in the control variable (i.e. it is not a control-affine system) as well as many non-linear interactions
between state and control elements.385

In simulations, the goal was to move the arm from an initial position to a given target in fixed time T ,
while minimizing a cost defined as follows:

C(u) = E

[∫ T

0
L(mx,u) dt+ (xf −mxf

)>Q̄(xf −mxf
)
]

(37)
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with L(mx,u) = u>u + α(a2
x + a2

y) where ax and ay are the Cartesian accelerations of the endpoint along
the x and y axes respectively (i.e. functions of mx,u, which can be easily computed from the forward
kinematic function), and Q̄ = qvardiag(1, 1, 10−3, 10−3). This Lagrangian implements a compromise between390

minimizing effort and maximizing smoothness, which is in accordance with the literature (Flash and Hogan,
1985; Berret et al., 2008, 2011a). The hand-acceleration cost favors straight hand paths and bell-shaped
velocity profiles for the average trajectory as typically observed for such arm reaching movements. The
control cost aims at minimizing the total amount of muscle activation used to achieve the task (i.e. effort).
The final term of the cost corresponds to a penalization of the state covariance, the magnitude of which is395

tuned by the weight qvar. A variance cost has been proposed for the control of movement in Harris and
Wolpert (1998). It must be noted that this cost is relatively complex due to the squared acceleration terms
which introduce non-trivial dependencies between the mean state and the open-loop controls.

Results of simulations are given in Figure 3. The initial mean state was given [position (0,0.2) in Cartesian
coordinates and zero velocity] and the initial covariance was zero. The final mean state was also given [position400

(0,0.4) in Cartesian coordinates and zero velocity] but the final covariance was left free. The simulated
movement was a forward movement of 20 cm performed in 600 ms. Two different cases were tested: no
penalization of the covariance term and strong penalization of the covariance term. It is worth noting that
drastically different optimal controls and resulting trajectories are obtained depending on the consideration
or not of a covariance cost (qvar weight).405

These simulations highlight that co-contraction may be an open-loop optimal strategy to reduce variability
without the need for on-line sensory feedback and advanced state estimation procedures. In particular, the
co-contraction observed at the end of the reaching movement agrees with experimental observations and the
supposed role of co-contraction to improve movement accuracy (Gribble et al., 2003). These simulations410

illustrate the basis principles and motivations underlying the SOOC framework. The role of co-contraction
as a constitutive element of the motor plan is still elusive in neuroscience (Latash, 2018) and we believe that
such a framework may reveal itself useful for investigating the nature of descending motor commands in the
neural control of movement (without on-line sensory feedback).

5 Conclusions415

A framework for the optimal open-loop control of stochastic systems has been presented. When focusing on
propagation of mean and covariance of the stochastic process, resolving SOOC problems can be approached
via powerful deterministic optimal control methods. As such, this formulation lies in-between the well-
documented deterministic and stochastic optimal control theories, in the sense that noise effects on the
dynamics are taken into account while only deterministic open-loop controllers are devised. The resulting420

framework is versatile and may prove useful in many fields as illustrated here for the neural control of
movement. Indeed, the mechanical impedance of the neuromuscular system can be tuned via feedforward
co-contraction mechanisms. This was emphasized in particular in unstable tasks where the detrimental
effects of neural noise and delayed feedback are more apparent (Hogan, 1984; Burdet et al., 2001; Franklin
et al., 2003). Interestingly, the proposed framework can handle non-linear dynamics, general cost functions,425

and various types of signal-dependent noise which is well suited to investigate complex systems such as
the neuromusculoskeletal dynamics. After some modeling choices and statistical linearization, we showed
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Figure 3: Planar arm reaching experiment. A. Hand trajectories in the horizontal plane when there is no
variance cost (qvar = 0). Left: Hand paths. Right. Speed profiles. Transparent traces represent 100 sampled
trajectories. Thick black traces are the corresponding (Monte Carlo) means. Red trajectories represent the
theoretical trajectories predicted by the approximate equivalent deterministic optimal control problem. The
blue circle represents the target to reach to. It can be seen that the target is often missed in this case.
Bottom: Corresponding open-loop optimal controls. B. Hand trajectories in the horizontal plane when there
is a variance cost (qvar = 104). Same panel organization as in A. It can be seen that most trajectories reach
the target in this case although the control is open-loop. The price to pay is to use greater effort as seen
by the larger optimal controls (note that the scale is different for readability). Note that co-contraction
of antagonists is largely exploited to tune the mechanical impedance of the arm and resist disturbances
intrinsically. Other parameters were as follows: α = 1, σ1 = σ2 = 0.5.
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that efficient numerical tools from DOC can readily be used to find approximate solutions of the original
SOOC problem. This open-loop approach may be well complemented by the design of optimal feedback
control laws after linearization around the planned (mean) trajectory. Interestingly, the latter was found430

to depend qualitatively on noise magnitude and cost function design. In conclusion, optimal open-loop
control of stochastic systems may be a useful piece of a general motion planning scheme as it goes beyond
standard deterministic formulations by taking into account robustness/stability issues and may be more
convenient/efficient to use than general SOC for problems involving non-linear systems and non-quadratic
costs. In certain cases where sensory delays are long, feedback intermittent or even unavailable on-line, this435

open-loop restriction may even be the correct way to model the problem at hand. In other cases where high-
bandwidth sensory feedback is available, the framework may also be used within a model predictive control
approach (Mayne et al., 2000). Future work will aim at exploiting the present framework to investigate
more deeply the role of muscle co-contraction in the neural control of movement or in robots with variable
impedance actuators.440

19



6 Appendix

6.1 Comparison with LQG: computation of the control

Consider the problem of minimizing the cost

C(u) = E

[∫ T

0

(
u(t)2 + qx2

t

)
dt+ qfx

2
T

]
. (38)

among the trajectories of
dxt = u(t)xtdt+ gdwt, x0 ∼ N (m0, P 0) (39)

As we have seen before, this is equivalent to minimizing the cost445

C(u) =
∫ T

0

(
u2 + q(m2 + P )

)
dt+ qf (m(T )2 + P (T )), (40)

among the trajectories of {
ṁ = um

Ṗ = 2uP + g2 , m(0) = m0, P (0) = P 0. (41)

Define the Hamiltonian H = λmum + λP (2uP + g2)− (u2 + q(m2 + P )). Pontryagin’s Maximum Principle
yields the following necessary conditions:{

λ̇m = −uλm + 2qm,
λ̇P = −2uλP + q,

u = λmm

2 + λPP, (42)

with terminal constraints m(0) = m0,

P (0) = P 0,
,

λm(T ) = −2qfm(T ),

λP (T ) = −qf .
(43)

We can compute u̇ and, using that the Hamiltonian is constant along the time and satisfies H = u2 +λP g
2−450

q(m2 + P ), we obtain
u̇ = H − u2 + q(m2 + P ). (44)

This equation allows to compute the optimal u as soon as the constants H and u(0) are known. The latter
only depend on the parameters λm(0), λP (0) which have to be adjusted in such a way that the terminal
conditions are satisfied.

It is interesting as well to see how the Maximum Principle allows to recover the equation of the LQG gain
in the case where the cost is

C(u) = E

[∫ T

0

(
(xtu(t))2 + qx2

t

)
dt+ qfx

2
T

]

=
∫ T

0
(m2 + P )(u2 + q)dt+ qf (m(T )2 + P (T )). (45)
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The necessary conditions become455 {
λ̇m = −uλm + 2m(q + u2),
λ̇P = −2uλP + q + u2,

(m2 + P )u = λmm

2 + λPP, (46)

the terminal constraints remaining unchanged. A simple computation then shows that λm − 2mλP ≡ 0 (it
is 0 at t = T and solution of a linear equation). As a consequence, we obtain from the necessary condition
above that u = λP and

u̇ = λ̇P = −2uλP + q + u2 = q − u2. (47)

6.2 Alternative approximation with higher order Taylor expansions

An alternative approximation could be as follows (e.g. Maybeck, 1982, Chap. 12). Taking the expansions at460

order N = 2 for f and at order N = 1 for ∂f
∂x and GG>, so that:

b̃ ∼ f(m,u) + 1
2

∂2f
∂x2 (m,u) • P, where ∂2f

∂x2 • P =
(

tr( ∂2f1
∂x2 P ), . . . , tr( ∂2fn

∂x2 P )
)>

Ã ∼ ∂f
∂x (m,u), and H̃H̃> ∼ G(m,u)G(m,u)>,

(48)

we obtain the following dynamics for (DOC),
ṁ(t) = f(m(t),u(t)) + 1

2
∂2f
∂x2 (m(t),u(t)) • P (t),

Ṗ (t) = ∂f
∂x (m(t),u(t))P (t) + P (t) ∂f

∂x (m(t),u(t))>+

G(m(t),u(t), t)G(m(t),u(t), t)>.

(49)

Note that an equivalent way to obtain the above approximation is to close the dynamics of (mx, Px) by using
a cumulant-neglect closure method at order 2 (see Socha, 2008 or Wojtkiewicz et al., 1996).
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