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Abstract

A novel Finite-Volume scheme for the numerical computations of compressible two-phase flows in pipelines is pro-
posed for the fully non-equilibrium Baer-Nunziato model. The present FV approach is the extension of the method
proposed in [1] in the context of the Euler equations to the Baer-Nunziato model. In addition, proper approximations
of the non-conservative terms are proposed to consider jumps of volume fraction as well as jumps of cross-section
in order to respect uniform pressure and velocity profiles preservation. In particular, focus is given to the numerical
treatment of abrupt changes in area and to networks wherein several pipelines are connected at junctions. The pro-
posed method makes it possible to avoid the use of an iterative procedure for the solution of the junction problem.
The present approach can also deal with general Equations Of State. In addition, the fluid-structure interaction of
compressible fluid flowing in flexible pipes is also considered. The proposed scheme is then assessed on a variety of
shock-tubes and other transient flow problems and experiments demonstrating its capability to resolve such problems
efficiently, accurately and robustly.

Keywords: Variable cross-section (temporal and spatial), Baer-Nunziato model, Finite Volume, ALE formulation,
Pipe network, Junction of flexible pipes

1. Introduction1

One-dimensional unsteady or transient compressible flow computations in ducts with variable cross-section are of2

interest in many industrial and engineering applications involving complex pipe systems. Many papers dealing with3

variable cross-section pipelines encountered in the literature consider the Euler equations [2, 3, 4, 5]. Much less is4

known about compressible multiphase flows. In particular, Berry et al. [6] have proposed one of the first approaches5

dealing with variable cross-sections with Baer-Nunziato-type models. These papers often only consider one single6

pipe and not networks composed by a complex pipeline system connected by junctions. Many different approaches7

are proposed in the literature to solve this problem. In most of the methods, the coupling conditions are based on the8

mass conservation at the junction. In addition, some of them assume that all the pipes should be at the same pressure9

at the junction [7, 8, 9] or the same total pressure at the junction [10]. Other authors treat the junction coupling as a10

generalized Riemann problem [11, 12, 13, 14] or so called “half Riemann” problem [10]. However, only isentropic11

or isothermal Euler equations are considered in most of these papers. This paper will consider other conditions that12

should be satisfied in order to couple all of the flow variables. Moreover, most papers encountered in the literature13

deal with rigid tubes. However, the pipes used in realistic networks are flexible which can affect the internal fluid14

dynamics. For example, the speed of pressure waves is known to be strongly influenced by the elastic behavior of15

the pipe [7, 15, 16]. That is why the dynamic behavior of flexible pipes and its interaction with the internal fluid16

are also considered here. Recently, Dumbser and his co-workers [17, 18, 19] have proposed a finite-volume method17

for compressible flows in flexible tubes where a path-conservative approach is considered to deal with the spatial18
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variation of cross-sections. Once again, these papers only consider isentropic or isothermal Euler equations. As the19

use of path-conservative methods for shock-wave solutions has been well discussed (see for example [20, 21]), this20

kind of approach is not considered in the present paper. In order to take into account all of the previously mentioned21

features relevant for the propagation of pressure waves in realistic pipe systems composed by networks of flexible22

pipes involving potential abrupt change of area, a new Finite-Volume (FV) formulation has been recently proposed23

[1] for the complete Euler and Homogeneous Equilibrium Model (HEM) equations. This FV approach is based on24

the integral form of the fluid equations and makes it possible to obtain a discrete 1-D variable cross-section system.25

It has been shown that general equations of state can be used. In addition, the junction coupling is also tackled using26

the integral form of the equations in a similar manner as in [22, 23]. As a consequence, no iterative procedure is27

used for this treatment of the junction problem. This Finite-Volume method was also coupled with a Finite-Element28

method using the beam theory in [1] for the resolution of fluid-structure interaction between a compressible fluid and29

the surrounding movable/deformable structure of the tube wall. Furthermore, this FV approach was recently assessed30

on water-hammer experiments with column-separation [24]. However, only the Homogeneous Equilibrium Model31

(HEM) was considered for compressible two-phase flows in the previous works [1, 24] as its mathematical structure32

is essentially the same as the Euler equations for a single-phase flow. The HEM is the simplest two-phase model33

taking into account phase transitions and is extensively used for the simulation of cavitation, for example [25] and34

the references herein. Unlike the HEM, the Baer-Nunziato-type (BN) model can represent complex two-phase flow35

phenomena involving thermodynamical disequilibrium as shown in [26] for the fast depressurization of hot water in36

pressurized pipes. However, very few works consider variable cross-section in conjunction with the Baer-Nunziato37

model except the work of Berry and his co-workers [6, 27, 28] in the context of the development of the RELAP-38

7 code. That is why we here consider the extension of the FV approach proposed [1] in the context of the Euler39

equations to the two-fluid BN model. This model is considered to be one of the most general full non-equilibrium40

two-phase flow models. The BN model, which is often built using an averaging procedure of the local conservation41

laws [29, 30, 31] assumes full non-equilibrium between phases. The mathematical properties of this model without42

source terms were first studied by Embid and Baer [32]. The main difficulty of the convective part of the model lies in43

the presence of non-conservative terms. Many numerical approximations based on approximate Riemann solvers have44

been proposed, see for example [33, 34, 35, 36, 37, 38, 39, 40] and the references herein. To the knowledge of the45

authors, this is the first time that the Baer-Nunziato model is considered within the use of elastic pipes, abrupt change46

of area, and junctions of several branches. The main difficulty is to propose numerical approaches able to deal with47

both the non-conservative terms involved in the change of volume fraction and the non-conservative terms involved48

in the change of cross-sections. The uniform pressure and velocity preservation becomes a more challenging issue in49

the context of variable cross-sections.50

The paper is organized as follows. Section 2 describes the numerical approximation of the BN model leading51

to the proposed 1-D discrete FSI model. In particular, the integral form of the Baer-Nunziato equations is carefully52

described showing the numerical approximations of both volume fraction and cross-section gradients. In addition,53

the numerical approach proposed for both the junction problem and the abrupt change of area is clearly detailed. The54

present numerical method is then assessed on several transient problems in Section 3. Especially, the interaction of55

shock waves in both gas and liquid with a sudden change of area, the pressure wave propagation in rigid and elastic56

pipes, a water-hammer experiment with vapor cavity formation and collapse, and finally the propagation of pressure57

waves in a network are satisfactorily demonstrated.58

2. Governing equations and numerical procedure59

2.1. Baer-Nunziato two-phase model60

2.1.1. Governing equations61

The unsteady compressible multi-dimensional two-pressure two-fluid equations (without source terms) are given
by:

∂tU + ∇ · F (U) + H (U)∇α1 = 0 (1)
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with

U =


α1
αkρk

αkρkuk

αkρkek

 , F (U) =


0

αkρkuk

αkρkuk ⊗ uk + αk pk Id
αk (ρkek + pk) uk

 and H (U) =


uI

0
(−1)k pI Id
(−1)k pIuI

 where k = 1, 2

with the constraint α1 +α2 = 1. αk, ρk, uk, pk and ek denote the volume fraction, density, velocity-vector, pressure and
specific total energy of the phase k and Id is the identity tensor. The specific internal energy of the phase k denoted by
εk is given by: εk = ek − u2

k/2. An equation of state (EOS) is considered for each phase gives εk as a function of pk

and ρk: εk = εk (pk, ρk). The phasic speed of sound ck is defined as:

ρkc2
k ≡

(
pk

ρk
− ρk∂ρkεk

) (
∂pkεk

)−1

The specific entropy sk (pk, ρk) satisfies the relation: c2
k∂pk sk + ∂ρk sk = 0. The temperature Tk of the phase k is defined

as: 1/Tk ≡ ∂pk sk/∂pkεk. The Baer-Nunziato model [41] is here considered which leads to the following closure laws
for the interfacial velocity vector uI and the interfacial pressure pI :

uI = u2 and pI = p1 (2)

Note that other choices for uI and pI are also encountered in the literature [33, 42, 34]. Some of them are chosen to
satisfy an entropy inequality as in [42, 34]. Recent comparisons on these specific entropy-satisfying closure relations
have been performed on fast steam-water transients [43] showing that all the considered closure laws provide almost
the same grid converged numerical results on those test cases.
The governing equations (1) are hyperbolic (as |uI − uk | , ck) but not strictly [32]. In 1-D, the seven eigenvalues are:

λ1 = uI , λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, λ5 = u2 − c2, λ6 = u2 and λ7 = u2 + c2

Fields associated with eigenvalues λ1,3,6 are linearly degenerate (LD), while the other fields are genuinely non-linear
(GNL).
Note that the non-conservative term H (U)∇α1 in Eq. (1) acts only across the contact discontinuity uI , i.e. there is
no change of α1 across the other waves leading to a pair of Euler equations for each phase separately [32, 36]. As a
consequence, unique jump conditions can be written within each single phase [42, 34]. In other words, shock solutions
of the Riemann problems are defined in an unambiguous way. This is of major importance from a computational point
of view: without such properties, numerical grid converged shock solutions may differ due to the inner numerical
diffusion of the scheme.
This set of equations is completed by the addition of two phasic equations of state (EOS). In the present paper, the
Stiffened Gas (SG) EOS is considered for each phase:

ρkεk =
pk + γkπk

γk − 1
+ ρkqk (3)

where γk, πk and qk are characteristic constants to render unique the thermodynamic behavior of each fluid.62

2.1.2. Integral form of the 3-D equations63

The derivation detailed in the following is the extension of the approach proposed in [1] to the Baer-Nunziato
model. Focus is thus given to the numerical approximation of the non-conservative terms linked to the change of
volume fraction as well as the ones due to the cross-section variations. The starting point of the present method is the
integral form of Eq. (1) for a moving control volume Ci (t) as:

d
dt

(∫
Ci(t)

UdV
)

+
∑

l∈∂Ci(t)

∫
l
FALE (U, v) ndS +

∫
Ci(t)

H (U)∇α1dV = 0 (4)
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with the ALE (Arbitrary Lagrangian-Eulerian) inviscid conservative flux-vector associated with the BN model and
given by:

FALE (U, v) =


−vα1

αkρk (uk − v)
αkρkuk ⊗ (uk − v) + αk pk Id
αkρkek (uk − v) + αk pkuk


The moving control volume Ci (t) is bounded by the surface ∂Ci (t) on which v and n are the boundary’s local velocity64

and its unit outward normal vector, respectively.65

It is well know that, to ensure the conservative properties on moving and/or deforming grids, the geometric con-
servation law (GCL) has to be satisfied [44]:

d
dt

(
|C (t) |

)
−

∫
∂C(t)

v · ndS = 0 (5)

This equation is here implicitly satisfied as done previously in [45, 46, 39]. For this purpose, the boundary ∂C(t) is66

defined as a weighted average of the n and n + 1 time level areas in the discretization of the BN equations as it will be67

detailed in the following.68

For quasi 1-D geometries such as pipelines, the main flow aligns with the pipe axis so only the axial flow velocity69

is considered, the second and third velocity components being neglected. For such configurations, the moving control70

volume Ci (t) is considered to be conical. Its axis, of length hi corresponds to the flow axis denoted in the following71

by x. The boundary of this volume, ∂Ci(t), is composed of three surfaces: two orthogonal to the pipe (and flow) axis72

denoted Ai±1/2 and Aw which corresponds to the pipe sidewall as represented in Fig. (1).

x
Ai−1/2

Ai+1/2

Aw

ni+1/2ni−1/2

hi

Figure 1: Sketch of the conical control volume Ci of length hi composed by three surfaces: the two cross-sections Ai±1/2 and the pipe wall Aw.

73

Separating the conservative terms from the non-conservative ones, the semi-discretization of the integral equation
(4) on the cell Ci can be written as:

d
dt

(|Ci|Ui) +

∫
Ai+1/2

FALE (
U, vi+1/2

)
ni+1/2dS +

∫
Ai−1/2

FALE (
U, vi−1/2

)
ni−1/2dS +

∫
Aw

FALE (U, v) ndS

+

∫
Ai+1/2

Ri (U) · ni+1/2dS +

∫
Ai−1/2

Ri (U) · ni−1/2dS +

∫
Aw

Ri (U) · ndS = 0
(6)

showing the contribution of the three surfaces of the conical control volume, with Ui the cell average of the state
vector U and with the ALE conservative inviscid flux-vector of the BN equations in the normal direction n:

FALE (U, v) n =


−α1v · n

αkρk (uk − v) · n
αkρkuk (uk − v) · n + αk pk n

αkρkek (uk − v) · n + αk pkuk · n


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Here Ri (U) is a function designed such that its integral over the surface of ∂Ci(t) approximates the effect of the volume
integral over Ci(t) of the non-conservative terms H (U)∇α1; i.e. the non-conservative term is discretized [39] using
the following approximation:∫

Ai+1/2

Ri (U) · ni+1/2dS +

∫
Ai−1/2

Ri (U) · ni−1/2dS +

∫
Aw

Ri (U) · ndS ≈
∫

Ci

H (U)∇α1dV

The surface Aw corresponds to the moving pipe sidewall where the following conditions uk · n = v · n for k = 1, 2 are
respected. As a consequence, the ALE conservative flux-vector at the wall can be expressed as:

FALE (U, v) · n
∣∣∣∣
Aw

=


−α1v · n

0
αk pk n
αk pkv · n


∣∣∣∣∣∣∣∣∣∣∣
Aw

For the two cross-sections orthogonal to the pipe axis, conservative numerical fluxes Fi±1/2 are defined as the edge
average of the ALE conservative flux-vector in the following manner:

Fi±1/2 ≡
1

|Ai±1/2|

∫
Ai±1/2

FALE (
U, vi±1/2

)
ni±1/2dS.

with the conservative fluxes defined for the three surfaces, consideration is given to the integration of the non-
conservative terms of the BN model over the considered conical control volume. First, for the pipe sidewall, there is
no jump of α1 across a wall, especially when a mirror state is used for the numerical flux, so the non-conservative flux
across the wall boundary Aw is set to be null: ∫

Aw

Ri (U) · ndS = 0

and, for the two cross-sections, we define the non-conservative numerical fluxes Ri,i±1/2 as the following edge average:

Ri,i±1/2 ≡
1

|Ai±1/2|

∫
Ai±1/2

Ri (U) · ni±1/2dS.

Finally, the only contribution due to the pipe sidewall Aw lies in the corresponding ALE conservative flux-vector. As a
consequence, new terms arise in the phasic volume fraction, momentum and energy equations. Thus defining the wall
volume fractions (αk)w and the wall phasic pressures (pk)w (to approximate the different components of the fluxes) as
the following averages:

(αk)w

∫
Aw

v · ndS ≡
∫

Aw

αkv · ndS and (αk)w (pk)w

∫
Aw

H (v, n) dS ≡
∫

Aw

αk pkH (v, n) dS with H (v, n) =


0
0
n

v · n


leads to the following Ordinary Differential Equation (ODE) for each cell Ci:

d
dt

(|Ci|Ui) + Fi+1/2|Ai+1/2| + Fi−1/2|Ai−1/2| + Ri,i+1/2|Ai+1/2| + Ri,i−1/2|Ai−1/2| + Υi = 0 (7)

with Υi the term derived from the pipe sidewall in cell Ci given by:

Υi =

∫
Aw

FALE (U, v) ndS.

This term must be expressed using numerical quantities associated with the two cross-sections orthogonal to the
pipe/flow axis. For this purpose, the Surface Conservation Law (SCL) and the Geometrical Conservation Law (GCL)

5



for the conical closed volume Ci(t) are considered to express the different components of Υi in the following manner:

∫
Aw

ndS = −

(∫
Ai+1/2

ni+1/2dS +

∫
Ai−1/2

ni−1/2dS
)

= −
(
ni+1/2|Ai+1/2| + ni−1/2|Ai−1/2|

)
∫

Aw

v · ndS =
d
dt
|Ci| −

(∫
Ai+1/2

vi+1/2 · ni+1/2dS +

∫
Ai−1/2

vi−1/2 · ni−1/2dS
)

=
d
dt
|Ci| −

(
vi+1/2|Ai+1/2| + vi−1/2|Ai−1/2|

)
with vi+1/2 = vi+1/2 · ni+1/2. Equation (7) is then integrated in time using the explicit Euler scheme leading to:

|Cn+1
i |U

n+1
i − |Cn

i |U
n
i + ∆tn

(
F i+1/2|A

n+1/2
i+1/2 | + F i−1/2|A

n+1/2
i−1/2 | +Ri,i+1/2|A

n+1/2
i+1/2 | +Ri,i−1/2|A

n+1/2
i−1/2 |

)
+ Υn

i = 0 (8)

with F i±1/2 the conservative numerical fluxes approximating the edge average Fi±1/2 which can be written as:

F i±1/2 =



(
F

(0)
1

)
i±1/2(

F
(1)

k

)
i±1/2(

F
(2)
k

)
i±1/2(

F
(3)

k

)
i±1/2


(9)

where the components
(
F

(0)
k

)
i±1/2

,
(
F

(1)
k

)
i±1/2

,
(
F

(2)
k

)
i±1/2

and
(
F

(3)
k

)
i±1/2

correspond to the volume fraction, mass,
momentum and energy conservative numerical fluxes of phase k, respectively, and with Ri,i±1/2 the non-conservative
numerical fluxes approximating the edge average Ri,i±1/2 which can be written as:

Ri,i±1/2 =



(
R

(0)
1

)
i,i±1/2

0(
R

(2)
k

)
i,i±1/2(

R
(3)
k

)
i,i±1/2

 (10)

where the components
(
R

(0)
k

)
i,i±1/2

,
(
R

(2)
k

)
i,i±1/2

and
(
R

(3)
k

)
i,i±1/2

correspond to the volume fraction, momentum and
energy non-conservative numerical fluxes of phase k, respectively. In addition, using both SCL and GCL, the term Υn

i
derived from the pipe sidewall can be expressed as:

Υn
i =


− (α1)w T

n
i

0
− (αk)w (pk)wS

n
i

(αk)w (pk)w T
n
i

 with


T n

i = |Cn+1
i | − |C

n
i | − ∆tn

(
vn+1/2

i+1/2 |A
n+1/2
i+1/2 | + vn+1/2

i−1/2 |A
n+1/2
i−1/2 |

)
S

n
i = ∆tn

(
nn+1/2

i+1/2 |A
n+1/2
i+1/2 | + nn+1/2

i−1/2 |A
n+1/2
i−1/2 |

)
where nn+1/2

i±1/2 , |An+1/2
i±1/2 | and vn+1/2

i±1/2 are a weighted average of the n and n + 1 time level areas of the unit outward
normal vector, the interfaces and the grid velocity, respectively in order to implicitly verify both the Discrete Surface
Conservation Law and the Discrete Geometrical Conservation Law as in [44, 45, 46, 39]. For clarity, the subscript
n + 1/2 used for the geometrical variables (surface, volume, unit outward normal vector, grid velocity...) is omitted in
the following.
Realistic piping configurations are usually modelled as flow networks characterized by the presence of several pipes

(or branches) connected to specific points (called junctions in the following) leading to potentially complex networks
with several junctions and branches. For the numerical calculation of flow networks, it is convenient to consider an
arbitrary orientation of each single pipe. So the local orientation of each control volume is here considered. For
this purpose, a unit vector mi associated with the local orientation of the conical cell Ci and collinear to the pipe
axis is introduced. As in [1], when considering two adjacent cells denoted here by Ci and Ci+1, there are 4 different
configurations, represented in Fig. (2), depending on the orientation of the cell Ci with respect to the one of the cell
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Figure 2: Sketch-up of the different configurations for the arbitrary orientation of two adjacent cells denoted Ci and Ci+1.

Ci+1. The discrete multi-dimensional momentum equation is then projected to the unit vector mi leading to:

|Cn+1
i | (αkρkuk)n+1

i − |Cn
i | (αkρkuk)n

i + ∆tn
[(
F

(2)
k

)
i+1/2
· mi|Ai+1/2| +

(
F

(2)
k

)
i−1/2
· mi|Ai−1/2|

]
+ ∆tn

[(
R

(2)
k

)
i,i+1/2

· mi|Ai+1/2| +
(
R

(2)
k

)
i,i−1/2

· mi|Ai−1/2|

]
− (αk)w (pk)w ∆tn

(
δi

i+1/2|Ai+1/2| + δi
i−1/2|Ai−1/2|

)
= 0

with (uk)i = (uk)i ·mi and δi
i±1/2 = ni±1/2 ·mi. Note that δi

i+1/2 = ±1, the sign of δi
i+1/2 depends on the orientation of the74

conical cell Ci with respect to the outward unit vector ni+1/2. As only quasi 1-D flows are considered here, the phasic75

velocity vector (uk)i is collinear to the pipe axis mi leading to: (uk)i = (uk)i mi and thus (uk)i = (uk)i · mi, the other76

velocity components being neglected.77

2.1.3. 1-D discrete Baer-Nunziato equations of one single pipe78

Finally, the system of discrete Baer-Nunziato equations for a single pipe with varying cross-section is:

|Cn+1
i |Q

n+1
i − |Cn

i |Q
n
i + ∆tn

(
Φi

i+1/2|Ai+1/2| +Φ
i
i−1/2|Ai−1/2| +Πi,i+1/2|Ai+1/2| +Πi,i−1/2|Ai−1/2|

)
+Ψn

i = 0 (11)

with

Qi =


α1
αkρk

αkρkuk

αkρkek


i

, Φi
i±1/2 =


− (α1)i±1/2 vi±1/2(
F

(1)
k

)
i±1/2(

F
(2)
k

)
i±1/2
· mi(

F
(3)

k

)
i±1/2

 , Πi,i±1/2 =



(
R

(0)
1

)
i,i±1/2

0(
R

(2)
k

)
i,i±1/2

· mi(
R

(3)
k

)
i,i±1/2


and Ψn

i =


− (α1)w T

n
i

0
− (αk)w (pk)w S

n
i

(αk)w (pk)w T
n
i

 where Sn
i = Sn

i · mi

The variation of cross-section is involved in the non-conservative term Ψn
i . Note that this corresponds to a discrete

form of the following continuous counterpart:
∂t (α1A) + uI A∂xα1 = α1∂tA
∂t (αkρkA) + ∂x (αkρkukA) = 0
∂t (αkρkukA) + ∂x

(
αkρku2

k A + αk pkA
)

− pI A∂xαk = αk pk∂xA
∂t (αkρkekA) + ∂x (αkρkekukA + αk pkukA) − pIuI A∂xαk = −αk pk∂tA

(12)

We can observe that, aside from symmetrizing closures, this set of equations corresponds to the one used in the
RELAP-7 theory manual [28], except that here the time variation of the cross-section is considered for taking into
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account the pipe hoop elasticity for example. First, note that in the case that the cross-section is constant, Eq. (11)
gives the classical 1-D Baer-Nunziato system. Then, in the case where α1 is constant, Eq. (11) reduces to two sets of
Euler equations in variable cross-section.
The numerical fluxes Φi

i±1/2 are the 1-D projection of the 3-D conservative numerical flux F i±1/2 on the cell Ci

following its local orientation mi:

Φi
i±1/2 = Pi

(
F i±1/2,mi

)
with Pi




(
G(0)

1

)(
G(1)

k

)(
G(2)

k

)(
G(3)

k

)
 ,mi

 =



(
G(0)

1

)(
G(1)

k

)(
G(2)

k

)
· mi(

G(3)
k

)
 (13)

with Pi the 1-D projection operator using the same notations as those introduced in [1]. In the same manner, the
non-conservative numerical fluxes Πi,i±1/2 are the 1-D projection of the 3-D non-conservative numerical flux Ri,i±1/2
of the BN equations on the cell Ci:

Πi,i±1/2 = Pi
(
Ri,i±1/2,mi

)
(14)

In the same way, Qi is the 1-D projection of the state vector Ui on cell Ci:

Qi = Pi (Ui,mi) (15)

In addition, the inverse operator Ei can also be defined:

Ei




(
H(0)

1

)(
H(1)

k

)(
H(2)

k

)(
H(3)

k

)
 ,mi

 =



(
H(0)

1

)(
H(1)

k

)(
H(2)

k

)
mi(

H(3)
k

)
 (16)

Notice that the following identity is always satisfied:

Qi = Pi
[
Ei

(
Qi,mi

)
,mi

]
(17)

In addition, as the considered geometry is quasi-1D, i.e. the phasic velocity vector (uk)i is collinear to the pipe axis
mi: (uk)i = (uk)i mi, the following relation is also satisfied:

Ui = Ei [Pi (Ui,mi) ,mi] (18)

The surfaces |Ai±1/2| are expressed using the inner diameters of the corresponding pipe cell, i.e. |Ai±1/2| = πd2
i±1/2/4.

The conical volume |Ci| is computed as follows:

|Ci| =
πhi

12

(
d2

i+1/2 + di+1/2di−1/2 + d2
i−1/2

)
with hi the length of the control volume Ci.79

The time step ∆tn used in the explicit scheme in Eq. (11) is given using the Courant number:

C ≡ ∆tn max
i

(
(rA)n

i

lni

)
(19)

where rA is the spectral radius of the convective Jacobian including both conservative and non-conservative terms (in80

1-D, rA = max
k

(|uk | + ck)) with ck the phasic speed of sound given by the EOS and lni the characteristic length of the81

conical cell Cn
i . For single pipes, lni is set to be equal to hn

i the length of Cn
i .82

The conservative and non-conservative numerical fluxes denoted by Φi
i±1/2 and Πi,i±1/2 respectively, as well as the83

wall fluxes denoted by (αk)w and (pk)w in Eq. (11) have now been expressed. The remaining numerical challenge84

is to ensure the well-balanced property of the global numerical scheme with respect to both volume fraction and85

cross-section variations.86
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2.1.4. Numerical discretization87

The conservative numerical fluxΦi
i+1/2 and the non-conservative numerical term Πi,i+1/2 are here expressed using88

the HLLC-type scheme proposed by Tokareva and Toro [37] for the BN equations. This approximate Riemann solver89

takes into account all of the six characteristic fields present in the exact solution of the Riemann problem. For the90

phasic genuinely non-linear waves, as there is no change of volume fractions, averaged Rankine-Hugoniot conditions91

are used as in the classical case of the HLLC scheme for the Euler equations. For the phasic linearly degenerate waves,92

the Riemann invariants are preserved for the computation of intermediate states. In addition, the thin-layer approxi-93

mation proposed by Schwendeman et al. [36] is used for the contact discontinuity uI to compute the non-conservative94

terms. Finally, this results in a non-linear algebraic system which is solved using a Newton-Raphson method. Further95

details on the numerical discretization used here are given in [39] where both “subsonic” and “supersonic” wave con-96

figurations are considered. To bypass the iterative resolution required in the HLLC scheme, some approximations can97

be used as detailed in [40] for the subsonic configuration but are not considered in the following.98

In addition, the wall phasic pressures and volume fractions are taken to be equal to their cell-averaged counterpart:99

i.e. (pk)w = (pk)n
i and (αk)w = (αk)n

i .100

The first-order accuracy in time and in space is obtained using QL = Qn
i and QR = Qn

i+1.101

2.1.5. Pipe connections modeling102

For the numerical modeling of flow networks, the boundary conditions of several pipe flows have to be specified103

at the junctions in a correct manner as improper specifications contaminate all the flow. For this purpose, the nu-104

merical procedure detailed in [22, 23, 1] in the context of the Euler equations is here extended to the Baer-Nunziato105

two-phase flow models with the inherent difficulties due to the presence of non-conservative terms. The junction of106

several pipes is here modeled using a unique three-dimensional fictitious cell connecting the different branched pipes.107

As a consequence, the 3-D Baer-Nunziato equations are solved in the junction cell and thus, as done previously for108

the Euler equations, the junction problem consists in coupling the connected 1-D pipes and the 3-D junction through109

the numerical fluxes at the common edges between the branched pipes and the junction. In the same spirit, Bellamoli110

et al. [47, 48] have proposed to represent the junction of several pipes by the real geometry of the junction using the111

multi-dimension equations on one or more unstructured cells at the junction and its vicinity in the context of shallow-112

water channels.113

114

The notations introduced in [1] for the geometrical quantities associated with the junction of several pipes are
employed here. As represented in Fig. (3), the junction is modeled using a 3-D cell C j surrounded by common
interfaces with adjacent branch cells and wall surfaces. Let us consider the general case of a junction connecting N
pipes of arbitrary cross-sectional areas and arbitrary flow/pipe directions. The common interfaces with the branched
pipes are denoted here Al for l = 1, ...N and the wall surfaces are replaced by an equivalent wall surface denoted Aw.
As a consequence, the boundary ∂C j of the junction cell can be decomposed as:

∂C j =

⋃
l∈V

Al

⋃ Aw

withV the set of the surfaces of the junction cell linked to a 1-D pipeline. In the particular case of the connection of
two pipes with the same inner diameter, there is no wall surface at the junction. The 1-D adjacent pipe cell branched
to the junction through the edge Al is denoted here by Cil. By construction, the unit outward vectors of Cil and C j by
the common edge Al are opposite, i.e. nj,l = −nil,l. The derivation of the representative wall-fluxes are now expressed
as a function of the ones of the 1-D pipes adjacent to the junction. For this purpose, the SCL relation for the edges of
the closed 3-D junction cell C j is used as in the previous section leading to:∫

∂C j

ndS = 0 ⇒

∫
Aw

ndS =
∑
l∈V

nil,l|Al|

As in the ALE formulation of the junction finite-volume treatment proposed previously [1] for the Euler equations, all
of the junction surfaces are assumed to have the same displacement (i.e. which corresponds to a rigid body motion).
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Pipe 1 nj,1
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nj,3

Pipe 2

nj,2

C j

Figure 3: Sketch of the junction of N pipes: (a) real 3-D case; (b) ghost junction cell C j connecting the different pipes.

Application of the GCL to the 3-D junction cell C j gives:∫
∂C j

v · ndS = 0 ⇒

∫
Aw

v · ndS =
∑
l∈V

vil,l|Al| and |Cn+1
j | = |C

n
j |
(
≡ |C j|

)
i.e.

d
dt
|C j| = 0

with vil,l = vl · nil,l.
Then, the multi-dimensional Baer-Nunziato equations given in Eq. (1) are considered for the junction and are inte-
grated over the junction cell C j. The conservative and non-conservative numerical fluxes at the junction interfaces and
the wall-flux are thus used to update the flow variables of the multi-dimensional junction cell. Once again, the use of
SCL and GCL makes it possible to express the equivalent wall-flux as a function of geometrical quantities at common
interfaces between the junction and the branched pipes as:

|C j|Un+1
j − |C j|Un

j + ∆tn
∑
l∈V

F j,l|Al| + ∆tn
∑
l∈V

R j,l|Al| + ∆tn
∑
l∈V

Gil,l|Al| = 0 with Gil,l =


− (α1)w vil,l

0
(αk)w (pk)w nil,l
(αk)w (pk)w vil,l


F j,l is the 3-D outward conservative numerical fluxes with respect to C j at the edge Al for l ∈ V. This interface
conservative flux at the edge Al is expressed as the 3-D extension of the boundary flux of the neighboring branch Cil

using the conservative property of the fluxes as:

F j,l = −F il,l (20)

In addition, the wall phasic pressure (pk)w and the wall volume fraction (αk)w are set equal to the phasic cell-averaged
pressure (pk) j and the cell-averaged volume fraction (αk) j of the junction cell, respectively. This leads to:

|C j|Un+1
j − |C j|Un

j − ∆tn
∑
l∈V

F il,l|Al| + ∆tn
∑
l∈V

R j,l|Al| + ∆tn
∑
l∈V

Gil,l|Al| = 0 (21)

The conservative numerical flux F il,l at the interface between the multi-dimensional junction cell and the one-
dimensional neighboring branch cell is expressed using the left and right states of the interface Al, UL and UR re-
spectively, the interface velocity vl and the outward unit vector nil,l:

F il,l = F
(
UL,UR, vl, nil,l

)
10



The first-order accuracy in time and space is obtained with:

UL = Eil

(
Qn

il,mil

)
and UR = Un

j (22)

the left state corresponding to the 3-D extension of the 1-D state vector of the pipe cell Cil (see Eq. (16)) and the
right state to the cell average of the conservative variables at the junction. In the same manner, the non-conservative
numerical flux R j,l at the junction cell are expressed as:

R j,l = R j
(
UL,UR, vl, nil,l

)
with UL = Eil

(
Qn

il,mil

)
and UR = Un

j

Hong and Kim [22] have shown in the Euler equations framework that the classical choice given in Eq. (22) leads to
the generation of spurious pressure jumps at the junction. In particular, they have demonstrated that this change in
pressure across the interface of the junction is due to the variation of the normal velocity at this interface. Hong and
Kim developed a non-dimensional scaling function to alleviate the interface flux [22]. In practice, only the normal
velocity is conservatively reconstructed to scale the difference of the normal velocity component at the right state UR

associated with the junction cell. For the BN equations, this is done changing the phasic velocities as:
(αk)R = (αk)n

j
(ρk)R = (ρk)n

j

(uk)R = (ũk)R nil,l +
∑

d

(
(uk)n

j · t
(d)
il,l

)
t(d)
il,l

(pk)R = (pk)n
j

with (ũk)R = (uk)n
il · nil,l − (Gk)il,l

(
(uk)n

il · nil,l − (uk)n
j · nil,l

)
(23)

where (uk)n
il · nil,l = (uk)n

il δ
il
il,l with δil

il,l = mil · nil,l and t(d)
il,l for d = 1, 2 are the unit tangent vectors of the considered

surface. The phasic scaling function (Gk)il,l for each phasic velocity corresponding to the one proposed by Hong and
Kim [22] in the context of the Euler equations is given by:

(Gk)il,l =
1
2

[
1 − sign

(
(uk)n

il δ
il
il,l

)]
min

(
| (uk)n

il · nil,l − (uk)n
j · nil,l|

(ck)il, j
, 1

)
with (ck)il, j = max

(
(ck)n

il , (ck)n
j

)
. We can notice that 0 ≤ (Gk)il,l ≤ 1. When (Gk)il,l = 1, the classical choice given in

Eq. (22) is retrieved. However, when (Gk)il,l = 0, there is no jump of normal phasic velocity between the left and the
right states of the corresponding junction interface.
Knowing the left and right states of the junction interface Al obtained via UL = Eil

(
Qn

il,mil

)
and UR given by Eq. (23),

respectively, the conservative numerical flux Fil,l, the non-conservative flux R j,l as well as the wall-flux Gil,l can be
computed making it possible to update the state variables vector U j at the junction cell using Eq. (21). Afterwards,
for the neighbor pipe Cil, the conservative flux Fil,l is projected following the orientation of cell Cil. In addition, the
3-D non-conservative flux Ril,l is also computed using the left and right states at the junction area and then projected
following the orientation of cell Cil. The state vector Qil is thus updated following Eq. (11) using the 1-D projected
conservative and non-conservative numerical fluxes (see Eq. (13)):

Φil
il,l = Pil

(
F il,l,mil

)
and Πil,l = Pil

(
Ril,l,mil

)
As the present junction treatment is based on the integral form of the 3-D BN equations (see Eq. (21)), it is noted that115

in the case of the use of numerical fluxes which are EOS-independent, the method is able to tackle general EOS. In116

addition, the other advantage of the present method is that no iterative procedure is required. In addition, this approach117

is also used here to tackle the abrupt change of the cross-section in pipe systems where only two pipes with different118

cross-section meet at the junction.119

120

Finally, the junction surfaces |Al| are expressed using the inner diameters of the corresponding adjacent 1-D pipe
cells, i.e. |Al| = πd2

l /4. The size of the volume junction |C j| can be estimated as proposed in [1], using the inner
diameters of the junction interfaces as:

|C j| =
4
3
πr3

j with 4πr2
j ≡

∑
l∈V

|Al| (24)
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Other choices have been proposed in the literature, e.g. in Hong and Kim [22] where the average volume of neighbor-121

ing cells is used as the volume of the junction cell. Finally, the corresponding characteristic length l j of the junction122

cell C j used in the time-step computation in Eq. (19) is set to be l j = r j.123

2.1.6. Boundary conditions124

The treatment of the boundary conditions in the present finite-volume scheme is based on the use of a ghost125

cell virtually created outside the computational domain where a fictitious state is used to compute the fluxes at the

Figure 4: Sketch of a boundary condition at the interface denoted by i + 1/2 with QL the state of the adjacent cell of the considered boundary and
Q the fictitious state of the corresponding ghost cell.

126

boundary. This fictitious state denoted here Q is expressed in practice using the state denoted QL of the adjacent127

cell of the interface denoted here i + 1/2 corresponding to the boundary as shown in Fig. (4). In the following,128

the orientation of the ghost cell is assumed to be the same as its adjacent cell. Finally, the conservative and non-129

conservative numerical fluxes are computed using the two states QL and Q. We describe how the fictitious state is130

computed for each boundary conditions.131

The moving wall boundary condition is imposed using the mirror state:

(αk) = (αk)L , (ρk) = (ρk)L , (uk) = 2vi+1/2δ
L
i+1/2 − (uk)L and (pk) = (pk)L (25)

with δL
i+1/2 = ni+1/2 · mL.132

The transmissive boundary condition is imposed via:

(αk) = (αk)L , (ρk) = (ρk)L , (uk) = (uk)L and (pk) = (pk)L (26)

Time history of pressure can also be imposed via:

(αk) = (αk)L , (ρk) = (ρk)L , (uk) = (uk)L and (pk) = P(tn) (27)

where P(t) is the imposed pressure at time t.133

The “tank” condition is imposed following the two steps described below. First, the fictitious cell corresponding to
the considered tank is associated to the initial prescribed phasic volume fractions (αk)tank, densities (ρk)tank, pressures
(pk)tank and volume |Ctank|. Then, for each 1-D pipe cell connected to the tank, the corresponding numerical flux
directed outwardly from the pipe to the tank is computed using the following fictitious state:

(αk) = (αk)tank , (ρk) = (ρk)tank , (uk) = (uk)L and (pk) = (pk)tank (28)

Finally, using this numerical flux, both the flow variables in the 1-D pipe cell and in the fictitious tank cell are updated.134

As the time evolution of the flow variables inside the tank is directly given by the ratio between this numerical flux135

and the volume |Ctank|, the size of this volume has a direct influence on the behavior of the tank. As a consequence, to136

ensure a constant pressure condition, i.e. corresponding to the prescribed initial values at the tank, a large size of the137

volume |Ctank| should be prescribed as done in the following.138

12



2.1.7. Material model for the pipe wall elasticity139

The pressure wave problems considered here involve flows confined within a pipe. It is well know that the velocity
of propagation of a wave in a pipe is distinctly different from the speed of sound in an unbounded fluid. As the fluid
pressure increases, the fluid is not only compressed (with a concomitant density increase), but the pipe walls also
expand elastically. Thus the density increase is less than it would be in the case of a confined flow in a rigid pipe.
As a consequence, the elasticity of the pipe reduces the velocity of propagation of the pressure waves through it
[49, 50, 16, 51]. This is referred to as the Korteweg [52] or Allievi [53] effect in the literature. For this purpose,
Hooke’s law is used to account for the pipe wall hoop elasticity. The expansion of the pipe circular cross-section is
directly linked to the change of pressure following the linear equation [54]:

d|A|
|A|

= 2β
dp
E

with β =
1[

(d + 2δ)2 − d2
] [

(1 − νP) d2 + (1 + νP) (d + 2δ)2
]

(29)

with d the inner diameter of the pipe, i.e. |A| = πd2/4, δ the wall thickness which is assumed to be constant, E the140

Young’s modulus of elasticity, νP the Poisson’s ratio for the pipe material and p the mean pressure of the two-phase141

flow mixture given by: p = α1 p1 + α2 p2. The numerical integration of Eq. (29) is performed using the explicit Euler142

scheme as previously detailed in [1].143

144

All of the algorithms described previously have been implemented in the fast transient dynamics software for flu-145

ids and structures Europlexus [55] (http://www-epx.cea.fr/) co-owned by the French Commissariat à l’énergie146

atomique et aux énergies alternatives (CEA) and by the European Commission. Électricité de France (EDF) is in-147

volved as a major partner of the consortium built for Europlexus software development.148

3. Numerical tests149

In order to demonstrate the potentiality of the proposed numerical method, several shock-tube and transient flow150

problems involving pipes junction, sudden change of duct cross-sections and elastic deformation of the pipe wall151

are considered. In addition, two experiments are also considered, the first one corresponds to a water-hammer with152

vapor cavity formation and collapse and the second one is a shock-tube in a network connected by a junction. All the153

computations are performed using the HLLC solver described in [39].154

3.1. Test 1: “Well-balanced” tests with an abrupt change of area155

Two “well-balanced” tests are proposed and the corresponding initial conditions are given in Table (1) using two156

perfect gases with γ1 = γ2 = 1.4. The first one similar to the one proposed in [1] in the single-phase context is

(a)
Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1) d (m)
x ∈ [0; 0.5] 1 − 10−6 105 1.2 0 105 1.2 0 10 × 10−3

x ∈ [0.5; 1] 10−6 105 1.2 0 105 1.2 0 15 × 10−3

(b)
Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1) d (m)
x ∈ [0; 0.5] 1 − 10−6 105 1.2 4.5 105 1.2 4.5 10 × 10−3

x ∈ [0.5; 1] 10−6 105 1.2 2 105 1.2 2 15 × 10−3

Table 1: Initial conditions for the two well-balanced Riemann problems: (a) steady case with a initial zero velocity and (b) non-steady case.

157

based on a zero initial velocity in contrast to the second one. A 1-m long pipe is considered as rigid and transmissive158

boundary conditions are used at the inlet and outlet of the tube. A discontinuity of the duct cross-section is located at159

x = 0.5 m. This abrupt change of area is tackled using the finite-volume treatment of the pipe connections described160

previously. The computations are done with 200 cells and with the Courant number C = 0.99. The numerical solutions161

are displayed on Fig. (5) showing the well-balanced property of the present numerical approach even with a significant162

jump of the volume fraction α1 in conjunction with a sudden change of area.163
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Figure 5: Test 1: Numerical solutions obtained on the well-balanced Riemann problems at t = 10−3 s with 200 cells and the Courant number
C = 0.99: (a) mean pressure p = α1 p1 + α2 p2, (b) mean density ρ = α1ρ1 + α2ρ2, (c) volume fraction of phase 1 and (d) mean velocity
u = (α1ρ1u1 + α2ρ2u2) /ρ.
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3.2. Test 2: general Riemann problem in the subsonic configuration on unsplit and split pipe164

The second test-case was previously presented in [36] and is largely encountered in the literature [36, 37, 38,165

56, 57, 39]. This corresponds to a classical general Riemann problem of the Baer-Nunziato model which involves166

perfect and stiffened gases. The flow variables in this test-case are assumed to be dimensionless and appropriately167

normalized. The parameters of the EOS are: γ1 = 1.35, π1 = 0, q1 = 0, γ2 = 3, π2 = 3400, q2 = 0 and the168

initial conditions are given in Table (2). The exact solution of this Riemann problem is composed by 6 waves in the

Position α1 p1 ρ1 u1 p2 ρ2 u2 d
x ∈ [0; 0.5] 0.8 3 2 0 10 1900 0

3
√

2|h|x ∈ [0.5; 1] 0.1 1 1 0 1000 1950 0

Table 2: Dimensionless initial conditions for the general Riemann problem in the subsonic configuration.
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Figure 6: Test 2: Comparison between analytical and numerical solutions for the general Riemann problem in the subsonic configuration with 1000
cells and the Courant number C = 0.99: (a) volume fraction, (b) density, (c) velocity and (d) pressure of the gaseous phase at t = 0.15.

169

following arrangement: a liquid (phase 2) shock wave, a gas (phase 1) shock wave, the liquid contact, a gas contact,170

the gas shock wave and finally a liquid rarefaction wave. The computational domain is [0, 1] with a rigid pipe and171

transmissive boundary conditions are used at the inlet and outlet of the pipe. As in [23, 1], the numerical results using172
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one single pipe are compared with the ones obtained with two half pipes connected by a junction. The comparison is173

also performed with the analytical solution of the considered Riemann problem on one single pipe (see Figs (6)-(7)).174

As in [1], in the case of split pipe, the volume of the fictitious junction cell is set to be equal to the volume of the175

neighbouring cells leading to d = 3
√

2|h|. The unsplit pipe and split pipe computations are performed with 1000 cells176

and the Courant number C = 0.99. Good agreement is obtained between these two computations which also retrieve177

the exact solution. However, note that the split pipe computation gives a small oscillation in the post-shock region for178

the gaseous phase (phase 1) at x ≈ 0.7.
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Figure 7: Test 2: Comparison between analytical and numerical solutions for the general Riemann problem in the subsonic configuration with 1000
cells and the Courant number C = 0.99: (a) volume fraction, (b) density, (c) velocity and (d) pressure of the liquid phase at t = 0.15.

179

3.3. Test 3: general Riemann problem in the supersonic configuration on unsplit and split pipe180

This test-case previously proposed in [58] is also used in [39]. Its consists in a general Riemann problem in the181

supersonic configuration involving two perfect gases. As in the previous case, the flow variables are here assumed to182

be dimensionless. The parameters of the phasic EOS are: γ1 = 1.4, π1 = 0, q1 = 0, γ2 = 1.6, π2 = 0, q2 = 0 and183

the initial condition is given in Table (3). The exact solution of this Riemann problem is composed by the following184

waves: a gas (phase1) shock-wave, a gas contact, a gas rarefaction wave, a liquid (phase 2) shock-wave, followed by185

the liquid contact and a liquid rarefaction wave. The computational domain is [0, 1] with a rigid pipe and transmissive186

boundary conditions are used at the inlet and outlet of the pipe. Once again, the numerical results obtained using one187

single pipe are compared to the ones obtained with two half pipes connected by a junction and to the analytical solution188
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Position α1 p1 ρ1 u1 p2 ρ2 u2 d
x ∈ [0; 0.5] 0.5 0.3 0.08545023 −4.7689572 1.8 0.93630573 0.21664237

3
√

2|h|x ∈ [0.5; 1] 0.55 0.83622836 0.17601423 −5.1681691 2.3327532 1.1009669 0.20870557

Table 3: Dimensionless initial conditions for the general Riemann problem in the supersonic configuration.

(see Figs (8)-(9)). The unsplit pipe and split pipe computations are performed with 1000 cells and the Courant number189

C = 0.99. For this supersonic Riemann problem, the correction detailed in Eq. (23) is not used for the junction cell.190

Even in the supersonic configuration, good agreement is obtained between the unsplit pipe and split pipe computations191

showing the satisfactory behavior of the finite-volume treatment of the junction. Note that an extremely sharp profile
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Figure 8: Test 3: Comparison between analytical and numerical solutions for the general Riemann problem in the supersonic configuration with
1000 cells and the Courant number C = 0.99: (a) volume fraction, (b) density, (c) velocity and (d) pressure of the first phase at t = 0.05.

192

of the liquid contact is obtained even with the use of a junction in the middle of the pipe.193
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Figure 9: Test 3: Comparison between analytical and numerical solutions for the general Riemann problem in the supersonic configuration with
1000 cells and the Courant number C = 0.99: (a) volume fraction, (b) density, (c) velocity and (d) pressure of the second phase at t = 0.05.
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3.4. Test 4: Shock wave interaction with a sudden cross-section reduction in a duct194

This test-case was first proposed in [5] and also used in [59, 1]. The initial conditions are given in Table (4) using195

two perfect gases with γ1 = γ2 = 1.4. This test consists in a 2-m long rigid tube filled by a gas at rest. A sudden

Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1) d (m)
x ∈ [0; 0.7] 0.8 30 × 105 35.6 0 30 × 105 35.6 0 0.1
x ∈ [0.7; 1.4] 0.8 105 1.1867 0 105 1.1867 0 0.1
x ∈ [1.4; 2] 0.8 105 1.1867 0 105 1.1867 0 0.06324

Table 4: Initial conditions for the gas Riemann problem with an abrupt change of area.

196

cross-section reduction is located at x = 1.4 m and a shock-wave is initially located at x = 0.7 m. Transmissive197

boundary conditions are used at the two boundaries of the tube. The numerical solutions obtained with 1000 cells and198

the Courant number C = 0.99 are compared to two numerical solutions obtained with the Euler equations, one using199

the quasi 1-D numerical approach of Rochette et al. [5] and the other using the numerical treatment proposed in [1].200

The volume of the fictitious junction cell is set to be equal to 10−5 m3 which corresponds to the average volume for201

of the pipe cells at the vicinity of the junction cell. As expected, the numerical extension of the junction is in perfect
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Figure 10: Test 4: Numerical solutions obtained on the gas Riemann problem with the abrupt change of area using 1000 cells and C = 0.99 at
t = 1.3 × 10−3 s (top) and t = 1.7 × 10−3 s (bottom): (a) mean density ρ = α1ρ1 + α2ρ2 and (b) phasic Mach number |u1 |/c1.
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agreement with the one proposed for the Euler equations (see Fig. (10)). In this test-case, there is no jump of the202

volume fraction α1 leading to the degeneration of the Baer-Nunziato model into a decoupled Euler equations. This is203

also numerically observed here.204

20



3.5. Test 5: Liquid shock-wave interaction with a sudden cross-section reduction in a duct205

The single-phase counterpart of this test-case was proposed in [1]. The initial conditions are detailed in Table (5).206

The parameters of the phasic EOS are: γ1 = γ2 = 2.25, π1 = π2 = 109 Pa and q1 = q2 = 0 J.kg−1. This consists in a

Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1) d (m)
x ∈ [0; 2] 0.8 106 998.638 0 106 998.638 0 2 × 10−2

x ∈ [2; 3] 0.3 105 998.228 0 105 998.228 0 2 × 10−2

x ∈ [3; 5] 0.3 105 998.228 0 105 998.228 0 1 × 10−2

Table 5: Initial conditions for the liquid Riemann problem with an abrupt change of area.

207

5-m long rigid pipe filled by liquid water at rest at temperature T = 20◦C. A sudden contraction of the cross section
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Figure 11: Test 5: Comparison between numerical and Joukowsky-type solutions on the liquid Riemann problem with an abrupt change of area
with 1000 cells and C = 0.99 at t = 10−3 s: (a) mean pressure p = α1 p1 + α2 p2, (b) phasic velocity u1 and (c) volume fraction of phase 1.

208

is located at x = 3 m and a pressure jump is initially located at x = 2 m. The numerical solutions obtained with209

1000 cells and a Courant number C = 0.99 is compared to the analytical solution obtained with the Joukowsky theory210

[7, 50]. All of the intermediate states predicted by this theory is well retrieved by the present computation showing211

the satisfactory behavior of the Finite-Volume junction treatment (see Fig. (11)).212
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3.6. Test 6: Riemann problem in rigid and elastic pipes213

This test-case is similar to the one proposed in [1] in the single-phase context. The parameters of the phasic214

EOS are the following: γ1 = γ2 = 2.25, π1 = π2 = 109 Pa and q1 = q2 = 0 J.kg−1. The initial conditions and215

the material conditions used to represent the elastic behavior of the pipe are given in Table (6). A 1-m long tube is

(a)
Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1)
x ∈ [0; 0.5] 0.8 106 998.638 0 106 998.638 0
x ∈ [0.5; 1] 0.3 105 998.228 0 105 998.228 0

(b) d (m) δ (m) E (MPa) νP

19 × 10−3 1.6 × 10−3 75 × 103 0.3

Table 6: Initial conditions (a) and wall material properties (b) for the Riemann problem in rigid and elastic pipes.

216

considered with transmissive boundary conditions are used at the inlet and outlet. The initial discontinuity is located217

at x = 0.5 m. The Riemann problem is solved using rigid and then elastic pipes taking into account the variation of
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Figure 12: Test 6: Comparison between numerical and Joukowsky-type solutions on the Riemann problem in rigid (top) and elastic (bottom) pipes
at t = 2 × 10−4 s with 800 cells: (a) mean pressure p = α1 p1 + α2 p2 and (b) phasic velocity u1.
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the pipe cross-section due to the change of pressure as described previously. The numerical solutions obtained with219

the Baer-Nunziato model are compared to the ones obtained with the Euler system in conjunction of the SG EOS220

with the parameters given previously. These two numerical results are also in agreement with the theoretical results221

obtained with the classical Joukowsky-Allievi theory (see Figs. (12,13)). The computations are done with 800 cells.222

The computation with the rigid pipe uses a Courant number C = 0.99 whereas the one with the elastic pipe is stable for223

a Courant number C = 0.6. The same behavior is also observed with the Euler equations. Notice that some spurious
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Figure 13: Test 6: Volume fraction of phase 1 on the Riemann problem in rigid and elastic pipes at t = 2 × 10−4 s with 800 cells.

224

oscillations are visible at x = 0.5 m on the pressure profiles in both Baer-Nunziato and Euler solutions obtained with225

the elastic pipe. These oscillations can be reduced with a decrease of the Courant number.226
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3.7. Test 7: Water-hammer experiment with vapor cavity formation and collapse227

The present test-case is one of the experiments conducted by Simpson [60, 61] in order to study the generation
of cavitation during a water-hammer event. The present experimental set-up is here modeled using an ideal tank-
pipe-valve system without FSI junction coupling. The pressure wave is initiated by the sudden closure of the valve.
After wave reflection cavitation occurs at the valve and vapor appears. The generated vapor then condenses with
the collapsing vapor region creating a second pressure wave interacting with the first one. The initial conditions
for the fluid and the material properties for the pipe wall used in the computation are given in Table (7) as well as
the parameters of the phasic EOS. The present computations have been performed using 1000 cells and the Courant

(a) α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1)
10−6 3.281 × 105 2.53 0.401 3.281 × 105 997.9 0.401

(b) L (m) d (m) δ (m) E (MPa) νP

36.0 19 × 10−3 1.6 × 10−3 75 × 103 0.3

(c) γ1 π1 (Pa) q1 (J.kg−1) γ2 π2 (Pa) q2 (J.kg−1)
1.34 0 2009800 2.79 7.9442566335 × 108 −1142331

Table 7: Flow initial conditions (a), wall material properties (b) and parameters of the phasic EOS (c) for the Simpson’s pipe column-separation
water-hammer experiment.

number C = 0.6 in Eq. (19). In contrast to the other cases, the Rusanov flux is here used for a stability reason. The
velocity and pressure relaxation terms [43] are also used in the present computation. More details on the relaxation
process are given in Appendix A. In addition, the pipe wall hoop elasticity is also considered as detailed in Section
2.1.7. The closure of the valve is here assumed to be instantaneous and thus modeled by a wall boundary condition.
The initial speed of sound is given by:

c0 = c2 ≡

√
γ2 (p2 + π2)

ρ2

leading to the numerical value: c0 ≈ 1490 m.s−1. Using the Korteweg formula [52] for the effective speed of sound:

c̃2
0 =

c2
0

1 +
ρ0βc2

0

E

where β =
2[

(d + 2δ)2 − d2
] [

(1 − νP) d2 + (1 + νP) (d + 2δ)2
]

with ρ0 = ρ2 leads to the following value: c̃0 = 1259 m.s−1 which corresponds with an error of 1.6% to the measure-228

ment of Simpson: c̃exp. = 1280 m.s−1. Fig. (14) represents the comparison between the experimental data obtained229

by Simpson and the present numerical results for the pressure histories at three different locations along the pipe:230

at the valve (x = L), at x = 3L/4 and at x = L/4. Good agreement is obtained. In particular, the magnitude of231

the first pressure peak given by the classical Joukowsky relation pmax = p0 + ρ0c̃0u0 ≈ 8.318 bar is observed in the232

computation. Then, the reflection of the rarefaction wave at the valve at t = 2L/c̃0 ≈ 57 ms induces cavitation and233

thus a generation of vapor. Afterwards, the vapor collapses at the valve at t ≈ 135 ms generating a second pressure234

wave. The interaction between the first and the second pressure peaks leads to the highest magnitude at the valve at235

t = 6L/c̃0 ≈ 171 ms.236
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Figure 14: Test 7: Comparison between numerical solutions obtained with 1000 cells and C = 0.6 and the data of Simpson’s water-hammer
experiment with u0 = 0.401 m.s−1: pressure history (a) at x = L (valve); (b) at x = 3L/4; (c) at x = L/4.
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3.8. Test 8: Hydraulic shock wave in a three-pipe network237

This test initially proposed in Tiselj et al. [62, 63] and also used in [1] consists in the propagation of a pressure238

wave through a junction of three rigid pipes filled with pure liquid. The initial conditions and the geometrical data

Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1) d (m) l (m)
Pipe 1 0.8 80 × 105 1001.89 1 80 × 105 1001.89 1 0.35682482 10
Pipe 2 0.1 80 × 105 1001.89 0.769 80 × 105 1001.89 0.769 0.19544100 3
Pipe 3 0.6 80 × 105 1001.89 0.769 80 × 105 1001.89 0.769 0.35682482 5

Table 8: Initial conditions of the three-pipe problem.
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(diameter d and length l) of each pipes are given in Table (8). The parameters of the phasic EOS are the following:
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Figure 15: Test 8: Numerical solutions obtained on the junction problem of three pipes with h = 10−2 m and C = 0.8: time evolution of the mean
pressure p = α1 p1 + α2 p2 at (a) point 1, (b) point 2, (c) point 3, and (d) time evolution of the volume fraction α1 in the three pipes, comparison
with HEM.

240

γ1 = γ2 = 2.23, π1 = π2 = 109 Pa and q1 = q2 = 0 J.kg−1. The inlet condition of Pipe 1 and the outlet condition of241

Pipe 2 correspond to a tank condition using the volume |Ctank| = 105 m3, the pressure ptank = 80 bar and the density242

ρtank = 1001.89 kg.m−3 (which corresponds to the temperature Ttank = 19.85◦C) whereas the outlet condition of Pipe 3243
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is a wall condition in order to represent the sudden closure of the end of Pipe 3. Due to this sudden closure, a pressure244

wave is created and propagates through the three-pipe network. The computations obtained with the Baer-Nunziato245

model are compared to the ones using the HEM model in conjunction with the NBS/NRC Steam Tables [64] presented246

in [1] with a grid size |h| = 10−2 m and a Courant number C = 0.8. The corresponding history of pressure in point247

1 (located at 1.05 m from the junction in Pipe 1), in point 2 (located at 0.15 m from the junction in Pipe 2) and in248

point 3 (located at 0.95 m from the junction in Pipe 3) are displayed in Fig. (15). Very good agreement between HEM249

and Baer-Nunziato are obtained. In addition, the Finite-Volume treatment of junctions handles the jump of volume250

fraction quite satisfactorily.251

3.9. Shock-tube experiments in a network connected by a junction252

The experiments conducted by William-Louis et al. [65] are here considered to assess the present Finite-Volume253

treatment of junctions in the framework of the Baer-Nunziato model. Three configurations are studied in this section.254

The first one is composed by three pipes while the second and the third ones are composed by four pipes. In all cases,

(a) - Test 9 (b) - Test 10 (c) - Test 11

Pipe 2

Pipe 1 Pipe 3 Pipe 1 Pipe 3

Pipe 2

Pipe 4

Pipe 1 Pipe 3

Pipe 2

Pipe 4

Figure 16: Sketch of William-Louis et al.’s experimental apparatus from [65]: (a) with three open end branches, (b) with four open end branches
and (c) with four closed end branches.

255

the first pipe consists of a shock-tube with a high-pressure chamber of length 0.53 m and a low-pressure chamber of256

length 3.1 m connected to the (two or three) other pipes by a junction. The different configurations are represented

Pipe 1 (HP) Pipe 1 (LP) Pipe 2 (LP) Pipe 3 (LP) Pipe 4 (LP)
l (m) 0.53 3.1 2.595 1.725 0.845
d (m) 0.01

Table 9: Geometrical data (length and internal diameter) for the three William-Louis et al.’s experiments [65].

257

in Fig. (16) and the corresponding geometrical data are given in Table (9) where the initial HP and LP denote the258

high-pressure and low-pressure states, respectively. The three or four pipes have the same inner diameter of d = 0.01259

m in the present computations. Finally, the HP and LP states characterized by a pressure difference of ∆p = 15260

kPa are recalled in Table (10). The experimental pressure measurements performed by William-Louis et al. [65] are

Position α1 p1 (Pa) ρ1 (kg.m−3) u1 (m.s−1) p2 (Pa) ρ2 (kg.m−3) u2 (m.s−1)
High-pressure 1 − 10−6 1.15 × 105 1.4145 0 105 1.23 0
Low-pressure 10−6 1.15 × 105 1.4145 0 105 1.23 0

Table 10: Initial conditions of the shock-tube connected by other pipes by a junction [65].

261

conducted far enough from the junction to ensure that the waves are planar at the locations of the pressure transducers262

(about x ≈ 0.5 m from the junction in each pipe). All of the computations are performed using a constant space263

step hi = 1/3 m and Courant number C = 0.95. The corresponding numerical solutions are then compared to the264

experimental data. This comparison is based on the numerical mean pressure defined as p = α1 p1 + α2 p2.265
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3.9.1. Test 9: Shock-wave propagation in a three-pipe network266

This test-case composed by three pipes connected at a junction is represented in Fig. (16)-(a) and the correspond-267

ing initial conditions are detailed in Table (10). The ends of the three pipes are considered to be open and are thus268

modeled using a “tank” condition in the present computations as given in Eq. (28). The prescribed phasic volume269

fractions, densities and pressures correspond to the initial conditions, i.e. the HP state for the end of Pipe 1 and the270

LP state for the ends of Pipe 2 and Pipe 3. The prescribed “tank” volume is set equal to |Ctank| = 109 m3 which is271

large enough to ensure that the “tank” conditions are constant during the simulation. The comparison between the

(a) - Pipe 1: x = 0.48 m from the junction (b) - Pipe 2: x = 0.52 m from the junction
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Figure 17: Test 9: Comparison between the numerical solutions of the Baer-Nunziato model obtained with h = 1/3 cm, C = 0.95 and the data of
William-Louis et al.’s shock-tube experiment with three pipes and open ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b) in
Pipe 2 at x = 0.52 m from the junction and (c) in Pipe 3 at x = 0.48 m from the junction.

272

numerical solutions of the Baer-Nunziato model and the experimental data from [65] is given in Fig. (17) for the three273

pipes. The pressure histories show the interactions occurring between the different pressure waves and the junction.274

First, the initial pressure wave induced by the shock-tube interacts with the junction leading to a reflected pressure275

wave propagating in Pipe 1 and two transmitted pressure waves propagating in Pipe 2 and Pipe 3. These pressure276

waves reach the ends of each pipe leading to reflections where the corresponding prescribed pressures are imposed:277

p = 1.15 bar for Pipe 1 and p = 1 bar for Pipe 2 and Pipe 3. Subsequently, other interactions with the junction occur.278

The good agreement between the numerical and the experimental results demonstrates the satisfactory behavior of the279

Finite-Volume junction modeling proposed for the Baer-Nunziato model: both timing and amplitude of the pressure280
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waves are well captured in the computation.281

3.9.2. Test 10: Shock-wave propagation in a four-pipe network with open ends282

The present test-case represented in Fig. (16)-(b) corresponds to a four-pipe network with open ends. The length283

of the four pipes are chosen to be different in order to induce asynchronous timings between the secondary pressure284

waves generated by the reflection at the ends of the pipes. Once again the initial conditions are given in Table (10)285

while the open ends are modeled with “tank” conditions (see Eq. (28)) as detailed in the previous test-case. The

(a) - Pipe 1: x = 0.48 m from the junction (b) - Pipe 2: x = 0.52 m from the junction
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(c) - Pipe 3: x = 0.48 m from the junction (d) - Pipe 4: x = 0.43 m from the junction
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Figure 18: Test 10: Comparison between the numerical solutions of the Baer-Nunziato model obtained with h = 1/3 cm, C = 0.95 and the data of
William-Louis et al.’s shock-tube experiment with four pipes and open ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b) in
Pipe 2 at x = 0.52 m from the junction, (c) in Pipe 3 at x = 0.48 m from the junction and (d) in Pipe 4 at x = 0.43 m from the junction.

286

numerical solution of the Baer-Nunziato model is then compared with the experimental measurements from William-287

Louis et al. [65]. Even in this complex configuration where numerous interactions between pressure waves and the288

junction occur, the numerical solution is in good agreement with the reference experimental results.289

3.9.3. Test 11: Shock-wave propagation in a four-pipe network with closed ends290

This test-case is based on the previous one except that the ends of the four pipes are here closed. The wall boundary291

condition detailed in Eq. (25) is thus retained to take into account this effect. The comparison between the numerical292

solutions of the Baer-Nunziato with the experimental data of William-Louis et al. [65] is given in Fig. (19). Once293

again, the present Finite-Volume junction modeling makes it possible to simulate the numerous interactions between294
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(a) - Pipe 1: x = 0.48 m from the junction (b) - Pipe 2: x = 0.52 m from the junction
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(c) - Pipe 3: x = 0.48 m from the junction (d) - Pipe 4: x = 0.43 m from the junction
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Figure 19: Test 11: Comparison between the numerical solutions of the Baer-Nunziato model obtained with h = 1/3 cm, C = 0.95 and the data of
William-Louis et al.’s shock-tube experiment with four pipes and closed ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b)
in Pipe 2 at x = 0.52 m from the junction, (c) in Pipe 3 at x = 0.48 m from the junction and (d) in Pipe 4 at x = 0.43 m from the junction.
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the pressure waves and the junction in a satisfactory manner. Another important feature of the present approach is that295

no iterative method is required.296

4. Conclusion and perspective297

A numerical method for solving unsteady compressible non-equilibrium two-phase flows in networks of flexible298

pipelines is proposed. The compressible two-pressure two-fluid Baer-Nunziato model is here considered for com-299

pressible two-phase flow modeling. A Finite-Volume method using the Arbitrary Lagrangian-Eulerian formulation is300

used for the resolution of the Baer-Nunziato equations. The numerical coupling of several 1-D pipes converging into301

a junction is also addressed here. The approach approximates the junction as a multi-dimensional cell exchanging302

mass, momentum and energy with its adjacent pipes in the manner of [1]. As a consequence, no iterative procedure303

is used for this treatment of the junction problem. The same method is also applied to take into account the abrupt304

change of duct cross-sections. The present numerical approach is then assessed on several 1-D Riemann problems305

in both “subsonic” and “supersonic” configurations, shock-tubes and other transient flow problems involving abrupt306

change of area or junction of branched pipes. Some comparisons with experiments such as water-hammer with vapor307

cavity formation and collapse and pressure wave in a 3-pipe and 4-pipe network are also given showing the accuracy,308

robustness, generality and efficiency of the proposed numerical method.309

310

The numerical scheme used in the present paper is only first-order accurate. Second-order accurate extension as311

the one proposed in [36] must be considered in the future to improve accuracy of the present methods. Furthermore,312

investigations may also concern the dynamic fluid-structure interaction which is necessary to estimate the mechanical313

consequences of pipeline systems subject to strong hydrodynamic loads. For example, the FSI junction coupling has314

to be considered at movable pipe ends, bends, valves and other places where strong forces between the pipe and the315

liquid exist. For this purpose, the Baer-Nunziato model has to be coupled with beam finite elements describing the316

behavior of the pipes in the manner of [1]. In addition, in certain situations, strong pressure waves can be generated317

by the direct contact condensation between hot vapor and cold water leading to the so-called condensation-induced318

water-hammer. For this dangerous phenomena, the interphase heat and mass transfer should also be taken into account319

as in [6, 43, 26]. Research of these issues is ongoing.320
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[34] T. Gallouët, J.-M. Hérard, N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models386

Methods Appl. Sci. 14 (5) (2004) 663–700.387

[35] N. Andrianov, G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys. 195 (2) (2004) 434–464.388

[36] D. W. Schwendeman, C. W. Wahle, A. K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible389

two-phase flow, J. Comput. Phys. 212 (2) (2006) 490–526.390

[37] S. A. Tokareva, E. F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys.391

229 (10) (2010) 3573–3604.392

[38] M. Dumbser, E. F. Toro, A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Scientific Comp. 48393

(2011) 70–88.394

[39] F. Daude, P. Galon, On the computation of the Baer-Nunziato model using ALE formulation with HLL- and HLLC-type solvers towards395

fluid-structure interactions, J. Comput. Phys. 304 (2016) 189–230.396

[40] H. Lochon, F. Daude, P. Galon, J.-M. Hérard, HLLC-type Riemann solver with approximated two-phase contact for the computation of the397

Baer-Nunziato two-fluid model, J. Comput. Phys. 326 (2016) 733–762.398

[41] M. R. Baer, J. W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, Int.399

J. Multiphase Flow 12 (6) (1986) 861–889.400

[42] F. Coquel, T. Gallouët, J.-M. Hérard, N. Seguin, Closure laws for a two-fluid two-pressure model, C.R. Acad. Sci. Paris 334, Série I (10)401

(2002) 927–932.402

[43] H. Lochon, F. Daude, P. Galon, J.-M. Hérard, Comparison of two-fluid models on steam-water transients, ESAIM Math. Model. Numer. Anal403

50 (6) (2016) 1631–1657.404

[44] C. Farhat, P. Geuzaine, C. Grandmont, The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution405

of flow problems on moving grids, J. Comput. Phys. 174 (2) (2001) 669–694.406

[45] H. Luo, J. D. Baum, R. Lohner, On the computation of multi-material flows using ALE formulation, J. Comput. Phys. 194 (1) (2004) 304–328.407

[46] F. Daude, P. Galon, Z. Gao, E. Blaud, Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase408

32



flows five-equation models with phase transition, Comput. Fluids 94 (1) (2014) 112–138.409

[47] F. Bellamoli, L. O. Müller, E. F. Toro, A numerical method for junctions in networks of shallow-water channels, Appl. Math. Comput. 337410

(2018) 190–213.411

[48] F. Bellamoli, Computational methods for coupling 1D and 2D channel geometries for the shallow water equations, Master’s thesis, Università412
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Appendix A. Pressure and velocity relaxations446

The Baer-Nunziato model with interphase drag and pressure relaxation can be written as:

∂t (α1A) +uI A∂xα1 = α1∂tA +AKp (p1 − p2)

∂t (αkρkA) +∂x (αkρkukA) = 0

∂t (αkρkukA) +∂x

(
αkρku2

k A + αk pkA
)

−pI A∂xαk = αk pk∂xA +AKu (uk′ − uk)

∂t (αkρkekA) +∂x (αkρkekukA + αk pkukA) −pIuI A∂xαk = −αk pk∂tA −ApI Kp (pk − pk′ ) +AKuu∗I (uk′ − uk)

where k = 1, 2, k′ = 1, 2 (k′ , k), uI = u2 and pI = p1.447

The velocity u∗I is given by: u∗I = (u1 + u2) /2. The scalars Kp and Ku associated to the pressure and velocity
relaxation, respectively, are positive functions given by [66]:

Kp =
1
τp

α1α2

|p1| + |p2|
and Ku =

1
τu

α1ρ1α2ρ2

α1ρ1 + α2ρ2

with τp and τu the relaxation time scales of pressure and velocity, respectively. Based on [67], the pressure relaxation448

time scale τp is evaluated using the Rayleigh-Plesset equation, which considers the evolution of a bubble in an infinite449
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medium. In addition, the evaluation of the velocity relaxation time scale τu is based on the drag equation for the450

behavior of a bubble in an infinite medium. More details are given in [43, 26].451

The Baer-Nunziato model with interphase drag and pressure relaxation is then approximated using a fractional452

step approach as in [43] where more details concerning the numerical approximation of the pressure and velocity453

relaxation terms can be found.454

34




