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Abstract

This paper addresses the problem of identifying impenetrable obstacles in
a Kirchhoff-Love infinite plate from multistatic near-field data. The Linear
Sampling Method is introduced in this context. We firstly prove a uniqueness
result for such an inverse problem. We secondly provide the classical theoreti-
cal foundation of the Linear Sampling Method. We lastly show the feasibility
of the method with the help of numerical experiments.

1 Introduction

In this contribution we consider the inverse problem of finding an impenetrable ob-
stacle in an infinite elastic plate from multistatic scattering data in the frequency
domain. Assuming that the thickness of the plate is small with respect to the
wavelength, we consider that the behavior of the elastic plate is governed by the
classical Kirchhoff-Love model in the purely bending case. The impenetrable ob-
stacle D ⊂ R2 is supposed to be a bounded open domain of class C3 which is either
characterized by a Dirichlet or a Neumann boundary condition. More precisely, by
using the notations of [1], in particular Ω = R2 \D, the scattered field vs satisfies
in the unbounded domain Ω the problem

∆2vs − k4vs = 0 in Ω
B1(vs + ui) = B2(vs + ui) = 0 on ∂Ω

lim
r→+∞

∫
∂Br

∣∣∣∣∂vs∂n − ikvs
∣∣∣∣2 ds = 0.

(1)

Here k > 0 is the wave number, ui is an incident field which satisfies ∆2ui−k4ui = 0
in a domain including D, Br is the open ball centered at 0 and of radius r, n is
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the outward normal to Br and s is the measure on ∂Br. The reader will refer to
[1] for a short justification of how the system (1) is derived. Roughly speaking, the
first line describes the motion of the plate in the frequency domain, the second one
characterizes the boundary conditions on the boundary of the obstacle while the
third one is the radiation condition, which specifies that only outgoing scattering
waves are admissible. It is shown in [1] that the classical Sommerfeld condition for
the Helmholtz equation is also valid for the Bilaplacian case. In order to specify the
surface differential operators B1 and B2, we need to introduce some notations. A
generic point x ∈ R2 has Cartesian coordinates (x1, x2). The outward unit normal
to Ω is denoted n (note that n is oriented inside D). The unit tangent vector
is denoted t and is such that the angle formed by the vectors (n, t) is π/2. The
curvilinear abscissa associated with vector t is denoted s and coincides with the
measure on ∂D. With the classical definitions

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
,

∂

∂s
= −n2

∂

∂x1
+ n1

∂

∂x2
,

either (B1, B2) = (I, ∂n) (I is the identity), which corresponds to the Dirichlet
boundary condition, or (B1, B2) = (M,N), which corresponds to the Neumann
boundary condition, where the operators M and N are defined as follows:{

Mu = ν∆u+ (1− ν)M0u,

Nu = − ∂

∂n
∆u− (1− ν)

∂

∂s
N0u.

Here, ν ∈ [0, 1/2) is the Poisson’s ratio and M0 and N0 are given by
M0u =

∂2u

∂x1
2
n2

1 + 2
∂2u

∂x1∂x2
n1n2 +

∂2u

∂x2
2
n2

2,

N0u =
∂2u

∂x1∂x2
(n2

1 − n2
2)−

(
∂2u

∂x1
2
− ∂2u

∂x2
2

)
n1n2.

We mention that the Dirichlet boundary condition amounts to specify the out of
plane displacement and the angle of rotation of the plate, while the Neumann bound-
ary condition amounts to specify the bending moment and the shear force. In other
words, the Dirichlet boundary condition corresponds to the clamped plate while the
Neumann boundary condition corresponds to the free plate. Let us now consider
the bounded domain ΩR = Ω ∩ BR, where R > 0 is such that BR contains the
obstacle D. It is proved in [1] that the problem (1) is equivalent to the following
problem set in the bounded domain ΩR: find us ∈ H2(ΩR) such that

∆2us − k4us = 0 in ΩR
B1(us + ui) = B2(us + ui) = 0 on ∂Ω(

Nus

Mus

)
= T

(
us|∂BR

∂nu
s|∂BR

)
on ∂BR,

(2)

where T : H3/2(∂BR) ×H1/2(∂BR) → H−3/2(∂BR) ×H−1/2(∂BR) is a Dirichlet-
to-Neumann operator defined as follows. Assume that (f, g) ∈ H3/2(∂BR) ×
H1/2(∂BR) has the decomposition

(f, g) =
∑
m∈Z

(fm, gm)ξm, with ξm(θ) = eimθ/
√

2π.
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We have

T

(
f
g

)
=
∑
m∈Z

Tm

(
fm
gm

)
ξm, Tm =

(
T 11
m T 12

m

T 21
m T 22

m

)
, (3)

with 
T 11
m = −(1− ν)

m2

R3
− 2ik3 rmsm

rm − ism
T 12
m = T 21

m = (1− ν)
m2

R2
+ k2 rm + ism

rm − ism
T 22
m = −1− ν

R
− 2k

rm − ism

(4)

and

rm =
(H1

m)′(kR)

H1
m(kR)

, sm =
(H1

m)′(ikR)

H1
m(ikR)

.

Here, H1
m denotes the Hankel function of the first kind and of order m. Well-

posedness of the forward problem (1) is the main purpose of [1]. The proof consists
of a Fredholm analysis of the equivalent problem (2).

Theorem 1.1. The problem (1) has a unique solution in H2
loc(Ω)

• for any k in the clamped case,

• for k /∈ K0 in the free case, where the set K0 is formed by some numbers
kn > 0, n ∈ N, such that kn → +∞.

Note that we ignore if the restriction k /∈ K0 is purely technical or not. However,
it is proved in [1] that for some particular obstacles D, for example a disc, we have
K0 = ∅.

The inverse problem we consider is the following. We assume that D is unknown
but a priori contained in BR. Let us denote by G(·, y) the fundamental solution
associated with the operator ∆2−k4, that is the unique solution in H2

loc(R2) of the
system 

∆2G(·, y)− k4G(·, y) = δy in R2

lim
r→+∞

∫
∂Br

∣∣∣∣∂G(·, y)

∂n
− ikG(·, y)

∣∣∣∣2 ds = 0.
(5)

It is well-known that G is given by

G(x, y) =
i

8k2

(
H1

0 (k|x− y|)−H1
0 (ik|x− y|)

)
. (6)

For sake of self-containment, the well-posedness of problem (5) and the expression
(6) are proved in Lemma 2.2 hereafter. The function G(·, y) can be seen as a point
source located at y. For some point y ∈ ∂BR, we denote us(·, y) the scattered field
which is associated with the incident field ui = G(·, y) via (1). We also denote
ũs(·, y) the scattered field which is associated with the incident field ui = ∂nyG(·, y)
via (1), where ny is the outward normal to BR at point y ∈ ∂BR. For all points
y ∈ ∂BR, we measure the scattered fields us(·, y) and ũs(·, y) as well as their normal
derivatives at all points x ∈ ∂BR. All these measurements constitute the so-called
multistatic data. The goal of the inverse problem is to retrieve the obstacle D
from those multistatic data. It arises in the framework of Non Destructive Testing,
which is for example quite common in the aircraft industry. The Bilaplacian model
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is interesting when the structure to inspect is thin and the frequency is low, which
enables us to replace the 3D elastic model by such 2D approximate model. For
example, Structural Health Monitoring would be a nice application. If we think
of the SHM of the fuselage or the wings of an aircraft, even if some small hole in
the skin would be visible to the naked eye when the aircraft is on the ground, it
cannot be seen when the aircraft flies. Besides, in a view to consider defects such
as corrosion or delamination, it would be useful to extend the present study to
penetrable obstacles.

In order to address the inverse problem, we adapt the classical Linear Sampling
Method introduced by Colton and Kirsch in [2] to the case of plates. Since this
pioneering paper, the Linear Sampling Method has been applied in a large number
of situations (see for example [3]), in particular in elasticity (see for example [4,
5, 6, 7, 8]). But the case of Kirchhoff-Love plates is new as far as we can judge.
The Linear Sampling Method consists in testing, for all point of a sampling grid,
if some test function depending on that point belongs to the range of an integral
operator, the kernel of which only depends on the multistatic data. The LSM is
both simple and efficient. In addition, the main feature of such method is that it
works even if the nature of the obstacle is as priori unknown. To the best of our
knowledge, the number of articles concerning inverse scattering problems in some
infinite Kirchhoff-Love plate is very small. We mention the very recent contribution
[9] on that subject in the particular case of a Bilaplacian operator with zero and
first order perturbations. In order to build some synthetic data we need to solve
the forward problem (1). To do so, we use a Finite Element Method based on
the weak formulation associated with the problem (2) and a discretization of the
Dirichlet-to-Neumann operator (3). The practical use of such a D-t-N operator to
numerically compute a scattering solution in an infinite plate is new, as far as we
know. Note that an alternative approach is the use of Perfectly Matched Layers, as
in [10].

The paper is organized as follows. The second section is devoted to the treat-
ment of the inverse problem: we first derive an integral representation formula
considered here as a preliminary tool, then prove the identifiability of the obstacle
from the prescribed data, and lastly provide the justification of the Linear Sampling
Method for the Dirichlet case and give some indications for the Neumann case. The
third section presents some numerical results: we firstly describe the Finite Element
Method we use to produce the artificial data with an example, then show the iden-
tification results obtained with the Linear Sampling Method, and lastly complete
this numerical section by a short conclusion.

2 The inverse problem

2.1 Integral representation

The integral representation formula is a basic tool in the proof of the identifiability of
the obstacle and also in the justification of the Linear Sampling Method to retrieve
it. Let us first recall some classical plate-oriented Green formula (see [12]).

Lemma 2.1. In a bounded domain O of class C2, we denote H2(O,∆2) = {u ∈
H2(O), ∆2u ∈ L2(O)}. The linear mapping

H2(O,∆2)→ H−3/2(∂O)×H−1/2(∂O)
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u 7→
(

Nu
Mu

)
is continuous. Moreover, for all v ∈ H2(O), we have the integration by parts formula∫

O
∆2u v dx = a(u, v)−

∫
∂O

(
∂v

∂n
Mu+ vNu

)
ds,

where we have introduced the bilinear form

a(u, v) =

∫
O
{ν∆u∆v + (1− ν)

2∑
i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
} dx, (7)

and n is the outward normal to O. Here the first part of the integral on ∂O has
the meaning of duality pairing between H1/2(∂O) and H−1/2(∂O) while the second
part has the meaning of duality pairing between H3/2(∂O) and H−3/2(∂O).

Given some functions (φ, ψ) ∈ H3/2(∂D) × H1/2(∂D), let us consider the fol-
lowing interior and exterior problems: find u− ∈ H2(D) and u+ ∈ H2

loc(Ω) such
that {

∆2u− − k4u− = 0 in D
(u−, ∂nu

−) = (φ, ψ) on ∂D
(8)

and 
∆2u+ − k4u+ = 0 in Ω

(u+, ∂nu
+) = (φ, ψ) on ∂Ω

lim
r→+∞

∫
∂Br

∣∣∣∣∂u+

∂n
− iku+

∣∣∣∣2 ds = 0,

(9)

where the unit normal vector n is oriented outside D in both problems (8) and
(9). From Theorem 1.1, the exterior problem is well-posed. Concerning the interior
problem, it is straightforward that well-posedness holds if and only if k /∈ KD, where
KD is the set formed by the fourth roots of the Dirichlet eigenvalues of operator ∆2

in domain D. Before proving our integral representation formula, let us derive the
fundamental solution for operator ∆2 − k4.

Lemma 2.2. Problem (5) has a unique solution which is given by (6).

Proof. Let u = G(·, y) be a solution to problem (5). We use the factorization

∆2u− k4u = (∆− k2)(∆ + k2)u = (∆ + k2)(∆− k2)u.

By setting U = ∆u+ k2u and V = ∆u− k2u, we hence obtain that

∆U − k2U = δy, ∆V + k2V = δy.

In addition, by using a decomposition in the form of a series as in [1], it can be seen
that if u satisfies the Sommerfeld radiation condition, the functions U and V both
satisfy the radiation condition as well. This implies from the case of Helmholtz
equation that

U(x) = − i
4
H1

0 (ik|x− y|), V (x) = − i
4
H1

0 (k|x− y|).
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Since u = (U − V )/2k2, we obtain the expression (6). It remains to prove that
G(·, y) belongs to H2

loc(R2). Let us compare the regularity of G(·, y) with that of
G0(·, y), that is the classical fundamental solution of the operator ∆2 (see [12]), the
expression of which is

G0(x, y) =
1

8π
|x− y|2 log |x− y|. (10)

It is clear that the function G(·, y) − G0(·, y) is infinitely smooth and it is easy
to check by using polar coordinates that G0(·, y) is in H2

loc(R2). Then G(·, y) ∈
H2

loc(R2), which completes the proof.

Remark 1. We also check from the comparison withG0(·, y) thatG(·, y) /∈ H3
loc(R2).

Proposition 1. Let us consider a function u ∈ D ∩ Ω such that u− = u|D solves
problem (8) and u+ = u|Ω solves problem (9). Then for all x ∈ D ∩ Ω, we have

u(x) =

∫
∂D

G(x, y)τ(y) ds(y) +

∫
∂D

∂G(x, y)

∂ny
σ(y) ds(y), (11)

where (τ, σ) = ([Nu], [Mu]). Here, [·] = (·)+ − (·)− denotes the jump across the
boundary of D and ny is oriented inside D. The first integral means duality between
H3/2(∂D) and H−3/2(∂D) while the second one means duality between H1/2(∂D)
and H−1/2(∂D).

Proof. Let us consider x ∈ Ω and r > 0 such that B(x, 2r) ∈ Ω. Next we define gx
and g̃x such that

gx(y) =

{
G(x, y) y ∈ B(x, r)

0 y /∈ B(x, r)

and
g̃x(y) = gx(y)−G(x, y).

Now we take ϕ ∈ C∞0 (B(x, 2r)). The function g̃x satisfies

〈(∆2 − k4)g̃x, ϕ〉 =

∫
B(x,2r)

g̃x(∆2 − k4)ϕdy,

where we have used the distribution brackets 〈·, ·〉. It follows that

〈(∆2 − k4)g̃x, ϕ〉 = −
∫
B(x,2r)\B(x,r)

G(x, y)(∆2 − k4)ϕ(y) dy

=

∫
B(x,2r)\B(x,r)

(
ϕ(y)(∆2

y − k4)G(x, y)−G(x, y)(∆2 − k4)ϕ(y)
)
dy

=

∫
B(x,2r)\B(x,r)

(
ϕ(y)∆2

yG(x, y)−G(x, y)∆2ϕ(y)
)
dy.

By using Lemma 2.1, we obtain

〈(∆2 − k4)g̃x, ϕ〉 = −
∫
∂B(x,r)

(
MyG(x, y)

∂ϕ

∂ny
(y) +NyG(x, y)ϕ(y)

)
ds(y)
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+

∫
∂B(x,r)

(
∂G(x, y)

∂ny
Mϕ(y) +G(x, y)Nϕ(y)

)
ds(y)

where ny is the unit normal oriented inside B(x, r). As a result,

〈(∆2 − k4)gx, ϕ〉 = ϕ(x)−
∫
∂B(x,r)

(
MyG(x, y)

∂ϕ

∂ny
(y) +NyG(x, y)ϕ(y)

)
ds(y)

+

∫
∂B(x,r)

(
∂G(x, y)

∂ny
Mϕ(y) +G(x, y)Nϕ(y)

)
ds(y).

Now let us choose ϕ = θu in the above relationship, for θ ∈ C∞0 (B(x, 2r)), with
θ = 1 in B(x, r). That supp(gx) ⊂ B(x, r) implies that

〈(∆2 − k4)gx, θu〉 =

∫
B(x,2r)

gx(∆2 − k4)(θu) dx =

∫
B(x,r)

gx(∆2 − k4)u dx = 0,

which implies that

u(x) =

∫
∂B(x,r)

U(x, y) ds(y), (12)

where we have used the notation

U(x, y) = MyG(x, y)
∂u

∂ny
(y) +NyG(x, y)u(y)− ∂G(x, y)

∂ny
Mu(y)−G(x, y)Nu(y).

If we now use Lemma 2.1 in the subdomain Ωr,R = (Ω ∩BR) \B(x, r), we obtain

0 =

∫
∂B(x,r)

U(x, y) ds(y) +

∫
∂D

U(x, y) ds(y) +

∫
∂BR

U(x, y) ds(y) (13)

where the normal ny involved in U(x, y) is oriented inside B(x, r) in the first integral,
inside D in the second integral and outside BR in the third one. By using the
Dirichlet-to-Neumann operator T : H3/2(∂BR) × H1/2(∂BR) → H−3/2(∂BR) ×
H−1/2(∂BR), we have∫

∂BR

U(x, y) ds(y) =

〈
(u, ∂nu) , Ty

(
G(x, y)

∂ny
G(x, y)

)〉

−
〈

(G(x, y), ∂nyG(x, y)), T

(
u
∂nu

)〉
,

From (4) we observe that the operator T is symmetric, so that∫
∂BR

U(x, y) ds(y) = 0.

By using (12) and (13) we obtain that

u(x) = −
∫
∂D

(
MyG(x, y)

∂u+

∂ny
(y) +NyG(x, y)u+(y)

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
Mu+(y) +G(x, y)Nu+(y)

)
ds(y),
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where ny is oriented inside D. Lastly we use again Lemma 2.1 in domain D, so that

0 =

∫
∂D

(
MyG(x, y)

∂u−

∂ny
(y) +NyG(x, y)u−(y)

)
ds(y)

−
∫
∂D

(
∂G(x, y)

∂ny
Mu−(y) +G(x, y)Nu−(y)

)
ds(y),

where ny is oriented inside D. From the two equations above, we obtain that for
x ∈ Ω,

u(x) = −
∫
∂D

(
MyG(x, y)

[
∂u

∂ny
(y)

]
+NyG(x, y) [u(y)]

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
[Mu(y)] +G(x, y) [Nu(y)]

)
ds(y),

where ny is oriented inside D. It could be similarly proved that the same formula
is valid for x ∈ D. Given the boundary conditions satisfied by u+ and u− on ∂D,
we have that [u] = 0 and [∂nu] = 0 on ∂D, so that the first integral vanishes, which
completes the proof.

2.2 Uniqueness

Before we detail the effective reconstruction, we prove uniqueness of the obstacle
from the data. In the sequel, we simply denote Γ = ∂BR, which is the support of
sources and measurements. More precisely, we have the following result.

Theorem 2.3. Assume that D1 and D2 are two obstacles, either of Dirichlet type
(that is (B1, B2) = (I, ∂n)) or of Neumann type (that is (B1, B2) = (M,N)), such
that for all y ∈ Γ, the corresponding fields us1(·, y) and us2(·, y) coincide on Γ as
well as their normal derivative, and such that for all y ∈ Γ, the corresponding
fields ũs1(·, y) and ũs2(·, y) coincide on Γ, as well as the normal derivative. Here,
the scattered fields us(·, y) and ũs(·, y) are associated via (1) with the incident fields
ui = G(·, y) and ui = ∂nyG(·, y), respectively. Then D1 = D2.

To prove such theorem, we need the following reciprocity relationships.

Lemma 2.4. For all x, y ∈ Ω and z ∈ Γ,

us(x, y) = us(y, x), ũs(x, z) =
∂us(z, x)

∂nz
.

Proof. We detail the proof for the Dirichlet case, the Neumann case follows the
same lines. From the proof of Proposition 1, for any x, z ∈ Ω, we have the integral
representation

us(x, z) = −
∫
∂D

(
MyG(x, y)

∂us(y, z)

∂ny
+NyG(x, y)us(y, z)

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
Myu

s(y, z) +G(x, y)Nyu
s(y, z)

)
ds(y),
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where ny is oriented inside D. From the Green formula in D we obtain

0 = −
∫
∂D

(
MyG(x, y)

∂G(y, z)

∂ny
+NyG(x, y)G(y, z)

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
MyG(y, z) +G(x, y)NyG(y, z)

)
ds(y). (14)

By introducing the total field u(·, z) = G(·, z)+us(·, z), which satisfies the Dirichlet
condition on ∂D, we obtain by adding the two above relationships that

us(x, z) =

∫
∂D

(
∂G(x, y)

∂ny
Myu(y, z) +G(x, y)Nyu(y, z)

)
ds(y). (15)

We now rewrite the first formula by inverting x and z, which yields

us(z, x) = −
∫
∂D

(
MyG(z, y)

∂us(y, x)

∂ny
+NyG(z, y)us(y, x)

)
ds(y)

+

∫
∂D

(
∂G(z, y)

∂ny
Myu

s(y, x) +G(z, y)Nyu
s(y, x)

)
ds(y). (16)

From the Green formula in Ω and the radiation condition we obtain

0 = −
∫
∂D

(
Myu

s(y, x)
∂us(y, z)

∂ny
+Nyu

s(y, x)us(y, z)

)
ds(y)

+

∫
∂D

(
∂us(y, x)

∂ny
Myu

s(y, z) + us(y, x)Nyu
s(y, z)

)
ds(y).

By subtracting the two above relationships, we obtain by using the fact thatG(y, z) =
G(z, y),

us(z, x) = −
∫
∂D

(
∂us(y, x)

∂ny
Myu(y, z) + us(y, x)Nyu(y, z)

)
ds(y). (17)

Subtracting (15) and (17) and using the fact that u(·, x) satisfies the Dirichlet
condition on ∂D we obtain that us(x, z)− us(z, x) = 0 for all x, z ∈ Ω.

Let us prove the second relationship. For any x, z ∈ Ω, we have the integral
representation

ũs(x, z) = −
∫
∂D

(
MyG(x, y)

∂ũs(y, z)

∂ny
+NyG(x, y)ũs(y, z)

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
Myũ

s(y, z) +G(x, y)Nyũ
s(y, z)

)
ds(y),

where ny is oriented inside D. By computing the normal derivative of (14) with
respect to z at point z ∈ Γ, we obtain that for all x ∈ Ω and all z ∈ Γ,

0 = −
∫
∂D

(
MyG(x, y)

∂2G(y, z)

∂ny∂nz
+NyG(x, y)

∂G(y, z)

∂nz

)
ds(y)

+

∫
∂D

(
∂G(x, y)

∂ny
My

∂G(y, z)

∂nz
+G(x, y)Ny

∂G(y, z)

∂nz

)
ds(y).
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By adding the above relationships, we get

ũs(x, z) =

∫
∂D

(
∂G(x, y)

∂ny
Myũ(y, z) +G(x, y)Nyũ(y, z)

)
ds(y), (18)

where we have used the fact that the total field ũ(·, z) = ∂G(·, z)/∂nz + ũs(·, z)
satisfies the Dirichlet boundary condition on ∂D. Computing the normal derivative
of (16) with respect to z at point z ∈ Γ, we obtain that for all x ∈ Ω and all z ∈ Γ,

∂us(z, x)

∂nz
= −

∫
∂D

(
My

∂G(z, y)

∂nz

∂us(y, x)

∂ny
+Ny

∂G(z, y)

∂nz
us(y, x)

)
ds(y)

+

∫
∂D

(
∂2G(z, y)

∂ny∂nz
Myu

s(y, x) +
∂G(z, y)

∂nz
Nyu

s(y, x)

)
ds(y).

From the Green formula in Ω and the radiation condition we obtain

0 = −
∫
∂D

(
Myũ

s(y, z)
∂us(y, x)

∂ny
+Nyũ

s(y, z)us(y, x)

)
ds(y)

+

∫
∂D

(
∂ũs(y, z)

∂ny
Myu

s(y, x) + ũs(y, z)Nyu
s(y, x)

)
ds(y).

Adding the two above relationships implies that for all x ∈ Ω and all z ∈ Γ,

∂us(z, x)

∂nz
= −

∫
∂D

(
Myũ(y, z)

∂us(y, x)

∂ny
+Nyũ(y, z)us(y, x)

)
ds(y). (19)

Subtracting (18) and (19) and using the fact that u(·, x) satisfies the Dirichlet
condition on ∂D we obtain that ũs(x, z) − ∂us(z, x)/∂nz = 0 for all x ∈ Ω and
z ∈ Γ.

Proof of Theorem 2.3. Again, we detail the proof for the Dirichlet case, the Neu-
mann case follows the same lines. Let us denote Ω̃ the unbounded connected com-
ponent of R2 \D1 ∪D2. We have that for all x, y ∈ Γ,

us1(x, y) = us2(x, y),
∂us1
∂nx

(x, y) =
∂us2
∂nx

(x, y)

as well as

ũs1(x, y) = ũs2(x, y),
∂ũs1
∂nx

(x, y) =
∂ũs2
∂nx

(x, y).

From well-posedness of the forward diffraction problem when the obstacle is the
ball BR with Dirichlet boundary condition, we have that for all x ∈ R2 \BR, for all
y ∈ Γ,

us1(x, y) = us2(x, y), ũs1(x, y) = ũs2(x, y).

Unique continuation for the operator ∆2 − k4 then implies that for all x ∈ Ω̃, for
all y ∈ Γ,

us1(x, y) = us2(x, y), ũs1(x, y) = ũs2(x, y).

We now use the reciprocity relationships of Lemma 2.4, which imply that for all
x ∈ Ω̃, for all y ∈ Γ,

us1(y, x) = us2(y, x),
∂us1
∂ny

(y, x) =
∂us2
∂ny

(y, x).
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By repeating the same arguments as above we obtain that for all x, y ∈ Ω̃,

us1(x, y) = us2(x, y).

Assume that D1 6⊂ D2. Since R2 \ D2 is connected, there exists some non empty
open set Γ∗ ⊂ (∂D1 ∩ ∂Ω̃) \ D2. We now consider some point x∗ ∈ Γ∗ and the
sequence

xm = x∗ +
n1(x∗)

m
, m ∈ N \ {0},

where n1(x∗) denotes the unit normal to Γ∗ at point x∗. For sufficiently large m,
xm ∈ Ω̃, so that for all x ∈ Ω̃ and all m,

us1(x, xm) = us2(x, xm),

which implies in particular

us1(·, xm)|Γ∗ = us2(·, xm)|Γ∗ ,
∂us1
∂n1

(·, xm)

∣∣∣∣
Γ∗

=
∂us2
∂n1

(·, xm)

∣∣∣∣
Γ∗

.

Using the boundary condition for us1, we obtain

G(·, xm)|Γ∗ = −us2(·, xm)|Γ∗ ,
∂G

∂n1
(·, xm)

∣∣∣∣
Γ∗

= − ∂us2
∂n1

(·, xm)

∣∣∣∣
Γ∗

.

Passing to the limit m→ +∞, we get

G(·, x∗)|Γ∗ = −us2(·, x∗)|Γ∗ ,
∂G

∂n1
(·, x∗)

∣∣∣∣
Γ∗

= − ∂us2
∂n1

(·, x∗)
∣∣∣∣
Γ∗

.

The function us2 is infinitely smooth in a vicinity of x∗, while Γ∗ is a subset of the
boundary of the C3 domain Ω1. This implies that (us2(·, x∗)|Γ∗ , ∂n1

us2(·, x∗)|Γ∗) ∈
H5/2(Γ∗) × H3/2(Γ∗), which is also the regularity of (G(·, x∗)|Γ∗ , ∂n1

G(·, x∗)|Γ∗).
Hence the function G(·, x∗), which solves the equation ∆2G(·, x∗)− k4G(·, x∗) = 0
in Ω̃ is H3 in a vicinity of x∗ in Ω̃, from standard regularity results for elliptic
problems [14]. But this is a contradiction in view of Remark 1. We conclude that
D1 ⊂ D2 and we prove the same way that D2 ⊂ D1. Eventually, D1 = D2

2.3 Justification of the Linear Sampling Method

We detail the classical theory of the Linear Sampling Method in the Dirichlet case,
that is (B1, B2) = (I, ∂n). The Neumann case follows the same lines and will be
presented without justification in the next section. Let us start by introducing the
mapping SD : H−3/2(∂D) × H−1/2(∂D) → H3/2(∂D) × H1/2(∂D) such that, for
all x ∈ ∂D,

SD

(
τ
σ

)
(x) =


∫
∂D

(
G(x, y)τ(y) +

∂G(x, y)

∂ny
σ(y)

)
ds(y)

∂.

∂n

∫
∂D

(
G(x, y)τ(y) +

∂G(x, y)

∂ny
σ(y)

)
ds(y)

 . (20)

We have the following property.
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Proposition 2. The mapping SD is an isomorphism if k /∈ KD.

Proof. The proof is based on a comparison between the mapping SD and the ana-
logue mapping SD,0 when the fundamental solution G of operator ∆2−k4 is replaced
by the fundamental solution G0 of operator ∆2 (see [12]) given by (10). The ker-
nel G − G0 is infinitely smooth, so that since the mapping SD,0 : H−3/2(∂D) ×
H−1/2(∂D) → H3/2(∂D) × H1/2(∂D) is continuous (see for example [12]), this is
also the case for SD. From [11, Lemma 3.1], the operator SD,0 is Fredlholm of index
0. Since SD−SD,0 is compact, this implies that the operator SD is Fredholm of index
0 as well. Let us prove that SD is surjective. We will then conclude that SD is an
isomorphism. Assume that (φ, ψ) ∈ H3/2(∂D)×H1/2(∂D). We have to prove that
there exits (τ, σ) ∈ H−3/2(∂D)×H−1/2(∂D) such that SD(τ, σ)T = (φ, ψ)T . In this
view, assuming that k /∈ KD, let us consider the well-defined solutions u− in D and
u+ in Ω to the interior problem (8) and to the exterior problem (9) associated with
the same Dirichlet data (φ, ψ). From proposition 1, the solution u = (u−, u+) has
expression (11). The trace and normal derivative of such solution, namely (u, ∂nu),
are continuous across ∂D and coincide with (φ, ψ), so that (φ, ψ)T = SD(τ, σ)T ,
where we have set (τ, σ) = ([Nu], [Mu]) ∈ H−3/2(∂D)×H−1/2(∂D). The proof is
complete.

We introduce the following operators: the obstacle-to-data operator FD : H−3/2(∂D)×
H−1/2(∂D)→ L2(Γ)× L2(Γ) such that, for all x ∈ Γ,

FD

(
τ
σ

)
(x) =


∫
∂D

(
G(x, y)τ(y) +

∂G(x, y)

∂ny
σ(y)

)
ds(y)

∂.

∂n

∫
∂D

(
G(x, y)τ(y) +

∂G(x, y)

∂ny
σ(y)

)
ds(y)

 , (21)

the data-to-obstacle operator HD : L2(Γ) × L2(Γ) → H3/2(∂D) × H1/2(∂D) such
that, for all x ∈ ∂D,

HD

(
h
t

)
(x) =


∫

Γ

(
G(x, y)h(y) +

∂G(x, y)

∂ny
t(y)

)
ds(y)

∂.

∂n

∫
Γ

(
G(x, y)h(y) +

∂G(x, y)

∂ny
t(y)

)
ds(y)

 , (22)

and the near-field operator ND : L2(Γ)× L2(Γ)→ L2(Γ)× L2(Γ) such that, for all
x ∈ Γ,

ND

(
h
t

)
(x) =


∫

Γ

(us(x, y)h(y) + ũs(x, y)t(y)) ds(y)

∂.

∂n

∫
Γ

(us(x, y)h(y) + ũs(x, y)t(y)) ds(y)

 , (23)

where us(·, y) and ũs(·, y) are the solutions to problem (1) with ui = G(·, y) and
∂ny

G(·, y), respectively. Lastly, let us define the solution operator BD : H3/2(∂D)×
H1/2(∂D)→ L2(Γ)×L2(Γ) such that for (φ, ψ) ∈ H3/2(∂D)×H1/2(∂D), B(φ, ψ)T

is formed by the trace and normal derivative on Γ of the unique solution v ∈ H2
loc(Ω)
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to the problem 
∆2v − k4v = 0 in Ω

v = φ,
∂v

∂n
= ψ on ∂Ω

lim
r→+∞

∫
∂Br

∣∣∣∣ ∂v∂n − ikv
∣∣∣∣2 ds = 0.

(24)

Proposition 3. Let us assume that k /∈ KD. The operators BD, FD, HD and ND
satisfy FD = H

∗
D, FD = BDSD and ND = −BDHD, where A∗ denotes the adjoint

of operator A. In addition, these four operators are compact, injective with dense
range.

Proof. Let us prove that FD = H
∗
D. We have, for (τ, σ) ∈ H−3/2(∂D)×H−1/2(∂D)

and (h, t) ∈ L2(Γ)× L2(Γ),〈
FD

(
τ
σ

)
,

(
h
t

)〉
=

∫
Γ

(∫
∂D

G(x, y)τ(y) + ∂ny
G(x, y)σ(y) ds(y)

)
h(x) ds(x)

+

∫
Γ

∂n

(∫
∂D

G(x, y)τ(y) + ∂nyG(x, y)σ(y) ds(y)

)
t(x) ds(s)

=

∫
∂D

τ(y)

(∫
Γ

G(x, y)h(x) + ∂nx
G(x, y)t(x) ds(x)

)
ds(y)

+

∫
∂D

σ(y)∂n

(∫
Γ

G(x, y)h(x) + ∂nx
G(x, y)t(x) ds(x)

)
ds(y)

=

∫
∂D

τ(y)

(∫
Γ

G(y, x)h(x) + ∂nx
G(y, x)t(x) ds(x)

)
ds(y)

+

∫
∂D

σ(y)∂n

(∫
Γ

G(y, x)h(x) + ∂nx
G(y, x)t(x) ds(x)

)
ds(y)

=

〈(
τ
σ

)
, HD

(
h
t

)〉
,

that is FD = H
∗
D. In the computation above, we have used that G(x, y) = G(y, x) in

view of (6). The identities FD = BDSD andND = −BDHD are simple consequences
of the very definition of the four operators. That BD is compact is a consequence of
the interior regularity of operator ∆2. This implies, from FD = H

∗
D, FD = BDSD

and ND = −BDHD, that FD, HD and ND are also compact operators. Let us prove
that BD is injective. If (φ, ψ) ∈ H3/2(∂D)×H1/2(∂D) is such that BD(φ, ψ)T = 0,
this means that the solution v to problem (24) satisfies (v|Γ, ∂nv|Γ) = (0, 0). From
uniqueness of the scattering problem with Dirichlet boundary condition (see again
Theorem 1.1), we have that v = 0 in R2 \ BR, and then v = 0 in Ω from unique
continuation for the operator ∆2 − k4. We conclude that v|∂D and ∂nv|∂D = 0,
that is (φ, ψ) = (0, 0). From FD = BDSD and the injectivity of SD, we obtain
the injectivity of FD. Let us prove the injectivity of HD. Assume that (h, t) ∈
L2(Γ)× L2(Γ) is such that HD(h, t)T = 0. Let us consider the function

vh,t(x) =

∫
Γ

G(x, y)h(y) ds+ ∂nyG(x, y)t(y) ds(y), x ∈ R2 \ Γ.
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Such function is a solution to problem (24) with (φ, ψ) = (0, 0), so that vh,t = 0 in
Ω \Γ. From the jump relationships h = [Nvh,t] and t = [Mvh,t] across Γ, we obtain
that (h, t) = (0, 0). So HD is injective, as well as ND since ND = −BDHD. That

FD = H
∗
D implies that FD has a dense range, as well as BD = FDS

−1
D , HD = F

∗
D

and ND = −BDHD.

Remark 2. From proposition 3, we derive the classical factorization

ND = −H∗DS−1
D HD.

We also need the fundamental range test property.

Proposition 4. Assume that k /∈ KD. We have

z ∈ D ⇐⇒
(

G(·, z)|Γ
∂nG(·, z)|Γ

)
∈ Range(FD).

Proof. First we observe that since SD is an isomorphism, Range(FD) = Range(BD).
If z ∈ D, we observe that the function G(·, z) is the solution to problem (24) with

(φ, ψ) = (G(·, z)|∂D, ∂nG(·, z)|∂D) ∈ H3/2(∂D)×H1/2(∂D).

This implies that (
G(·, z)|Γ
∂nG(·, z)|Γ

)
∈ Range(BD).

If on the contrary z /∈ D, let us assume that(
G(·, z)|Γ
∂nG(·, z)|Γ

)
= BD

(
φ
ψ

)
,

with (φ, ψ) ∈ H3/2(∂D) ×H1/2(∂D). The corresponding solution to problem (24)
is denoted v. Since the trace (v|Γ, ∂n|Γ) coincides with (G(·, z)|Γ, ∂nG(·, z)|Γ), we
have that G(·, z) and v coincide outside the ball BR, and then in Ω\{z} by a unique
continuation argument. The contradiction comes from a regularity comparison at
point z: the function v in locally infinitely smooth while from Remark 1, G(·, z) is
not locally H3.

From propositions 2, 3 and 4, we have the following Theorem. Since the proof
mimics the one of [13] and is classical, it is left to the reader.

Theorem 2.5. We assume that k /∈ KD.

• If z ∈ D, then for all ε > 0 there exists a solution (hε(·, z), tε(·, z)) ∈ L2(Γ)×
L2(Γ) of the inequality∥∥∥∥ND( hε(·, z)

tε(·, z)

)
−
(

G(·, z)|Γ
∂nG(·, z)|Γ

)∥∥∥∥
L2(Γ)×L2(Γ)

≤ ε (25)

such that the function HD(hε(·, z), tε(·, z))T converges in H3/2(∂D)×H1/2(∂D)
as ε→ 0.
Furthermore, for a given fixed ε > 0, the couple of functions (hε(·, z), tε(·, z))
satisfies

lim
z→∂D

‖(hε(·, z), tε(·, z))‖L2(Γ)×L2(Γ) = +∞

and

lim
z→∂D

∥∥∥∥HD

(
hε(·, z)
tε(·, z)

)∥∥∥∥
H3/2(∂D)×H1/2(∂D)

= +∞.
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• If z /∈ D, then every solution (hε(·, z), tε(·, z)) of the inequality (25) satisfies

lim
ε→0
‖(hε(·, z), tε(·, z))‖L2(Γ)×L2(Γ) = +∞

and

lim
ε→0

∥∥∥∥HD

(
hε(·, z)
tε(·, z)

)∥∥∥∥
H3/2(∂D)×H1/2(∂D)

= +∞.

2.4 The case of Neumann obstacle

In the Neumann case, that is (B1, B2) = (M,N), the important point is that the
near-field operator NN is unchanged with respect to ND, provided in this case the
scattered fields us(·, y) and ũs(·, y) for y ∈ Γ are obtained for a Neumann obstacle
instead of a Dirichlet obstacle. However the operators SN , FN , HN and BN which
are involved in the theoretical justification of the Linear Sampling Method are
modified as follows: SN : H3/2(∂D) × H1/2(∂D) → H−3/2(∂D) × H−1/2(∂D) is
such that, for all x ∈ ∂D,

SN

(
φ
ψ

)
(x) =

 N

∫
∂D

(NyG(x, y)φ(y) +MyG(x, y)ψ(y)) ds(y)

M

∫
∂D

(NyG(x, y)φ(y) +MyG(x, y)ψ(y)) ds(y)

 , (26)

the obstacle-to-data operator is FN : H3/2(∂D)×H1/2(∂D)→ L2(Γ)×L2(Γ) such
that, for all x ∈ Γ,

FN

(
φ
ψ

)
(x) =


∫
∂D

(NyG(x, y)φ(y) +MyG(x, y)ψ(y)) ds(y)

∂·
∂n

∫
∂D

(NyG(x, y)φ(y) +MyG(x, y)ψ(y)) ds(y)

 , (27)

the data-to-obstacle operator is HN : L2(Γ) × L2(Γ) → H−3/2(∂D) ×H−1/2(∂D)
such that, for all x ∈ ∂D,

HN

(
h
t

)
(x) =

 N

∫
Γ

(
G(x, y)h(y) +

∂G(x, y)

∂ny
t(y)

)
ds(y)

M

∫
Γ

(
G(x, y)h(y) +

∂G(x, y)

∂ny
t(y)

)
ds(y)

 . (28)

Lastly, the solution operator BN : H−3/2(∂D) × H−1/2(∂D) → L2(Γ) × L2(Γ) is
such that for (τ, σ) ∈ H−3/2(∂D) × H−1/2(∂D), B(τ, σ)T is formed by the trace
and normal derivative on Γ of the unique solution v in H2

loc(Ω) to the problem
∆2v − k4v = 0 in Ω

Mv = σ, Nv = τ on ∂Ω

lim
r→+∞

∫
∂Br

∣∣∣∣ ∂v∂n − ikv
∣∣∣∣2 ds = 0.

(29)

It can be checked that the Propositions 2, 3, 4 and Theorem 2.5 are also valid for
operators SN , BN , FN , HN and NN provided k /∈ KN , where KN is the union of
K0 (see Theorem 1.1) and of the fourth roots of Neumann eigenvalues of operator
∆2 in domain D.
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3 Numerical experiments

3.1 Producing artificial data

In all the numerics, the Poisson’s ratio is ν = 0.3. In order to obtain artificial data
for the inverse problem, we need to solve the problem (2) numerically in ΩR. We
use a Finite Element Method based on the Morley’s finite element and by limiting
the infinite sum (3) which defines the Dirichlet-to-Neumann operator T to a finite
number M of terms. The finite element of Morley was introduced in [15] and
analyzed for example in [16, 17]. This non-conforming finite element is probably
the most simple element which enables one to solve bilaplacian problems. If ΩR is
approximated by a polygonal domain and meshed with triangles, the finite element
space is formed by functions uh such that their restriction on each triangle is given
by a second degree polynomial, so that the number of degrees of freedom is 6 by
triangle: the values of uh at the three vertices of the triangle and the values of the
normal derivatives of uh at the middle of the three sides of the triangle. We use
a very refined mesh, which is in particular consistent with the largest value of k
(k = 30) that is used later on. The integer M has also to be sufficiently large with
respect to k, we take M = bk/Rc + 20. In the figure 1, we check the validity of
the discretized Dirichlet-to-Neumann operator by computing the scattering solution
either in Ω1 or in Ω2, that is ΩR for R = 1 and R = 2. We verify that the two
solutions coincide in the numerical sense in the intersection Ω1 ∩ Ω2 = Ω1.

Figure 1: Validation of the artificial boundary condition. Left: scattering solution
computed in Ω1. Right: scattering solution computed in Ω2.

3.2 Identification results

The procedure described in section 3.1 enables us to compute, for all y ∈ Γ, the
solutions us(·, y) and ũs(·, y) to the problem (1) with ui = G(·, y) and ∂ny

G(·, y),
respectively. For each sampling point z ∈ ΩR we wish to solve in L2(Γ)×L2(Γ) the
near-field equation

ND

(
h(·, z)
t(·, z)

)
=

(
G(·, z)|Γ
∂nG(·, z)|Γ

)
(30)
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for Dirichlet data. That the operator ND is compact implies that the previous
equation is always ill-posed, this is why we solve it in the Tikhonov sense. In the
realistic case when the data are perturbed by noise, the regularization parameter
in the Tikhonov regularization is chosen as a function of the amplitude of noise by
using the Morozov discrepancy principle exactly as in [18]. Of course the operator
ND has to be replaced by NN for Neumann data. As it is done classically by LSM
users, for each z ∈ ΩR we plot

Ψ(z) = log

 1√
‖hε(·, z)‖2L2(Γ) + ‖tε(·, z)‖2L2(Γ)

 ,

where (hε, tε) is the Tikhonov regularized solution. Following Theorem 2.5, the
function Ψ happens to be finite inside the unknown defect D and −∞ outside
D, which means that imaging the defect D amounts to plotting the level sets of
the function Ψ. In practice, the set of data is finite. In other words, we have to
handle discretized versions of operators ND to NN corresponding to multistatic
data us(xi, yj) and ũs(xi, yj) where the points xi and yj for i, j = 1, · · · , I are
equally distributed on the circle Γ (the locations of points xi and points yj are the
same). Here we have I = 500 in all the identification experiments. In the figure
2, we have represented the function Ψ for a Dirichlet obstacle D formed by the
union of two discs and by using exact data, for various wave numbers k, that is
k = 10, k = 20 and k = 30. In the figure 3, we show the identification results for
an obstacle with the same geometry but with Neumann boundary condition, for
k = 10, k = 20 and k = 30. In the figure 4, the identification results are presented
for a Dirichlet obstacle formed by three circles with k = 30 and for a kite-shaped
Neumann obstacle with k = 20. Data are exact in all the previous cases.

Now, let us analyze the impact of noise on the data us(xi, yj) and ũs(xi, yj)
for i, j = 1, · · · , I. This noise is such that for each j, the scattered fields us(·, yj)
and ũs(·, yj) as well as their normal derivatives are perturbed at each point xi by a
Gaussian noise which is then rescaled in such a way that the artificial relative errors
for the L2 norm of all these fields have a prescribed value σ. We show in figure 5
the obtained results for the Dirichlet obstacle formed by two circles for k = 20 when
the amplitude of noise is 5% and 10% (that is σ = 0.05 and σ = 0.1). These results
have to be compared with the top right part of figure 2 obtained with unperturbed
data.

We complete this numerical study by some identification attempts with much less
data. Indeed, from a practical point of view, it could be considered as a complicated
task to produce the data ũs(·, y), which for each y is the diffractive response due
to the solicitation consisting in the normal derivative of a point source, namely
∂ny

G(·, y). In addition, not only our sampling method needs the trace of fields
us(·, y) and ũs(·, y) on Γ but also their normal derivatives. Hence it is natural to
wonder if one can use a sampling method using only us(x, y) for (x, y) ∈ Γ × Γ,
exactly as if the scattered field us solved the Helmholtz equation ∆us + k2us = 0
instead of the true equation ∆2us − k4us = 0. In [1], we observed that in Ω, any
solution u to the equation ∆2u−k4u = 0 is given by u = upr+uev, where upr satisfies
∆upr + k2upr = 0 and uev satisfies ∆uev− k2uev = 0. If we assume in addition that
the function u is radiating, is was proved that outside some ball BR, the function upr

is an infinite linear combination of the functions H1
n(kr)einθ, which are oscillating

and slowly decaying at infinity, while uev is an infinite linear combination of the
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Figure 2: Dirichlet obstacle, exact data and various wave numbers k. Top left:
k = 10. Top right: k = 20. Bottom: k = 30

functions H1
n(ikr)einθ, which are exponentially decaying at infinity. This is why

we call upr the propagating part of the radiating solution u and uev the evanescent
part. As a conclusion, at a long distance of the obstacle, the scattered field u can
be approximated by its propagating part upr, which solves the Helmholtz equation
(the evanescent part uev of u is neglected). Similarly, the fundamental solution
G(·, y) given by (6) can be approximated at long distance of y by its propagating
part iH1

0 (k| · −y|)/8k2, which up to a constant coincides with the fundamental
solution G (·, y) to the Helmholtz equation. In the Dirichlet case, it is then tempting,
rather than solving the near-field equation (30), to solve the classical near-field
equation corresponding to the Helmholtz equation. It consists, for each sampling
point z ∈ ΩR, to solve in L2(Γ) the near-field equation

N h = G (·, z)|Γ, (31)

where the operator N : L2(Γ)→ L2(Γ) is defined, for h ∈ L2(Γ), by

N h(x) =

∫
Γ

us(x, y)h(y) dy, x ∈ Γ.

We here use the fact that the Dirichlet boundary conditions for problem (1) implies
the Dirichlet boundary condition for the Helmholtz equation. Comparing the op-
erator N and the operator ND, we see that solving the equation (31) rather than
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Figure 3: Neumann obstacle, exact data and various wave numbers k. Top left:
k = 10. Top right: k = 20. Bottom: k = 30.

Figure 4: Left: Dirichlet obstacle formed by 3 circles, k = 30 and exact data. Right:
Neumann kite-shaped obstacle, k = 20 and exact data.

the equation (30) leads us to use one block of data out of four. On the picture 6, we
present the identification results for the Dirichlet obstacles formed by two or three
circles, in the case of unperturbed data and k = 30, when we solve the equation
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Figure 5: Dirichlet obstacle, k = 20. Left: noise of amplitude 5%. Right: noise of
amplitude 10%.

(31) instead of (30). These results have to be compared with the bottom part of
picture 2 and the left part of picture 4. We now consider the case when we have

Figure 6: Dirichlet obstacle with less (exact) data, k = 30. Left: two circles. Right:
three circles.

less data and when those data are noisy. The corresponding results are presented
on picture 7 for the Dirichlet obstacle formed by two circles, for k = 20, when the
amplitude of noise is 5% and 10%. These results have to be directly compared with
the ones presented on picture 5.

3.3 Conclusion

The numerical experiments of the previous section seem to show that the Linear
Sampling Method is effective for Kirchhoff-Love plates, at least with data given on
a circle Γ surrounding the unknown obstacle. It works both for a Dirichlet obstacle
and for a Neumann obstacle, even in the presence of noisy data. As usual, the
identification results improve when the wave number increases. Maybe we notice
a slight degradation of the quality of the identification if we compare the results
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Figure 7: Dirichlet obstacle with less data, k = 20. Left: noise of amplitude 5%.
Right: noise of amplitude 10%.

with those classically obtained for the Helmholtz equation in two dimensions. If we
compare to such case of Helmholtz equation in two dimensions, the LSM requires
more data in the sense that we need the trace and the normal derivative on Γ of
the scattered fields associated with both the point source G(·, y) and its normal
derivative ∂ny

G(·, y) for all y ∈ Γ. However, we have shown experimentally in the
Dirichlet case that using only the trace on Γ of the scattered field associated with
the point source G(·, y) for all y ∈ Γ and hence proceeding exactly as if we solved the
Dirichlet case for the Helmholtz equation, produces almost as good results as when
using the complete data. This simplification would deserve a more quantitative
justification.
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informatique de Rennes, fascicule S4 Journées éléments finis (1974), 1–51.
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