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Abstract— The article is devoted to the analysis of two
optimal control problems. We first consider a model proposed
by Arechavaleta et al. (see [3]) describing the goal-oriented
locomotion, for which the control on the derivative of the
curvature κ̇ along the trajectory is supposed bounded. Nec-
essary conditions on optimal trajectories are given. We then
investigate an extension of this model obtained by removing
the boundedness assumption on κ̇. In this framework several
properties of the optimal trajectories are detected and in
particular we determine an asymptotic behavior of the initial
value of the associated covector with respect to the final point.

I. INTRODUCTION

This paper deals with the geometric shape of locomotor

trajectories on the ground level. A person walking in an

empty room from an initial point to a final point has several

possible trajectories to perform this task (see figure 1) and

will choose one of them, based on partially unconscious non

trivial criteria. We present in this paper the mathematical

study of a model based on the experiments performed in [2]

to understand the goal-oriented locomotor trajectories. The

approach that has been chosen is macroscopic, in particular,

it does not refer to biomechanical motor controls generating

the motion or anatomical parameters, contrary to studies of

the human walking performed by neuroscientists (see [1]).

To address a model, we will mainly take advantage of the

shape of trajectories and of an optimization principle (see

[9]). The use of such a principle is now being common for

describing the generation of motion by the human body

(e.g. the problem of arm pointing [5], or the control of eye

movement [10]).

To model the human locomotion, Laumond has suggested

the use of a dynamical system used in the field of mobile

robotics. This choice has been motivated by the analysis of a

large number of data obtained monitoring the paths followed

by several subjects (see [2], [3]). Subjects have been asked

to walk from a pre-defined position (crossing an initial

porch with an initial direction) to a final position (crossing

a final porch with a final direction). Figure 1 illustrates

three possible trajectories to connect a point I to a point F .
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Sur-Yvette, France, yacine.chitour@lss.supelec.fr,

paolo.mason@lss.supelec.fr.
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The subject starts with a fixed initial direction θ0 ∈ [0, 2π]
and ends with a fixed final direction θ1. The numerical

records performed in [2] show in particular that the trunk

can be considered as a steering wheel, that is, it satisfies

a nonholonomic constraint. Let (x, y) denotes the trunk

position in the plane and let θ be the tangential direction of

the speed vector ~v with respect to a fixed direction, that is,

(cos θ, sin θ) is parallel to ~v. The nonholonomic constraint

satisfied by the trunk writes:

ẋ sin θ − ẏ cos θ = 0. (I.1)

Notice that sideways walking is prohibited by the dynamical

constraint above. In addition, the constraint (I.1) does not

allow a subject to turn his shoulder while the body is fixed.

This remark suggests that certain real trajectories may not

correspond exactly to predicted trajectories (in particulary

if the target is located behind the initial position or close

to it). A possible approach to describe locomotor trajectories

consists in interpreting them as solutions of a suitable optimal

control problem related to a control scheme taking into

account the previous dynamical constraint. A subject is

viewed as a controlled system described by a nonholonomic

system. Using the coordinates (x, y, θ) of the trunk and

(I.1), a first approach to describe the human locomotion is

to consider the following differential system (called Dubin-

System):










ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u2.

(I.2)

The function u1 is the linear speed and the function u2 is the

angular velocity. As the speed is bounded, it can be assumed

that the function u := (u1, u2) takes its values within a

certain compact set U , that is (u1, u2) ∈ L∞([0, T ],U).
Such a system is often used to describe a wheeled vehicle

controlled by its linear and angular velocity (see Dubin’s car

model, [11]), the speed vector being tangent to (cos θ, sin θ).
Nevertheless, system (I.2) is not well adapted to describe

locomotor trajectories. Indeed, it has been pointed out ex-

perimentally in [2] that the curvature along a locomotor

trajectory is continuous. Since the continuity of the curvature

is not guaranteed if u ∈ L∞ in (I.2), it has been suggested

in [2] to control the variation of curvature instead of the

curvature itself. The locomotor trajectories will be then

described by the following extension of Dubin’s model in R
4

(called Dubin-Markov-System), keeping the nonholonomic
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constraint


















ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u1κ,

κ̇ = u2.

(I.3)

We assume that the linear velocity u1 takes values within an

interval [a, b], with 0 < a < b (a being the lowest walking

speed and b the fastest one) and the function u2 takes values

on an interval [−c, c], where c > 0.

For simplicity, we will denote X := (x, y, θ, κ) ∈ R
2 ×

S1 × R. According to the experiments described in [2], [3],

in which the subject is asked to start walking straight ahead

in the direction θ0 at t = 0 from an initial porch located

at (x0, y0), we assume that κ(0) = 0. Similarly, we will

assume that κ = 0 at the final time Tu. Therefore, without

loss of generality, we consider initial and final conditions of

the following form:
{

X(0) = X0,

X(Tu) = X1,
(I.4)

where X0 = (0, 0, π
2 , 0), X1 = (x1, y1, θ1, 0). This initial-

final boundary condition will be kept through the rest of the

paper. Notice that the final time Tu is not fixed in advance,

but it depends on u(·).
To walk from the initial point to the final point, we now

suppose that the human brain minimizes a certain energy.

Several costs can be found in the literature to model the

generation of motion of the human body: the minimum time

or the jerk (see [7], [9], [8] for similar assumptions). In this

paper, following Arechavaleta et al. [2], [3], we assume that

the cost to be minimized along the locomotor trajectories

steering X0 to X1 in time Tu is given by:

Cu(Tu) :=
1

2

∫ Tu

0

(

u2
1(t) + u2

2(t)
)

dt. (I.5)

Clearly, Cu(Tu) takes into account the kinetic energy of

the subject on the interval [0, Tu] to steer X0 to X1. The

first term is the linear kinetic energy, the second one can

be viewed as the angular kinetic energy, and we argue

in particular that the variation of curvature of locomotor

trajectories is minimized. A person naturally reduces the

variation of curvature and takes advantage of straight lines

avoiding sharp bends. Other costs are possible to model the

locomotion, in particular a compromise between the kinetic

and angular energy could be studied. From now on, we

suppose that the cost Cu(Tu) given by (I.5) is minimized

along locomotor trajectories.

In view of the previous comments in this paper we will

first investigate the following optimal control problem.

(OCP1): Find all the trajectories of (I.3) defined on [0, Tu],
with u1(·) ∈ L∞([0, Tu], [a, b]) for some 0 < a < b and

u2(·) ∈ L∞([0, Tu], [−c, c]) for a c > 0, such that

X(0) = X0 to X(Tu) = X1 and minimizing (I.5).

Notice that system I.3 has been studied by Sussmann (see

[13]) in the case of the minimum time with u1 = 1 and u2 ∈

[−1, 1], who showed in particular that an optimal trajectory

has infinite chattering (Fuller phenomenon). In the model

above, the cost to minimize takes into account the energy

and it prevents this phenomenon.

A second optimal control problem, obtained by removing

the boundedness assumptions on u2, will be then considered.

(OCP2): Find all the trajectories of (I.3) defined on [0, Tu],
with u1(·) ∈ L∞([0, Tu], [a, b]) for some 0 < a < b and

u2(·) ∈ L2([0, Tu]), such that X(0) = X0 to X(Tu) = X1

and minimizing (I.5).

Notice that both our optimization models are reasonable

only when the final point is far enough from the origin.

To tackle this problem a more sophisticated model taking

into account the possibility of holonomic motion (such as

sideways or oblique steps) has been recently proposed in

[6].

In the following sections we will state qualitative proper-

ties of optimal trajectories of (OCP1) and (OCP2) and we

will describe the asymptotic behaviour of optimal trajectories

for (OCP2) as the final point (x1, y1) goes to infinity. A more

detailed description with complete proofs of such results (that

for reasons of space cannot be included in the present paper)

can be found in [4].

Fig. 1. The subject walks from point I with fixed initial direction θ0 = π

2

to point F with fixed final direction θ ∈ [0, 2π]. Three possible trajectories

have been plotted in two cases for F and θ.

II. GENERAL RESULTS

In this section, general properties of both optimal control

models (OCP1) and (OCP2) are addressed. The Pontryagin

maximum principle (PMP) is applied to obtain necessary

conditions satisfied by optimal trajectories.

We first set some notation. Recall that X = (x, y, θ, κ) ∈
R

2 × S1 × R, and let (F1, F2, F3, F4) be the vector fields

defined on R
2 × S1 × R by



















F1(X) = (cos(θ), sin(θ), κ, 0),

F2(X) = (0, 0, 0, 1),

F3(X) = (0, 0,−1, 0),

F4(X) = (− sin(θ), cos(θ), 0, 0).

The system (I.3) reads as follows:

Ẋ = u1F1(X) + u2F2(X), (II.1)
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with u1 ∈ [a, b] and u2 ∈ [−c, c] for (OCP1), u2 ∈ R for

(OCP2).

A. Existence, controllability and reduction of the system

We investigate in this section the controllability of (I.3)

and the existence of an optimal control for (OCP1) and

(OCP2). We also show that it is possible to simplify these

problems by assuming that u1 ≡ a.

Proposition 2.1: The system (I.3) is controllable, pro-

vided that u1 ∈ [a, b] and u2 ∈ [−c, c], for any choice of

0 < a < b and 0 < c ≤ +∞.

The following result shows that it is always possible to

simplify the optimal control problem by setting u1 ≡ a.

More precisely, if we have existence of an optimal control,

then it can be selected among the controls satisfying u1 ≡ a.

Theorem 2.2: Let (X0, X1) be given in R
2 × S1 × R.

Let u(·) = (u1(·), u2(·)) be a control function steering (I.3)
from X0 to X1. Then there always exists a control ũ of the

form ũ(·) = (a, ũ2(·)) such that ‖ũ2(·)‖∞ ≤ ‖u2(·)‖∞, the

corresponding trajectory X̃(·) solution of (I.3) connects X0

and X1 and the cost associated to ũ is lower than the one

associated to u.

In view of the previous result and for simplicity reasons from

now on we will always assume u1 ≡ a = 1 and we will

simply denote u2 by u, so that the initial system is rewritten

as:


















ẋ = cos θ,

ẏ = sin θ,

θ̇ = κ,

κ̇ = u.

(II.2)

The cost of an admissible trajectory becomes

Cu(T ) =
1

2
T +

1

2

∫ T

0

u2, (II.3)

and it is the sum of two terms: the first one corresponds to

the minimum time problem and the second one 1
2

∫ T

0
u2 can

be considered as the rotational kinetic energy. For special

cases it is easy to provide optimal trajectories. For instance

we have the following straightforward result.

Proposition 2.3: The points X0 and X1 are connected

optimally by a segment if and only if x1 = 0, y1 ≥ 0,

θ1 = θ0 = π
2 . The cost associated to this trajectory is

Cu(T ) = y1

2 .

In the general case the existence of optimal trajectories is

provided by the following proposition.

Proposition 2.4: For every choice of X0 and X1 in R
2 ×

S1 × R there exists an optimal trajectory X̄(·) defined on

[0, T̄ ] and associated to the control ū(·) such that X̄(0) = X0

and X̄(T̄ ) = X1.

In order to apply the PMP to our optimal control problems

we will need to ensure that any optimal control ū(·) is

bounded in the L∞ topology. For Problem (OCP2) we have

the following proposition which is a direct application of

Theorem 1 of [12].

Proposition 2.5: Assume there is no a priori bound on

u and let X̄(·) be an optimal trajectory defined on [0, T̄ ]

associated to the control ū(·). Then this trajectories satisfies

the PMP. (More precisely, either it is an abnormal extremal

or ū ∈ L∞([0, T̄ ]) which again implies that it is an extremal,

i.e. a solution of the PMP.)

B. Fundamental bounds

By comparison with specific trajectories of (I.3) it is pos-

sible to deduce explicit bounds related to optimal trajectories

X(·) defined on [0, T ], corresponding to the control u(·) and

connecting X0 to X1. In particular we have the following

result.

Proposition 2.6: Provided that |(x1, y1)| ≥ 4
√

3π and if

X(·) is a solution of (OCP2) or (OCP1) with c ≥ 1 then

|(x1, y1)| ≤ T ≤ 2Cu(·)(T ) ≤ |(x1, y1)|+12
√

3π , (II.4)

and, consequently,
∫ T

0

u2(t) dt ≤ 12
√

3π . (II.5)

C. Application of the Pontryagin maximum principle

In this section, we apply the PMP to (OCP1) and (OCP2)

and we derive the first consequences. The Hamiltonian of

system (II.2) is:

H = H(X, p, u, ν)

= p1 cos θ + p2 sin θ + p3κ + p4u − ν

2
(1 + u2), (II.6)

where X = (x, y, θ, κ) is the state variable, p =
(p1, p2, p3, p4) ∈ R

4 is the covector (or adjoint vector), u ∈
[−c, c] is the control, 0 < c ≤ +∞, and ν ∈ R (in particular

Problem (OCP2) corresponds to c = +∞). The PMP writes

as follows. Let u be an optimal control defined on the interval

[0, T ] and X(·) the corresponding optimal trajectory. Then,

there exists an absolutely continuous function p : [0, T ] →
R

4 and ν ≤ 0 such that the pair (p(·), ν) is non-trivial, and

such that we have:
{

Ẋ(t) = ∂H
∂p (X(t), p(t), ν, u(t)),

ṗ(t) = −∂H
∂X (X(t), p(t), ν, u(t)).

(II.7)

Since the system is autonomous, the Hamiltonian is con-

served along extremal trajectories. The maximization condi-

tion writes:

H(X(t), p(t), u(t), ν) = max
v∈[−c,c]

H(X(t), p(t), v, ν) (II.8)

for a.e. t ∈ [0, T ]. As the final time is free, the Hamiltonian

is zero (see [14]):

H(X(t), p(t), u(t), ν) = 0, ∀t ∈ [0, T ]. (II.9)

The equation (II.7) is the state-adjoint equation. We say that

X(·) is an extremal trajectory of the optimal control problem

if it can be augmented to a quadruplet (X(t), p(t), u(t), ν)
satisfying (II.7), (II.8), such that (p(·), ν) is nontrivial and

ν ≤ 0. The dual equation on the covector becomes:


















ṗ1 = 0,

ṗ2 = 0,

ṗ3 = p1 sin θ − p2 cos θ,

ṗ4 = −p3.

(II.10)
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Along an extremal trajectory, p1 and p2 are two constant and

p4 satisfies:

p̈4 = −p1 sin θ + p2 cos θ. (II.11)

Note that the PMP gives necessary conditions satisfied by

optimal trajectories.

Extremal trajectories are of two kinds: abnormal and

normal trajectories. An abnormal trajectory is independent of

the cost function, that is ν = 0. A normal trajectory satisfies

ν < 0, and by homogeneity, we may assume ν = −1. Let γ
be an extremal trajectory of the system, a point τ ∈]0, T [
is called a switching point if for every ε > 0 such that

[τ − ε, τ + ε] ⊂]0, T [, the control u(·) associated to γ
is non-constant on [τ − ε, τ + ε]. An extremal trajectory

corresponding to a piecewise constant control is called bang-

bang. We now come to the study of abnormal and normal

trajectories.

D. Abnormal trajectories

For an abnormal extremal the maximization condition triv-

ially gives u = c sign(p4). Notice that there are no abnormal

extremals for (OCP2). Indeed in this case the maximization

condition of the PMP would imply that p4 ≡ 0 , and therefore

p3 ≡ 0 . This, together with (II.10) and the fact that H = 0
along any extremal, would imply p1 = p2 = 0 leading to a

contradiction.

E. Normal trajectories

In this section, we study the structure of normal extremal

trajectories. The real ν is nonzero in this case, and, since

H is homogeneous with respect to (p, ν), it can be chosen

equal to 1. The Hamiltonian is conserved along the extremal

X(·) and it writes:

H(X(t), p(t), u(t)) =

= p1 cos θ + p2 sin θ + p3κ + p4u − 1

2
(1 + u2) ≡ 0. (II.12)

By (II.8), u is given for a.e. t ∈ [0, T ] by:

u(t) = argmaxv∈[−c,c]

{

p4(t)v − 1

2
v2

}

,

that is u(t) maximizes a quadratic function within a segment

[−c, c]. Therefore, we easily get:










p4(t) ≥ c ⇐⇒ u(t) = +c,

p4(t) ≤ c ⇐⇒ u(t) = −c,

p4(t) ∈ [−c, c] ⇐⇒ u(t) = p4(t).

If |p4(t)| < c, on a subinterval I of [0, T ], then a straightfor-

ward computation shows that θ satisfies on I the following

differential equation:

θ(4) = −p1 sin θ + p2 cos θ. (II.13)

Though straight lines are optimal, more complicated opti-

mal trajectories cannot contain segments. This can be easily

verified for abnormal extremals, while for normal ones it is

stated by the following proposition.

Proposition 2.7: Let us assume that X1 /∈
{(0, y1,

π
2 , 0), y1 ∈ R+}, and let X(·) be an extremal

normal trajectory connecting X0 and X1. Then, X(·) does

not contain a segment.

III. ANALYSIS OF (OCP2)

The aim of this section is to provide qualitative properties

of the solutions of (OCP2), mainly in the particular case in

which the final point (x1, y1) is far from the origin.

Recall that for the optimal control problem (OCP2) the

maximization condition of the PMP gives u(t) = p4(t).
Consequently the Hamiltonian function becomes

H = p1 cos θ + p2 sin θ + p3κ +
1

2
p2
4 −

1

2
= 0 (III.1)

We begin this section by providing a simple but useful

lemma, obtained by integrating (II.6).

Lemma 3.1: For an optimal trajectory X(·) corresponding

to the control u(·) connecting X0 to X1 in time T we have

the following equality:

〈(p1, p2), (x1, y1)〉 =
1

2
T − 3

2

∫ T

0

u2dt . (III.2)

In view of the bounds (II.4), (II.5) an important consequence

of the previous lemma is that when |(x1, y1)| ≥ 4
√

3π we

have

1

2
|(x1, y1)| − 12

√
3π ≤ 〈(p1, p2), (x1, y1)〉

≤ 1

2
|(x1, y1)| + 6

√
3π , (III.3)

which can also be written as

1

2
−O

( 1

|(x1, y1)|
)

≤
〈

(p1, p2),
(x1, y1)

|(x1, y1)|
〉

≤ 1

2
+ O

( 1

|(x1, y1)|
)

, (III.4)

and in particular this implies that for every ε > 0 there exists

Rε such that

|(x1, y1)| ≥ Rε ⇒ |(p1, p2)| ≥
1

2
− ε. (III.5)

A. Some preliminary result

Let α ∈ [0, 2π] be such that (x1, y1) =
|(x1, y1)|(cos α, sinα) and let us write as (p1, p2) =
ρ(cos φ, sinφ) the first two components of the covector

associated to an optimal trajectory and by θ(·) the

corresponding angle. Notice from (III.4), (III.5) that we can

assume ρ > 1
4 and |φ−α| < π

2 if |(x1, y1)| is large enough.

We have the following lemma, which express the fact that

the set of times such that θ(t) is “far from α” has uniformly

bounded measure (independently of the final point).

Lemma 3.2: Given ε > 0 and given an optimal trajectory

we define the set

Jε = {τ ∈ [0, T ] : |α − θ(τ)| ≥ ε} .

Then for every ε > 0 there exists Tε > 0 such that for

every optimal trajectory m(Jε) ≤ Tε, where m(·) denotes

the Lebesgue measure in R.
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The next lemma relates the angles α and φ.

Lemma 3.3: For every η > 0 there exists Rη > 0 such

that |(x1, y1)| ≥ Rη implies |φ − α| ≤ η.

B. Main qualitative asymptotic results

The following result, obtained by combining Lemma 3.3

with (III.4), is interesting for numerical simulations.

Proposition 3.4: For every η > 0 there exists Rη > 0
such that if |(x1, y1)| > Rη then

∣

∣

∣
(p1, p2) −

(x1, y1)

2|(x1, y1)|
∣

∣

∣
< η .

In particular |(p1, p2)| < 1
2 + η.

By applying the previous results one can prove the ex-

istence of a uniform bound on the control for optimal

trajectories as stated in the following theorem.

Theorem 3.5: There exists a constant C > 0 such that,

for some R > 0 we have that, if |(x1, y1)| > R, then

‖u‖W 1,∞ ≤ C.

An important consequence of the previous result is that the

optimal control problems (OCP1) and (OCP2) are equivalent

out of a neighborhood of the origin, up to choosing c large

enough. Also, the exclusion of a neighborhood of the origin

is not crucial, since our nonholonomic model is appropriate

only far from the origin.

Remark 3.6: It is not true that for every ε > 0 there

exists Rε such that ‖u‖∞ ≤ ε for every optimal triple

(X(·), u(·), T ) with |(x1, y1)| > Rε. Indeed H ≡ 0 implies

u(0) =
√

1 − 2p2. However if α is defined as in Section III-

A and |(x1, y1)| is large enough the previous results say that

p2 is arbitrarily close to 1
2 sinα (which in general is different

from 1
2 ).

Remark 3.7: The control function u(·) associated to op-

timal trajectories reaching points in a neighborhood of the

origin is not uniformly bounded. More precisely it is possible

to find a sequence of points X
(n)
1 =

(

x
(n)
1 , y

(n)
1 , θ

(n)
1 , κ

(n)
1

)

with limn→∞ |(x(n)
1 , y

(n)
1 )| = 0 such that the optimal con-

trols u(n)(·) steering the system from X0 to X
(n)
1 satisfy

limn→∞ ‖u(n)(·)‖∞ = ∞.

The following important result states that, far from the

origin and the final point, an optimal trajectory is similar to

a segment.

Theorem 3.8: Given η > 0 there exist τη > 0 and ση >
2τη such that, for every optimal trajectory with final time

T > ση, one has |θ(t) − α| < η for t ∈ [τη, T − τη].
From the previous theorem and Equation (II.13) it is easy

to get the following result.

Corollary 3.9: Let us associate to θ(·) the function

Z(t) = (θ(t), θ̇(t), θ̈(t), θ(3)(t)). Given ν > 0 there exist

τ̄ν > 0 and σ̄ν > 2τ̄ν such that, for every optimal trajectory

with final time T > σ̄ν , one has |Z(t)− (α, 0, 0, 0)| < ν for

t ∈ [τ̄ν , T − τ̄ν ].

C. Numerical study of the asymptotic behaviour of optimal

trajectories and of the corresponding value of p3(0).

While the previous results clarify some important proper-

ties of optimal trajectories and of the associated covectors it

is nevertheless clear that a complete qualitative description of

optimal trajectories is still missing. In particular the previous

results allow to determine, when the final point (x1, y1) is

far from the origin, an approximate value of (p1, p2) and

consequently, from the equation H = 0, of |p4(0)|. No

information however is known about the value p3(0), which

is important since the corresponding trajectory turns out to

be very sensitive with respect to changes of the latter. Also,

the shape of the optimal trajectories close to the origin and

close to the final point is not known.

To tackle these issues it is possible to proceed as follows.

The asymptotic behaviour pointed out by the previous results

can be interpreted at the light of the fourth order equation

satisfied by θ:

θ(4)(t) = −ρ sin(θ(t) − φ) .

An equilibrium for this equation is given by (θ, θ̇, θ̈, θ(3)) =
(φ, 0, 0, 0) and the results stated above show that, for optimal

trajectories with (x1, y1) far enough from the origin, the

values of (θ(·), θ̇(·), θ̈(·), θ(3)(·)) are close to this equilibrium

on some interval [τ, T−τ ]. This behaviour seems to suggests

some stability property of the system at the equilibrium.

It is actually easy to see that (φ, 0, 0, 0) is not a stable

equilibrium of the system, since two of the associated

eigenvalues of the linearized system have positive real part√
2ρ1/4/2 while the other two eigenvalues have negative

real part −
√

2ρ1/4/2. The stable behaviour of the optimal

trajectories must therefore be interpreted by assuming that,

approaching the equilibrium, these trajectories remain very

close to the stable manifold associated to it. Let us recall

that, when the linearized system has no eigenvalues with

zero real part, the stable (resp. unstable) manifold is a smooth

submanifold of the state space having the same dimension of

the stable (resp. unstable) subspace of the linearized system,

i.e. the subspace spanned by the eigenvectors associated

to the eigenvalues with negative (resp. positive) real part.

Moreover the stable (resp. unstable) manifold is tangent

to the stable (resp. unstable) subspace of the linearized

system. The property characterizing the stable manifold is

that it is invariant under the flow of the system and every

trajectory lying inside it converges exponentially fast to the

equilibrium. On the other hand the trajectories lying inside

the unstable manifold diverge exponentially fast from the

equilibrium and all the trajectories which are not contained

in the stable and in the unstable manifold and starting on a

neighborhood of the equilibrium diverge exponentially fast

from it.

In view of the previous remarks and of the continuity

of the stable subspace with respect to the parameters ρ
and φ it is interesting to consider the limit case in which

ρ = 1
2 . On a neighborhood of the equilibrium we consider

values (θ, θ̇, θ̈, θ(3)) close to the stable manifold. If we follow

backwards in time the corresponding trajectories we know

that these will keep close to some trajectories contained

inside the stable manifold. Note that the set of trajectories

converging to the equilibrium consists of a one dimensional

family of trajectories, since the dimension of the stable
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Fig. 2. The value of p3(0) in terms of the angle φ as p4(0) > 0 (left
picture) and p4(0) < 0 (right picture).

manifold is two. Therefore to describe them it is enough

to consider starting points belonging to a closed curve

around the equilibrium and close to the stable manifold.

Knowing that the stable subspace is generated by the vectors

v1 = (25/4, 0,−23/4, 2) and v2 = (25/4,−2
√

2, 23/4, 0) we

consider the closed curve around the equilibrium, which,

up to a translation, is assumed to be the origin, γ(s) =
ε(v1 cos s + v2 sin s) , s ∈ [0, 2π]. This curve is close to the

stable manifold if ε > 0 is small. By following backwards in

time the trajectories passing through the points γ(s) we can

recover the points for which κ = 0, the corresponding angle

θ and the value of p3. Since it must be θ(0) = π/2, by a

suitable translation of the angular variable we can therefore

associate to each value of φ the corresponding approximate

value of p3(0). The graph of the resulting map, obtained

numerically, is depicted in Figure 2.

Summing up, we have shown that when (x1, y1) is far

from the origin, it is possible to determine approximately

the value of the covector (p1, p2, p3(0), p4(0)) associated to

the corresponding optimal trajectory and, as a consequence,

the shape of this trajectory is approximately determined by

the direction of the vector (x1, y1) (see Figure 3).
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Fig. 3. Asymptotical behaviour of optimal trajectories with final point far
from the origin.

IV. CONCLUSION

In this paper we have studied the solutions of an optimal

control problem modeling the human locomotion. Qualitative

results have been found. In particular we gave a precise

description of optimal trajectories as the final point goes to

infinity, and this description qualitatively matches the exper-

imental results. Moreover the possible asymptotic values of

the adjoint vector at t = 0 are precisely characterized and

this allows to improve the shooting algorithms that determine

numerically the optimal trajectories. Finally, the methods

developed in this paper are likely to be applicable to more

general classes of optimal control problems. Therefore future

work will aim at investigating the optimal control models that

best match the experimental results.
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and applications].

6




