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On well-posedness of scattering problems

in a Kirchhoff-Love infinite plate

Laurent Bourgeois∗ and Christophe Hazard∗

October 25, 2019

Abstract

We address scattering problems for impenetrable obstacles in an infinite elastic Kirchhoff-Love
two-dimensional plate. The analysis is restricted to the purely bending case and the time-harmonic
regime. Considering four types of boundary conditions on the obstacle, well-posedness for those
problems is proved with the help of a variational approach: (i) for any wave number k when the plate
is clamped, simply supported or roller supported; (ii) for any k except a discrete set when the plate
is free (this set is finite for convex obstacles).

1 Introduction

We consider the diffraction of an incident wave by an impenetrable obstacle within an infinite elastic
thin plate characterized by the Kirchhoff-Love model. More precisely, we focus on the pure bending case
in the frequency domain. Such an impenetrable obstacle D ⊂ R2 can be modeled by a bounded open
domain of class C3 (see Remark 2). Denoting Ω := R2 \ D, the scattered field vs satisfies the problem

∆2vs − k4vs = 0 in Ω,(
B1(vs + ui) , B2(vs + ui)

)
= (0, 0) on ∂Ω,

lim
r→+∞

∫
∂Br

∣∣∣∣∂vs

∂n
− ik vs

∣∣∣∣2 ds = 0,

(1)

where k > 0 is the wave number, ui is an incident field which satisfies ∆2ui − k4ui = 0 in R2, Br is the
open ball centered at 0 and of radius r while n is the outward normal to Br and s is the curvilinear
measure on ∂Br.

The first equation of (1) comes from the equation of the flexural waves in a plate

D∆2u+ ρh
∂2u

∂t2
= 0, (2)

with D := Eh3/12(1 − ν2), where E > 0 is the Young’s modulus, ν ∈ [0, 1/2) is the Poisson’s ratio, h
is the thickness and ρ is the density per unit of volume. In the time-harmonic case at frequency ω, the
equation (2) coincides with the first equation of (1) with k defined by k4 = ρhω2/D. We mention that
several plate models in the time domain, in particular the one given by (2), are derived in [13] starting
from a three dimensional setting. Such models enable us to reduce the spatial dimension of the elasticity
problem from 3 to 2 provided the thickness h is small with respect to the wavelength 2π/k.

The surface differential operators B1, B2 involved in the second line of (1) characterize the boundary
conditions on ∂Ω. In order to specify these operators, let us introduce some notations. In the sequel, a
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generic point of R2 is denoted x = (x1, x2). Moreover, n = (n1, n2) denotes the unit normal vector to
∂Ω directed into the exterior of Ω (that is, the interior of D), while t is the unit tangent vector such that
t is obtained from n by a π/2 counterclockwise rotation (in other words, t1 = −n2 and t2 = n1). The
curvilinear abscissa associated with vector t is denoted s: it defines the curvilinear measure ds used in
boundary integrals. We also define the surface differential operators

∂

∂n
:= n1

∂

∂x1
+ n2

∂

∂x2
and

∂

∂s
:= −n2

∂

∂x1
+ n1

∂

∂x2
.

The operators B1 and B2 are two among the following four surface differential operators: I (trace opera-
tor), ∂/∂n, M and N , where M and N are defined as follows:{

Mu := ν∆u+ (1− ν)M0u,

Nu := − ∂

∂n
∆u− (1− ν)

∂

∂s
N0s,

where M0 and N0 are given by
M0u :=

∂2u

∂x1
2
n2

1 + 2
∂2u

∂x1∂x2
n1n2 +

∂2u

∂x2
2
n2

2,

N0u :=
∂2u

∂x1∂x2
(n2

1 − n2
2)−

(
∂2u

∂x1
2
− ∂2u

∂x2
2

)
n1n2.

Some alternative useful expressions of Mu and Nu are
Mu = ∆u− (1− ν)

(
∂2u

∂s2
+ γ

∂u

∂n

)
,

Nu = − ∂

∂n
∆u− (1− ν)

∂

∂s

(
∂2u

∂s∂n
− γ ∂u

∂s

)
,

(3)

where γ(s) is the curvature defined by ∂n/∂s = γτ . It should be noted that physically, DM corresponds
to the bending moment while DN corresponds to the transverse force. In what follows, four different
cases for the boundary conditions on ∂Ω will be considered:

1. B1 = I and B2 = ∂/∂n: clamped plate,

2. B1 = I and B2 = M : simply supported plate,

3. B1 = ∂/∂n and B2 = N : roller supported plate,

4. B1 = M and B2 = N : free plate.

We emphasize that except the third case, these boundary conditions are classical and relevant from the
physical point of view. For instance, the last one models a hole within the plate.

Lastly, the third line of (1) is the radiation condition at infinity. Essentially, it specifies that among
the scattered waves, only the outgoing ones are physically acceptable. Such kind of condition is required
to guarantee well-posedness of scattering problems in unbounded domains.

The main result of this paper is the following.

Theorem 1. The problem (1) has a unique solution in H2
loc(Ω)

• for any k > 0 if (B1,B2) = (I, ∂/∂n) (clamped plate), (B1,B2) = (I,M) (simply supported plate)
or (B1,B2) = (∂/∂n,N) (roller supported),

• for any k > 0 except for at most a countable set of numbers kn, n ∈ N, such that kn → +∞, if
(B1,B2) = (M,N) (free plate).

Remark 2. Concerning the regularity of the domain D for which Theorem 1 holds, D shall be at least
of class C2 to correctly define the surface operators M and N in (3). Such regularity is enough for
Theorem 1 to hold for the clamped, simply supported and roller supported plate. But the strategy we use
to prove Theorem 1 for the free plate needs D to be C3. Such assumption might be purely technical.
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The radial case, that is when D is a disk, was addressed in [14] where a closed-form expression of
the solution was obtained. Note that in the present paper, well-posedness in the radial case is proved
for any boundary conditions above and for any k (see Theorem 9 when the curvature γ is supposed to
be constant). To our best knowledge, well-posedness of problem (1) for an obstacle of any shape has
never been fully justified. In contrast with plate problems in the static case, which benefit from a huge
amount of contributions, plate problems in the dynamic case are less popular. If we restrict ourselves
to the mathematical justification of existence and uniqueness for scattering problems in the frequency
domain, the number of contributions is very low. However we mention the recent article [19] which in
particular addresses existence and uniqueness for solutions of a similar scattering problem involving a
biharmonic operator perturbed by zero and first order terms. The proof of well-posedness in [19] is based
on a Lippmann-Schwinger integral equation and relies on the assumption that k is sufficiently large. The
proof we propose for Theorem 1 is based on a variational approach. As highlighted in the statement of
Theorem 1, uniqueness in the case of a free plate for any k is still an open problem for us. Our uniqueness
proof for such boundary condition classically relies on the Analytic Fredholm theorem [7, Theorem 8.26],
but the latter is applied in an original way to an eigenvalue problem set on the boundary of the obstacle
and involving the trace and the normal derivative of the scattered field. As our uniqueness result excludes
a possible countable set of frequencies, it is natural to wonder if such exceptional frequencies actually
exist, that is if trapped modes can really occur for the free plate. Let us mention some contributions
which prove existence of trapped modes in situations which are close to ours, for example the case of a
simply supported strip in the presence of a free obstacle [16] or the case of an infinite thick plate in the
presence of a free obstacle and ν = 0 [9]. It is interesting to note that for a circular hole, the trapped
modes disappear when the thickness of such thick plate tends to 0, in view of Theorem 9.

Before giving the outline of our article, let us say a few words about the numerical resolution of
problem (1). It could be noted that some numerical methods were already used to solve problems of type
(1), for instance in [8] with the help of Perfectly Matched Layers or in [17] with the help of a boundary
element method. As a by-product of the present paper, by using a Dirichlet-to-Neumann operator we
alternatively propose a weak formulation in the bounded domain Ω∩BR which is equivalent to the strong
problem (1). Such weak formulation can be directly discretized with the help of a finite element method,
as done in [4]. Lastly, proving well-posedness for problem (1) paves the way to the corresponding inverse
problem: retrieve the obstacle D given some scattering data. This is the main concern of [4].

The article is organized as follows. The second section can be viewed as a preliminary work on useful
properties that are equivalent to the radiation condition given in problem (1). Section 3 is dedicated to
a uniqueness proof for problem (1). In section 4, we introduce the so-called Dirichlet problem outside a
ball, which is nothing but the particular case of problem (1) when the obstacle D is a disc BR and the
plate is clamped. Existence of a solution is proved for that problem, which implies that the Dirichlet
problem outside a ball is well-posed with the help of section 3. This enables us to properly define a
Dirichlet-to-Neumann operator on the boundary ∂BR. Such operator is used in section 5 to prove that
problem (1) is equivalent to a problem set in the bounded domain Ω ∩ BR for which we give a weak
formulation. The Fredholm character of this equivalent problem is proved in section 6. By gathering the
results of section 3 and section 6, we finally complete the existence/uniqueness proof of Theorem 1.

In order to avoid the appearance of non meaningful constants in inequalities, hereafter we employ
the symbols . and & which mean that the inequality is satisfied up to a positive factor which does not
depend on the parameters involved in the inequality (for instance, |f(x)| . 1 means that f is bounded).

2 The radiation condition

The aim of this section is to show that the radiation condition in problem (1) can be reformulated
equivalently as a series expansion of vs which results from separation of variables in polar coordinates
(r, θ). This expansion is an essential tool in our proof of Theorem 1. It involves the Hankel functions of

the first kind H
(1)
m , for m ∈ Z, (see, e.g. [1]), as well as

ξm(θ) :=
eimθ

√
2π

for θ ∈ [0, 2π) and m ∈ Z. (4)
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Note that if we identify the interval [0, 2π) with the unit circle S1 in R2, then each function ξm appears
as a unit vector of L2(S1) (thanks to the factor 1/

√
2π in (4)). It is actually well-known (see, e.g., [12])

that the family {ξm; m ∈ Z} is an orthonormal basis of L2(S1) and for any s > 0, an orthogonal basis of
Hs(S1) for the inner product which derives from the following norm

‖ξ‖Hs(S1) :=

(∑
m∈Z

(1 +m2)s
∣∣(ξ, ξm)L2(S1)

∣∣2)1/2

. (5)

For brevity, we say that a solution u to ∆2u − k4u = 0 outside a given ball BR (for some R > 0) is
radiating if it satisfies the radiation condition

lim
r→+∞

∫
∂Br

∣∣∣∣∂u∂n − ik u

∣∣∣∣2 ds = 0. (6)

The two following propositions, which are somehow converse to each other, gather the mains results
about such radiating solutions that are needed in the present paper. Their respective proofs use mainly
arguments which are well-known in the context of Helmhotz equation (see [7]).

Proposition 3. Suppose that u is a radiating solution to ∆2u − k4u = 0 in R2 \ BR for some R > 0.
Then there exist two families of complex numbers αm and βm, for m ∈ Z, such that u can be split into
the sum of a propagative part upr and an evanescent part uev as follows:

u = upr + uev with


upr(r, θ) :=

∑
m∈Z

αmH
(1)
m (kr) ξm(θ),

uev(r, θ) :=
∑
m∈Z

βmH
(1)
m (ikr) ξm(θ),

(7)

where both series are absolutely and uniformly convergent on compact subsets of R2 \BR, as well as any
term by term partial derivative with respect to r and θ. Moreover upr and uev are related to u by the
formulas

upr =
1

2

(
u− ∆u

k2

)
and uev =

1

2

(
u+

∆u

k2

)
, (8)

and satisfy respectively

∆upr + k2upr = 0 and ∆uev − k2uev = 0 in R2 \BR. (9)

Proof. The starting point is to use the factorization

∆2u− k4u = (∆− k2)(∆ + k2)u = (∆ + k2)(∆− k2)u. (10)

Hence, by defining upr and uev by (8), we see that the equation ∆2u − k4u = 0 is equivalent to the
decomposition u = upr + uev where upr and uev satisfy (9).

In order to obtain the series expansions (7) of upr and uev, we consider their respective Fourier series
with respect to θ. First recall that standard elliptic regularity results tell us that upr and uev are infinitely
differentiable in R2 \ BR. We then easily deduce from (9) that their Fourier coefficients are solutions to
Bessel type equations with respect to r, which yields the existence of four families of complex numbers

α
(1)
m , α

(2)
m , β

(1)
m and β

(2)
m , for m ∈ Z, such that

upr(r, θ) =
∑
m∈Z

upr
m(r) ξm(θ) where upr

m(r) := α(1)
m H(1)

m (kr) + α(2)
m H(2)

m (kr),

uev(r, θ) =
∑
m∈Z

uev
m (r) ξm(θ) where uev

m (r) := β(1)
m H(1)

m (ikr) + α(2)
m H(2)

m (ikr),
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where H
(1)
m and H

(2)
m are the Hankel functions of order m of the first and second kinds, respectively. As

both functions upr and uev belong to C∞
(
R2 \BR

)
, these series are absolutely and uniformly convergent

on compact subsets of R2 \ BR, as well as any term by term partial derivative with respect to r and θ.
As a consequence, by Parseval’s equality, we see that for all r > R,∫

∂Br

∣∣∣∣∂u∂n − iku

∣∣∣∣2 ds =
∑
m∈Z

hm(r), where

hm(r) := r

∣∣∣∣( d

dr
− ik

)
(upr
m + uev

m )

∣∣∣∣2 .
Using the following asymptotic behavior of Hankel functions [15, Chap. 7, §4.1] which is valid for |z| → ∞
with arg z ∈ [−π/2,+π/2] and fixed order m ∈ N :

H(j)
m (z) =

√
2

πz
e(−1)j−1i(z−mπ/2−π/4)

(
1 + O(z−1)

)
for j = 1, 2, (11)

as well as the recurrence relation [1, §9.1.27]

(H(j)
m )′(z) = H

(j)
m−1(z)− m

z
H(j)
m (z), (12)

we infer that, as r → +∞,∣∣∣∣( d

dr
− ik

)
H(1)
m (kr)

∣∣∣∣ = O(r−3/2) and

∣∣∣∣( d

dr
− ik

)
H(2)
m (kr)

∣∣∣∣ ∼
√

8k

πr
,∣∣∣∣( d

dr
− ik

)
H(1)
m (ikr)

∣∣∣∣ = O(e−kr) and

∣∣∣∣( d

dr
− ik

)
H(2)
m (ikr)

∣∣∣∣ ∼
√

8k

πr
ekr.

As a consequence, if there exists m ∈ Z such that β
(2)
m 6= 0, we will have hm(r) & e2kr and u will not

satisfy the radiation condition, so β
(2)
m = 0 for all m ∈ Z. In the same way, if α

(2)
m 6= 0 for some m ∈ Z,

we will have hm(r) & 1 and u will not satisfy the radiation condition, so α
(2)
m = 0 for all m ∈ Z.

Proposition 4. Let αm and βm for m ∈ Z be two families of complex numbers such that

sup
m∈Z
|αm|

∣∣H(1)
m (kR)

∣∣ <∞ and sup
m∈Z
|βm|

∣∣H(1)
m (ikR)

∣∣ <∞ (13)

for some R > 0. Then both series in (7) are absolutely and uniformly convergent on compact subsets of
R2 \BR, as well as any term by term partial derivative with respect to r and θ. Moreover, their respective
asymptotic behaviors as r → +∞ are∣∣upr(r, θ)

∣∣ = O
(
r−1/2

)
and

∣∣uev(r, θ)
∣∣ = O

(
e−kr

)
, (14)

uniformly with respect to θ ∈ [0, 2π), and the same holds true for any partial derivative with respect to r
and θ. Finally, the function u := upr + uev is a radiating solution to ∆2u− k4u = 0 in R2 \BR.

Proof. The absolute and uniform convergence of both series in (7) is a straightforward consequence of the
asymptotic behavior of Hankel functions for large order, which is recalled below for positive order m (the

case of negative order follows from the relation H
(1)
−m(z) = (−1)mH

(1)
m (z)). From the series representations

of Bessel functions (see [1, §9.1.10 & 9.1.11]), we deduce that

H(1)
m (z) =

(m− 1)!

iπ

(
2

z

)m (
1 + O(m−1)

)
as m→ +∞, (15)

uniformly with respect to z in any compact subset of C \ R−. We deduce from this asymptotic behavior
that

H
(1)
m−1(z)

H
(1)
m (z)

=
z

2m
+ O(m−2) as m→∞.
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Using formula (12), we infer that(
H

(1)
m

)′
(z)

H
(1)
m (z)

= −m
z

+
z

2m
+ O(m−2) as m→∞. (16)

Iterating this process, we see that for any given p ≥ 1,(
H

(1)
m

)(p)
(z)

H
(1)
m (z)

=
(
−m
z

)p
+ O(mp−1) as m→∞. (17)

All these asymptotic behaviors are valid uniformly in compact subsets of C \ R−.
We now come back to the convergence of the series in (7). For upr, simply notice that for M ∈ N,

M∑
m=−M

∣∣∣αmH(1)
m (kr) ξm(θ)

∣∣∣ . ( sup
|m|≤M

|αm|
∣∣H(1)

m (kR)
∣∣) M∑

m=−M

∣∣∣∣∣ H(1)
m (kr)

H
(1)
m (kR)

∣∣∣∣∣ .
Thanks to assumption (13), the first term of the right-hand side remains bounded as M → +∞, and so
is the second one, since the asymptotic behavior (15) shows that

M∑
m=−M

∣∣∣∣∣ H(1)
m (kr)

H
(1)
m (kR)

∣∣∣∣∣ .
M∑

m=−M

(
R

r

)|m|
.

The same arguments are still valid for uev (replacing k by ik), as well as for any term by term partial
derivative of these series. Indeed, if we derive p times with respect to r and q times with respect to θ,
the above inequality has to be replaced by

M∑
m=−M

∣∣∣∣∣mq

(
H

(1)
m

)(p)
(kr)

H
(1)
m (kR)

∣∣∣∣∣ .
M∑

m=−M
|m|p+q

(
R

r

)|m|
,

using the fact that ξ′m = imξm and the asymptotic behavior (17). As a consequence, both functions upr

and uev belong to C∞
(
R2 \BR

)
. Applying respectively the operators ∆ + k2 and ∆− k2 to both series

in (7) yields (9), which shows by (10) that u := upr + uev satisfies ∆2u− k4u = 0 in R2 \BR.
On the other hand, the asymptotic behaviors of upr and uev for large r, in particular the fact these

series satisfy the radiation condition, cannot be deduced easily from a direct study of the series. This
can be done by a cumbersome analysis of the series, as shown in [10] for a similar water wave scattering
problem. However, there is an alternative (and more elegant!) approach which consists in rewriting these
series as integral representations of upr and uev, since the latter are well suited to extract their asymptotic
behaviors for large r. This approach is extensively described in [7, Chap. 2] for the three-dimensional
Helmholtz equation and briefly explained in [7, §3.4] for the two-dimensional case. We recall here the
basic steps for upr.

Starting from the series representation (7) of upr, the idea is to show that for any fixed R′ > R,

upr(x) =

∫
∂BR′

{
upr(y)

∂Gpr

∂ny
(x, y)− ∂upr

∂n
(y)Gpr(x, y)

}
dsy for |x| > |y|, (18)

where Gpr is the radiating Green’s function of the Helmholtz equation, given by

Gpr(x, y) =
i

4
H

(1)
0 (k|x− y|),

and n denotes the unit normal vector to ∂BR′ directed into the exterior of BR′ . The key tool is the
famous Graf’s addition theorem [1, §9.1.79]

Gpr(x, y) =
iπ

2

∑
m∈Z

H(1)
m (k|x|) ξm(θx) Jm(k|y|) ξm(θy) for |x| > |y|,

6



where Jm is the Bessel function of order m [1] and θx (respectively, θy) denotes the polar angle of x
(respectively, y). As above, this series is absolutely and uniformly convergent on compact subsets of
|x| > |y|, as well as any term by term partial derivative with respect to x or y. If we insert this formula
as well as the series (7) for all y ∈ ∂BR′ into the integral of the right-hand side of (18) and use the
orthonormality of the ξm in L2(S1), this integral can be written as

iπkR′

2

∑
m∈Z

αm

{
H(1)
m (kR′) J ′m(kR′)−

(
H(1)
m

)′
(kR′) Jm(kR′)

}
H(1)
m (k|x|) ξm(θx).

The term between braces is the wronskian of H
(1)
m and Jm. It is explicitly given by [1, §9.1.16]

H(1)
m (kR′) J ′m(kR′)−

(
H(1)
m

)′
(kR′) Jm(kR′) =

2

iπkR′
,

which shows that the integral of the right-hand side of (18) is exactly the series (7) of upr(x). Hence (18)
is proved. Replacing k by ik, we obtain in the same way the integral representation of uev, which involves
the Green’s function

Gev(x, y) =
i

4
H

(1)
0 (ik|x− y|).

Using the asymptotic behavior (11), we infer that∣∣Gpr(x, y)
∣∣ = O

(
|x|−1/2

)
and

∣∣Gev(x, y)
∣∣ = O

(
e−k|x|

)
as |x| → +∞,

uniformly with respect to θx ∈ [0, 2π) and y ∈ ∂BR′ . Using (12), we see that the same holds true for
any partial derivative of these Green’s functions with respect to x or y. These estimates together with
the integral representation of upr and uev yield (14). Finally, the same arguments show that∣∣∣∣ ∂

∂|x|
Gpr(x, y)− ik Gpr(x, y)

∣∣∣∣ = O
(
|x|−3/2

)
,

uniformly with respect to θx ∈ [0, 2π) and y ∈ ∂BR′ , from which we deduce that upr satisfies the
radiation condition (6). This obviously holds true for uev, since it is exponentially decreasing, as well
as its derivatives. Hence u := upr + uev is a radiating solution to ∆2u − k4u = 0. This completes the
proof.

3 Uniqueness

We now address the question of uniqueness in problem (1): if ui = 0, does a solution vs ∈ H2
loc(Ω) to

problem (1) vanish in Ω? Throughout this section, we simply denote vs = u. To begin with, we prove
that the “propagating part” of u actually vanishes by a standard argument based on the energy flux. In
order to introduce such energy flux, we need the following Green formula (see for example [11]).

Lemma 5. In a bounded domain O of class C2, denoting H2(O,∆2) := {u ∈ H2(O), ∆2u ∈ L2(O)}, the
linear mapping T : u 7→ (Nu,Mu) is continuous from H2(O,∆2) to H−3/2(∂O)×H−1/2(∂O). Moreover,
for all u ∈ H2(O,∆2) and v ∈ H2(O), we have the Green formula∫

O
∆2u v dx = a(u, v)−

∫
∂O

(
Nuv +Mu

∂v

∂n

)
ds where

a(u, v) :=

∫
O
{ν∆u∆v + (1− ν)

2∑
i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
} dx. (19)

Here, the unit normal vector to ∂O, which is involved in the definition (3) of the surface operators M
and N , is directed into the exterior of O. The first part of the integral on ∂O has the meaning of duality
pairing between H3/2(∂O) and H−3/2(∂O) while the second part has the meaning of duality pairing
between H1/2(∂O) and H−1/2(∂O).
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Let us consider the annulus Br,r′ := Br′ \ Br with r′ > r for sufficiently large r (so that Br,r′ ⊂ Ω).
Starting from ∫

Br,r′

(∆4u− k4u)udx = 0

and applying the Green formula of Lemma 5 in the domain Br,r′ for v = u, we obtain that the quantity

F(u) := Im

{∫
∂Br

(
Nuu+Mu

∂u

∂n

)
ds

}
, (20)

where the unit normal vector to ∂Br is directed into the exterior of Br, does not depend on r. It is called
the energy flux.

We are now in a position to prove that the propagating part upr of u vanishes.

Proposition 6. Let us consider a solution u to problem (1) corresponding to ui = 0. Then upr = 0 where
upr is defined by (8).

Proof. Let us introduce the bounded domain Ωr = Ω ∩ Br, where r > 0 is sufficiently large to contain
the obstacle D, and write ∫

Ωr

(∆2u− k4u)udx = 0.

Next we use Lemma 5 for O = Ωr, which implies that

a(u, u)− k4‖u‖2L2(Ωr) −
∫
∂Br

(
Nuu+Mu

∂u

∂n

)
ds = 0,

for any of the four boundary conditions that we consider on ∂Ω. We conclude that for sufficiently large
r,

Im

{∫
∂Br

(
Nuu+Mu

∂u

∂n

)
ds

}
= 0,

that is the energy flux F(u) vanishes. By using the decomposition u = upr + uev and the asymptotic
behavior when r → +∞ of upr and uev given by (14), we infer that

F(u) = lim
r→+∞

F(upr).

To obtain an asymptotic behavior of F(upr) when r → +∞, let us compute Nupr and Mupr on ∂Br. We
first rewrite the definition (3) of M and N in polar coordinates as follows

Mu = ∆u− (1− ν)

(
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
,

Nu = − ∂

∂r
∆u− (1− ν)

1

r2

∂

∂θ

(
∂2u

∂r∂θ
− 1

r

∂u

∂θ

)
.

(21)

That ∆upr + k2upr = 0 in Ω and making use once again of (14) imply that

Mupr = −k2upr + O(r−3/2) and Nupr = k2 ∂u
pr

∂r
+ O(r−5/2).

We obtain that

F(upr) = k2 Im

{∫
∂Br

(
∂upr

∂r
upr − upr ∂u

pr

∂r

)
ds

}
+ O(r−1)

= 2k2 Im

{∫
∂Br

∂upr

∂r
upr ds

}
+ O(r−1)

= 2k3

∫
∂Br

|upr|2 ds+ 2k2 Im

{∫
∂Br

(
∂upr

∂r
− ikupr

)
upr ds

}
+ O(r−1).
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From (14) and the radiation condition, we have∫
∂Br

|upr|2 ds = O(1) and lim
r→+∞

∫
∂Br

∣∣∣∣∂upr

∂r
− ikupr

∣∣∣∣2 ds = 0,

hence we end up with

F(u) = 2k3 lim
r→+∞

∫
∂Br

|upr|2 ds = 0.

The so-called Rellich Lemma (see for example [6, Theorem 3.5]) tells us that the only possible solution
upr ∈ H1

loc(Ω) to the Helmholtz equation ∆upr + k2upr = 0 in Ω which satisfies the latter asymptotic
behavior at infinity is upr = 0.

Proposition 6 is independent of the boundary conditions on ∂Ω. Uniqueness in three cases of boundary
conditions out of four can then be easily obtained.

Theorem 7. For (B1,B2) = (I, ∂/∂n) (clampled plate), (B1,B2) = (I,M) (simply supported plate) or
(B1,B2) = (∂/∂n,N) (roller supported plate), problem (1) has at most one solution.

Proof. Let us consider a solution u to problem (1) for ui = 0. From Proposition 6 we have u = uev, in
other words ∆u−k2u = 0 in Ω. By multiplying this equation by u, integrating over Ωr and using Green’s
formula, we obtain

−
∫

Ωr

(|∇u|2 + k2|u|2) dx+

∫
∂Br

∂u

∂n
uds+

∫
∂Ω

∂u

∂n
uds = 0. (22)

Given that in the three cases of boundary conditions we have either u|∂Ω = 0 or (∂u/∂n)|∂Ω = 0, the
integral on ∂Ω vanishes. In addition, using the Cauchy-Schwarz inequality and the asymptotic behavior
of uev given by (14), we have

lim
r→+∞

∫
∂Br

∂u

∂n
uds = 0.

Passing to the limit r → +∞ in the identity (22), we get∫
Ω

(|∇u|2 + k2|u|2) dx = 0,

so that u = 0 in Ω, which completes the proof.

The fourth case of boundary condition (B1,B2) = (M,N) (free plate) is more complicated. We begin
with a general result which is weaker than Theorem 7, since we have to exclude a countable set of wave
numbers k which accumulates at +∞.

Theorem 8. The problem (1) for (B1,B2) = (M,N) (free plate) has at most one solution for all k > 0,
except for at most a countable set of numbers kn > 0, n ∈ N, such that kn → +∞.

Proof of Theorem 8. Let us consider a solution u to problem (1) for ui = 0. From Proposition 6 we have
∆u− k2u = 0 in Ω. That u ∈ H2(ΩR) for sufficiently large R implies that u|∂Ω ∈ H1(∂Ω). Since Ω is of
class C3, by standard regularity results for elliptic equations [5] we additionally have that u ∈ H3(ΩR),
hence (∂u/∂n)|∂Ω ∈ H1(∂Ω). As a consequence of ∆u − k2u = 0 in Ω, Mu = 0 and Nu = 0 on ∂Ω as
well as formulas (3), the functions U := u|∂Ω and V := (∂u/∂n)|∂Ω are solutions to the following problem
on ∂Ω: find (U, V ) ∈ H1(∂Ω)2 such that

d2U

ds2
+ γV = λU,

−d2V

ds2
+

d

ds

(
γ

dU

ds

)
= λV,

(23)
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where we have introduced λ := k2/(1−ν). Such coupled system can be seen as a non-selfadjoint eigenvalue
problem. Let us rewrite the system (23) as

(
−d2U

ds2
+ U

)
− (1− λ)U − γV = 0,(

−d2V

ds2
+ V

)
+ γ′(s)

dU

ds
+ λγU − (1 + γ2 + λ)V = 0,

which itself can be rewritten in the form of a weak formulation: find (U, V ) ∈ H1(∂Ω)2 such that for all
(Ũ , Ṽ ) ∈ H1(∂Ω)2, ((

U
V

)
,

(
Ũ

Ṽ

))
H1(∂Ω)2

−
(
J (λ)

(
U
V

)
,

(
Ũ

Ṽ

))
L2(∂Ω)2

= 0,

where the operator J (λ) on H1(∂Ω)2 is defined as

J (λ) :=

 1− λ γ

−γ′(s) d

ds
− λγ 1 + γ2 + λ

 .

Introducing X = (U, V ), X̃ = (Ũ , Ṽ ) and the operator K(λ) such that for all X and X̃ in H1(∂Ω)2,
(K(λ)X , X̃ )H1(∂Ω)2 = (J (λ)X , X̃ )L2(∂Ω)2 , such weak formulation also reads as the equation X −K(λ)X =
0 in H1(∂Ω)2, where λ 7→ K(λ) is obviously a family of compact operators on H1(∂Ω)2 which analytically
depends on λ ∈ C. From the Analytic Fredholm theorem (see [7, Theorem 8.26] or [18]), we can conclude
that X = 0 except for a countable set of C if we can find a particular point λ ∈ C such that the operator
I − K(λ) is injective. Then we will obtain that except for a countable set of positive kn ∈ R such that
kn → +∞ when n→ +∞, we have (u|∂Ω, (∂u/∂n)|∂Ω) = (0, 0), which implies that u = 0 in Ω.

Let us find some µ ∈ R such that I − K(iµ) is injective. In the remainder of the proof, we will use
the short notation U ′ = dU/ds, while (·, ·) and ‖ · ‖ will denote the scalar product and the norm of
L2(∂Ω), respectively. Multiplying the system (23) by (U, V )T in the sense of the scalar product (·, ·) and
integrating by parts, we get {

‖U ′‖2 + iµ‖U‖2 = (γV, U),

‖V ′‖2 − iµ‖V ‖2 = (γU ′, V ′),

which implies that {
‖U ′‖4 + µ2‖U‖4 = |(γV, U)|2 . ‖U‖2‖V ‖2,

‖V ′‖4 + µ2‖V ‖4 = |(γU ′, V ′)|2 . ‖U ′‖2‖V ′‖2.
(24)

From the first inequality of (24), we obtain that there exists C > 0 such that

‖U ′‖4 + µ2‖U‖4 ≤ C(‖U‖4 + ‖V ‖4),

which induces that if µ2 ≥ C, we get ‖U ′‖4 ≤ C ‖V ‖4. Plugging such estimate in the second inequality
of (24) yields

‖V ′‖4 + µ2‖V ‖4 . ‖V ‖2‖V ′‖2 . |µ|‖V ‖4 + |µ|−1‖V ′‖4.
Taking |µ| sufficiently large, we finally obtain V = 0, and then U = 0, which completes the proof.

We complement Theorem 8 with a result for sufficiently large values of k when the obstacle D is
convex.

Theorem 9. Let L denote the perimeter of D. Assume that

there exists γ0 < 0 such that γ(s) ≤ γ0 for all s ∈ [0, L] and (25)

sup
s∈[0,L]

∣∣∣∣γ′(s)γ(s)

∣∣∣∣ ≤ 2k√
1− ν

. (26)

Then problem (1) for (B1,B2) = (M,N) (free plate) has at most one solution.
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Remark 10. The first assumption of Theorem 9, that is (25), implies in particular that γ(s) ≤ 0 for all
s ∈ [0, L], which means that the obstacle D is convex. The assumption (26) means that the obstacle has
a slowly varying curvature or that k is large. In particular, if D is a disk, then uniqueness holds for any
k > 0.

Proof of Theorem 9. Considering again a solution u to problem (1) for ui = 0 and proceeding as in the
proof of Theorem 7, we obtain by passing to the limit r → +∞ in (22) that∫

Ω

(|∇u|2 + k2|u|2) dx =

∫
∂Ω

∂u

∂n
uds.

As a consequence of Mu = 0 on ∂Ω, the first formula in (3) and ∆u− k2u = 0 in Ω, we have on ∂Ω:

k2u− (1− ν)

(
∂2u

∂s2
+ γ

∂u

∂n

)
= 0.

Hence ∫
Ω

(|∇u|2 + k2|u|2) dx =

∫
∂Ω

1

γ(s)

(
k2

1− ν
u− ∂2u

∂s2

)
uds

=

∫
∂Ω

1

γ(s)

k2

1− ν
|u|2 +

∂u

∂s

∂

∂s

(
1

γ
u

)
ds

=

∫
∂Ω

1

γ(s)

(
k2

1− ν
|u|2 +

∣∣∣∣∂u∂s
∣∣∣∣2 − γ′(s)

γ(s)

∂u

∂s
u

)
ds.

We have that for all s ∈ [0, L],

Re

{
k2

1− ν
|u|2 +

∣∣∣∣∂u∂s
∣∣∣∣2 − γ′(s)

γ(s)

∂u

∂s
u

}
≥ k2

1− ν
|u|2 +

∣∣∣∣∂u∂s
∣∣∣∣2 − ∣∣∣∣γ′(s)γ(s)

∣∣∣∣ ∣∣∣∣∂u∂s
∣∣∣∣ |u|.

Since the right-hand side is non negative if |γ′(s)/γ(s)|2 − 4k2/(1− ν) ≤ 0, the assumption (26) implies∫
Ω

(|∇u|2 + k2|u|2) dx ≤ 0, which yields u = 0 in Ω.

4 The Dirichlet problem outside a ball

We now consider a particular case of problem (1), namely a circular obstacle BR of radius R > 0 with a
pair of Dirichlet boundary conditions, i.e.,

∆2u− k4u = 0 in R2 \BR,(
u,
∂u

∂n

)
= (f, g) on ∂BR,

lim
r→+∞

∫
∂Br

∣∣∣∣∂u∂n − iku

∣∣∣∣2 ds = 0.

(27)

Unlike our initial problem (1), we choose here the opposite direction for the unit normal on ∂BR: in this
section n denotes the unit normal vector to ∂BR directed into the exterior of BR. On the other hand, we
keep the same direction for the unit normal on ∂Br involved in the radiation condition: it is also directed
into the exterior of Br.

We already know by Proposition 3 that if there exists a solution u to (27), it can be expressed by the
series expansion (7) which involves two complex sequences (αm) and (βm), for m ∈ Z. We first rewrite
these series in a more convenient form by introducing two families of functions (Fm(r)) and (Gm(r))
whose definition simply follows from linearity. The idea is to relate the Fourier series of f and g,

f =
∑
m∈Z

fm ξm and g =
∑
m∈Z

gm ξm where

fm :=
1

R
(f, ξm)L2(∂BR) and gm :=

1

R
(g, ξm)L2(∂BR), (28)
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with that of u. The latter will simply write as

u(r, θ) =
∑
m∈Z

(
fm Fm(r) + gmGm(r)

)
ξm(θ), (29)

if we choose Fm and Gm so that Fm(r) ξm(θ) and Gm(r) ξm(θ) are respectively solutions to (27) for the
particular pairs (ξm, 0) and (0, ξm) of Dirichlet data on ∂BR. Note that ξm, initially defined in (4) as a
unit function of L2(S1), is trivially identified here with a function of L2(∂BR) (that is no longer unit,
which explains the factor R−1 in the expression (28) of the Fourier coefficients). It follows from (7) that

Fm(r) and Gm(r) are both linear combinations of H
(1)
m (kr) and H

(1)
m (ikr). The coefficients are found by

writing the two boundary conditions at r = R. We readily obtain

Fm(r) =
1

rm − sm

(
−sm

H
(1)
m (kr)

H
(1)
m (kR)

+ rm
H

(1)
m (ikr)

H
(1)
m (ikR)

)
and (30)

Gm(r) =
1

rm − sm

(
H

(1)
m (kr)

H
(1)
m (kR)

− H
(1)
m (ikr)

H
(1)
m (ikR)

)
, (31)

where we have denoted

rm :=
k (H

(1)
m )′(kR)

H
(1)
m (kR)

and sm :=
ik (H

(1)
m )′(ikR)

H
(1)
m (ikR)

. (32)

It remains to describe a functional framework in which the series (29) provides us the existence of a
solution to our Dirichlet problem (27). This is the subject of the following proposition.

Proposition 11. For all pair (f, g) ∈ H3/2(∂BR) × H1/2(∂BR), problem (27) has a unique solution
u ∈ H2

loc(R2 \BR) given by the series expansion (29), where the series converges in H2
loc(R2 \BR).

Proof. Most part of the work is already done. First, using the uniqueness Theorem 7 in the clamped case
with D = BR, we know that problem (27) has at most one solution. We are going to prove its existence by
examining the convergence properties of the series (29). And here again, a non-obvious result is already
known: Proposition 4 tells us that this series, as soon as it converges in some sense, defines a radiating
solution to ∆2u − k4u = 0 in R2 \ BR. The C∞ convergence properties stated in Propositions 3 and 4
are valid outside a vicinity of the boundary ∂BR. They follow actually from interior regularity of elliptic
equations. Here we need a sharper study of the behavior of the series up to ∂BR, that is, exactly where
it has the worse convergence.

First recall that thanks to (5), the choice of the trace spaces H3/2(∂BR) and H1/2(∂BR) for f and g
can be interpreted in terms of convergence of their respective Fourier coefficients (28) as follows:∑

m∈Z
(1 +m2)3/2 |fm|2 < +∞ and

∑
m∈Z

(1 +m2)1/2 |gm|2 < +∞. (33)

It remains to understand how these assumptions dictate the behavior of the series (29). Recall that
convergence in H2

loc(R2 \BR) means convergence in H2(BR,R′) for any annulus BR,R′ := BR′ \BR with
R′ > R.

We start by proving the convergence in L2(BR,R′) for any R′ > R. Denoting

um(r, θ) :=
(
fm Fm(r) + gmGm(r)

)
ξm(θ),

we deduce from the orthogonality of the ξm in L2(S1) and Fubini’s theorem that the um are orthogonal
in L2(BR,R′). So, by Parseval’s identity, for all m0 ∈ N, we have∥∥∥∥∥

m0∑
m=−m0

um

∥∥∥∥∥
2

L2(BR,R′ )

=

m0∑
m=−m0

‖um‖2L2(BR,R′ )
, where (34)

‖um‖2L2(BR,R′ )
=

∫ R′

R

∣∣fm Fm(r) + gmGm(r)
∣∣2 rdr. (35)
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Using formula (15), we infer that∣∣∣∣∣ H(1)
m (kr)

H
(1)
m (kR)

∣∣∣∣∣ . 1 and

∣∣∣∣∣ H(1)
m (kr)

H
(1)
m (kR)

− H
(1)
m (ikr)

H
(1)
m (ikR)

∣∣∣∣∣ . 1

|m|
,

for all m 6= 0 and r ∈ (R,R′). Moreover, it follows from (32) and (16) that

rm ∼ −
|m|
R
, sm ∼ −

|m|
R

and rm − sm ∼
k2R

|m|
as |m| → +∞. (36)

Hence by eqs. (30) and (31), where (30) can be rewritten equivalently

Fm(r) =
H

(1)
m (kr)

H
(1)
m (kR)

− rmGm(r),

we deduce that |Fm(r)| . |m| and |Gm(r)| . 1 for m 6= 0 and r ∈ (R,R′), which shows by (35) that

‖um‖2L2(BR,R′ )
. m2 |fm|2 + |gm|2.

By virtue of the assumptions (33), this yields the convergence of the series (34) as m0 → +∞. We have
thus proved that the series (29) converges in L2(BR,R′).

To see that the convergence holds true in H2(BR,R′), we use Green’s formula of Lemma 5 in the
domain BR,R′ , which shows that

a(um, um′) = k4 (um, um′)L2(BR,R′ )
−
∫
∂BR∪∂BR′

(
Num um′ +Mum

∂ um′

∂n

)
ds,

where a(· , ·) is given in (19). Note that the minus sign before the integral is due to our choice of the
unit normal vector n on ∂BR directed into the exterior of BR, provided we make the opposite choice on
∂BR′ , so that n is directed into the interior of BR,R on both circles ∂BR and ∂BR′ .

We already know that the um are orthogonal in L2(BR,R′). Using again the orthogonality of the ξm in
L2(S1), we see that the last integral also vanishes if m′ 6= m. So the um are also orthogonal in the sense
of the sesquilinear form a(· , ·). Hence, by virtue of Lemma 14, to prove the convergence in H2(BR,R′),
we simply have to verify that the series with general term a(um, um) converges. By (33), this amounts
to showing that ∣∣∣∣∣

∫
∂BR∪∂BR′

(
Num um +Mum

∂ um
∂n

)
ds

∣∣∣∣∣ . |m|3 |fm|2 + |m| |gm|2 (37)

for large |m|. From Proposition 4, the integral on ∂BR′ does not raise any difficulty. To study the integral
on ∂BR, let us compute Num and Mum on ∂BR by using the expressions (21) in polar coordinates. To

compute ∆um, we use the fact that the functions (r, θ) 7→ H
(1)
m (kr) ξm(θ) and (r, θ) 7→ H

(1)
m (ikr) ξm(θ)

belong to the kernel of operators ∆ + k2 and ∆− k2, respectively. From the expressions (30) and (31) of
Fm and Gm, we easily obtain (

Num(θ)
Mum(θ)

)
= ξm(θ) Tm

(
fm
gm

)
,

where Tm denotes the 2× 2 matrix

Tm :=

−
m2(1− ν)

R3
− 2k2 rmsm

rm − sm
m2(1− ν)

R2
+ k2 rm + sm

rm − sm
m2(1− ν)

R2
+ k2 rm + sm

rm − sm
−1− ν

R
− 2k2 1

rm − sm

 . (38)

Then ∫
∂BR

(
Num um +Mum

∂ um
∂n

)
ds = R

(
fm
gm

)∗
Tm

(
fm
gm

)
,

13



where the exponent ∗ stands for the conjugate transpose of a matrix. Using (36), we see that

Tm =

 −2|m|3

R3
+ O(|m|2) −|m|

2(1 + ν)

R2
+ O(|m|)

−|m|
2(1 + ν)

R2
+ O(|m|) −2|m|

R
+ O(1)

 (39)

as |m| → +∞, which shows that for large |m|,∣∣∣∣(fmgm
)∗

Tm
(
fm
gm

)∣∣∣∣ . |m|3 |fm|2 + |m| |gm|2,

and (37) follows.

5 Weak formulation in a bounded domain

From now on, we denote by S the operator from H3/2(∂BR)×H1/2(∂BR) to H2
loc(R2 \BR) which maps

the pair (f, g) of Dirichlet data to the solution u of the Dirichlet problem (27). In this section, we
show that our initial problem (1) is equivalent to a problem set in a bounded domain with the help of a
Dirichlet-to-Neumann operator T defined from H3/2(∂BR)×H1/2(∂BR) to H−3/2(∂BR)×H−1/2(∂BR)
by

T
(
f
g

)
:=

(
Nu
Mu

)
where u := S

(
f
g

)
.

As in the preceding section, the definitions of M and N are based here on the unit normal n oriented
outside BR. That T is a continuous operator is a direct consequence of Lemma 5. From the proof of
Proposition 11, an explicit expression of the operator T is given by

T
(
f
g

)
=
∑
m∈Z

Tm
(
fm
gm

)
ξm, (40)

where Tm is defined in (38) and fm and gm are the Fourier coefficient of f and g given by (28).
Let us now consider the following problem in the bounded domain ΩR := Ω ∩ BR, where R > 0 is

sufficiently large so that BR contains the obstacle D:

Find us ∈ H2(ΩR) such that

∆2us − k4us = 0 in ΩR,(
B1(us + ui) , B2(us + ui)

)
= (0, 0) on ∂Ω,(

Nus

Mus

)
= T

(
us|∂BR

(∂us/∂n)|∂BR

)
on ∂BR.

(41)

Problems (1) and (41) are equivalent in the sense of the following proposition.

Proposition 12. Assume that problem (1) has a solution vs in Ω. Then its restriction vs|ΩR
is a solution

to problem (41). Conversely, if us is a solution to problem (41), then the function vs which is equal to us

in ΩR and S(us|∂BR
, (∂us/∂n)|∂BR

) in R2 \BR is a solution to problem (1) in Ω.

Proof. Assume that (1) has a solution vs in Ω. It is clear that its restriction to R2 \ BR coincides with
S(vs|∂BR

, (∂vs/∂n)|∂BR
), so that T(vs|∂BR

, (∂vs/∂n)|∂BR
) = (Nvs,Mvs). We obtain that vs|ΩR

satisfies
problem (41).

Conversely, assume that (41) has a solution us in ΩR. We consider the function vs in Ω such that
vs|ΩR

= us and vs|R2\BR
= ws := S(us|∂BR

, (∂us/∂n)|∂BR
). To prove that vs is a solution to (1), we just

have to verify that it satisfies ∆2vs − k4vs = 0 in Ω. By construction, it satisfies this equation separately
in ΩR ans R2 \ BR. As (Nus,Mus)> = T(us|∂BR

, (∂us/∂n)|∂BR
)>, we know that the respective traces,

normal derivatives, bending moments and transverse forces of us and ws coincide on ∂BR. As shown

14



below, this yields the result. Indeed, consider a function ϕ in C∞0 (Ω), which is the set of infinitely smooth
and compactly supported functions in Ω. We have, considering distribution brackets,

〈∆2vs − k4vs, ϕ〉 = 〈vs,∆2ϕ− k4ϕ〉

=

∫
ΩR

us (∆2ϕ− k4ϕ) dx+

∫
R2\BR

ws (∆2ϕ− k4ϕ) dx.

Using twice Green’s formula of Lemma 5 in ΩR yields∫
ΩR

us (∆2ϕ− k4ϕ) dx =

∫
ΩR

(∆2us − k4us)ϕdx

−
∫
∂BR

(
∂us

∂n
Mϕ+ usNϕ

)
ds+

∫
∂BR

(
∂ϕ

∂n
Mus + ϕNus

)
ds,

where the integral on ΩR in the right-hand side vanishes, since ∆2us − k4us = 0 in ΩR. By proceeding
in the same way in R2 \BR, we obtain

〈∆2vs − k4vs, ϕ〉 =

∫
∂BR

({
∂ws

∂n
− ∂us

∂n

}
Mϕ+ {ws − us} Nϕ

)
ds

−
∫
∂BR

(
∂ϕ

∂n
{Mws −Mus}+ ϕ {Nws −Nus}

)
ds.

As mentioned above, the four terms between braces vanish. We conclude that 〈∆2vs − k4vs, ϕ〉 = 0 for
all ϕ ∈ C∞0 (Ω), which is the desired result.

Let us find now a weak formulation of problem (41). Such a formulation depends on the choice of
the boundary conditions only by the associated functional space. That is why we introduce four Hilbert
space Hβ , for β = 1 to 4, associated respectively to the four possible pairs of boundary conditions:

H1 := {u ∈ H2(ΩR), u|∂Ω = (∂u/∂n)|∂Ω = 0} (clamped plate),

H2 := {u ∈ H2(ΩR), u|∂Ω = 0} (simply supported plate),

H3 := {u ∈ H2(ΩR), (∂u/∂n)|∂Ω = 0} (roller supported plate),

H4 := H2(ΩR) (free plate).

All of them can be equipped with the inner product of H2(ΩR). Instead of the scattered field us, it is
more convenient to consider the total field u := us + ui in the weak formulation, where we recall that the
incident field ui satisfies ∆2ui − k4ui in R2. It is then easy to see that (41) is equivalent to{

Find u ∈ Hβ such that

b(u, v) = `(v) for all v ∈ Hβ ,
(42)

where b is the sesquilinear form defined by

b(u, v) := a(u, v)− k4

∫
ΩR

u v dx− t(u, v),

a is given by (19) with O = ΩR, t is defined by

t(u, v) :=

∫
∂BR

(
v

∂v/∂n

)∗
T
(

u
∂u/∂n

)
ds

and the antilinear form ` is defined on Hβ by

`(v) :=

∫
∂BR

(
v

∂v/∂n

)∗{(
Nui

Mui

)
− T

(
ui

∂ui/∂n

)}
ds.

Let us notice that from (40), the sesquilinear form t can be expressed as

t(u, v) =
1

R

∑
m∈Z

( (
v, ξm

)
L2(∂BR)(

∂v/∂n, ξm
)
L2(∂BR)

)∗
Tm

( (
u, ξm

)
L2(∂BR)(

∂u/∂n, ξm
)
L2(∂BR)

)
. (43)
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6 Fredholmness

The weak formulation (42) is equivalent to the equation Bu = L in Hβ , where the operator B : Hβ → Hβ
and the element L ∈ Hβ are defined from the sesquilinear form b and the antilinear form `, respectively,
with the help of the Riesz Theorem:

(Bu, v)H2(ΩR) := b(u, v) for all u, v ∈ Hβ ,
(L, v)H2(ΩR) := `(v) for all v ∈ Hβ .

Theorem 13. The operator B is a Fredholm operator of index 0.

To prove this theorem we need two lemmas. The first one is proved in [2].

Lemma 14. For ν ∈ [0, 1), there exist two constants c0 > 0 and λ0 ≥ 0 such that the sesquilinear form
a given by (19) satisfies the G̊arding inequality

a(u, u) ≥ c0‖u‖2H2(O) − λ0‖u‖2L2(O) for all u ∈ H2(O).

Remark 15. By using a similar proof as in [3, Lemma 4.2], we point out that if we restrict ourselves to
u ∈ Hβ, β = 1 or 2, then λ0 can be set to 0 in Lemma 14.

The second lemma concerns the family of 2 × 2 matrices Tm defined in (38) and involved in the
expression (43) of the sesquilinear form t.

Lemma 16. There exists m0 ∈ N, such that for all |m| > m0, we have

−Re

{(
fm
gm

)∗
Tm

(
fm
gm

)}
≥ 0 for all (fm, gm) ∈ C2.

Proof. The asymptotic behavior (39) of Tm for large |m| shows that

−Re

{(
fm
gm

)∗
Tm

(
fm
gm

)}
= Rasy

m (fm, gm) +Rrem
m (fm, gm),

where

Rasy
m (fm, gm) :=

2|m|3

R3
|fm|2 +

2|m|2(1 + ν)

R2
Re(fm gm) +

2|m|
R
|gm|2,

Rrem
m (fm, gm) := O(|m|2) |fm|2 + O(|m|) Re(fm gm) + O(1) |gm|2.

We notice on the one hand that

Rasy
m (fm, gm) ≥ 2|m|3

R3
|fm|2 −

|m|3(1 + ν)

R3
|fm|2 −

|m|(1 + ν)

R
|gm|2 +

2|m|
R
|gm|2

= (1− ν)

(
|m|3

R3
|fm|2 +

|m|
R
|gm|2

)
and on the other hand, that

Rrem
m (fm, gm) = O

(
|m|2 |fm|2 + |gm|2

)
= O

(
|m|−1

)
Rasy
m (fm, gm),

which yields the result.

Proof of Theorem 13. Let us choose m0 as in Lemma 16 and define the two sesquilinear form t0 and t∞
deduced from the expression (43) of t by splitting the series in two parts:

t0(u, v) :=
1

R

∑
|m|≤m0

. . . and t∞(u, v) :=
1

R

∑
|m|>m0

. . . .
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Then we decompose the sesquilinear form b into b = c+ d where

c(u, v) := a(u, v) + λ0

∫
ΩR

u v dx− t∞(u, v) and

d(u, v) := −(λ0 + k4)

∫
ΩR

u v dx− t0(u, v).

On the one hand, we observe that for all u ∈ Hβ ,

Re
{
c(u, u)

}
= a(u, u) + λ0

∫
ΩR

|u|2 dx− Re
{
t∞(u, u)

}
≥ c0‖u‖2H2(ΩR),

where we have used Lemmas 14 and 16. This implies that the operator C which is associated with the
sesquilinear form c via Riesz theorem is invertible. On the other hand, the operator D which is associated
with the sesquilinear form d via Riesz theorem is compact. This follows from the compactness of the
embedding of H2(ΩR) in L2(ΩR) and the fact that the operator associated with the form t0 is a finite
sum of operators of rank 2. We conclude that B = C +D is Fredholm of index 0.

We are now able to prove the main Theorem 1.

Proof of Theorem 1. From Theorem 13 and the Fredholm theory we obtain that existence is equivalent
to uniqueness in problem (41). Uniqueness is given by Theorems 7 and 8.

Remark 17. In the case of the free plate, an alternative method of ours would have been to use the
Analytic Fredholm theorem directly on problem (42) by using analyticity with respect to k. The main
difficulty is to prove the analytic dependence of the Dirichlet-to-Neumann operator T with respect to k.
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