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Abstract

We consider multistage stochastic optimization problems involving multiple units. Each unit is a
(small) control system. Static constraints couple units at each stage. We present a mix of spatial and
temporal decompositions to tackle such large scale problems. More precisely, we obtain theoretical bounds
and policies by means of two methods, depending whether the coupling constraints are handled by prices
or by resources. We study both centralized and decentralized information structures. We report the
results of numerical experiments on the management of urban microgrids. It appears that decomposition
methods are much faster and give better results than the standard Stochastic Dual Dynamic Programming
method, both in terms of bounds and of policy performance.

1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed
both by stages (time) and by uncertainties (scenarios). Another layer of complexity can come from spatial
structure. The large scale nature of such problems makes decomposition methods appealing (we refer to [8,17]
for a broad description of decomposition methods in stochastic optimization problems).

We sketch decomposition methods along three dimensions: temporal decomposition methods like Dynamic
Programming break the multistage problem into a sequence of interconnected static subproblems [3, 5];
scenario decomposition methods split large scale stochastic optimization problems scenario by scenario,
yielding deterministic subproblems [11,15,20]; spatial decomposition methods break possible spatial couplings
in a global problem to obtain local decoupled subproblems [9]. These decomposition schemes have been
applied in many fields, and especially in energy management: Dynamic Programming methods have been
used for example in dam management [18], and scenario decomposition has been successfully applied to the
resolution of unit-commitment problems [1], among others.

Recent developments have mixed spatial decomposition methods with Dynamic Programming to solve
large scale multistage stochastic optimization problems. This work led to the introduction of the Dual Ap-
proximate Dynamic Programming (DADP) algorithm, which was first applied to unit-commitment problems
with a single central coupling constraint linking different stocks [2], and later applied to dams management
problems [6]. This article moves one step further by considering altogether two types of decompositions
(by prices and by resources) when dealing with general coupling constraints among units. General coupling
constraints often arise from flows conservation on a graph, and our motivation indeed comes from district
microgrid management, where buildings (units) consume, produce and store energy and are interconnected
through a network.

The paper is organized as follows. In Sect. 2, we introduce a generic stochastic multistage problem with
different subsystems linked together via a set of static coupling constraints. We present price and resource
decomposition schemes, that make use of so-called admissible coordination processes. We show how to
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bound the global Bellman functions above by a sum of local resource-decomposed value functions, and below
by a sum of local price-decomposed value functions. In Sect. 3, we study the special case of deterministic
coordination processes. First, we show that the local price and resource decomposed value functions satisfy
recursive Dynamic Programming equations. Second, we outline how to improve the bounds. Third, we show
how to use the decomposed Bellman functions to devise admissible policies for the global problem. Finally,
we provide an analysis of the decentralized information structure, that is, when the controls of a given
subsystem only depend on the past observations of the noise in that same subsystem. In Sect. 4, we present
numerical results for the optimal management of different microgrids of increasing size and complexity. We
compare the two decomposition algorithms with (state of the art) Stochastic Dual Dynamic Programming
(SDDP) algorithm. The analysis of case studies consisting of district microgrids coupling up to 48 buildings
together enlightens that decomposition methods give better results in terms of cost performance, and achieve
up to a four times speedup in terms of computational time.

2 Upper and Lower Bounds by Spatial Decomposition

We focus in §2.1 on a generic decomposable optimization problem and present price and resource decom-
position schemes. In §2.2, we apply these two methods to a multistage stochastic optimization problem,
by decomposing a global static coupling constraint by means of so-called price and resource coordination
processes. For such problems, we define the notions of centralized and decentralized information structures.

2.1 Bounds for an Optimization Problem under Coupling Constraints via De-
composition

In §2.1.1, we introduce a generic optimization problem with coupled local units. In §2.1.2, we show how to
bound its optimal value by decomposition.

2.1.1 Global Optimization Problem Formulation

Let N be a finite set, representing local units n ∈ N (we use the letter N as units can be seen as nodes on a
graph). Let {Zn}n∈N be a family of sets and Jn : Zn →] −∞,+∞], n ∈ N, be local criteria, one for each
unit, taking values in the extended reals ] −∞,+∞] (+∞ included to allow for possible constraints). Let
{Rn}n∈N, be a family of vector spaces and ϑn : Zn → Rn, n ∈ N, be mappings that model local constraints.

From these local data, we formulate a global minimization problem under constraints. We define the
product set Z =

∏
n∈NZn and the product space R =

∏
n∈NRn. Finally, we introduce a subset S ⊂ R

that captures the coupling constraints between the N units. Using the notation z = {zn}n∈N, we define the
global optimization problem as

V ] = inf
z∈Z

∑
n∈N

Jn(zn) , (1a)

under the global coupling constraint {
ϑn(zn)

}
n∈N ∈ −S . (1b)

The set S is called the primal admissible set, and an element {rn}n∈N ∈ −S is called an admissible re-
source vector. We note that, without Constraint (1b), Problem (1) would decompose into |N| independent
subproblems in a straightforward manner.

We moreover assume that, for n ∈ N, the space Rn (resources) is paired with a space Pn (prices) by
bilinear forms

〈
·, ·
〉

: Pn × Rn → R (duality pairings). We define the product space P =
∏
n∈N Pn, so

that R and P are paired by the duality pairing
〈
p, r

〉
=
∑
n∈N

〈
pn, rn

〉
(see [14] for further details; a typical

example of paired spaces is a Hilbert space and itself).
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2.1.2 Upper and Lower Bounds from Price and Resource Value Functions

Consider the global optimization problem (1). For each n ∈ N, we introduce local price value functions
V n : Pn → [−∞,+∞[ defined by

V n[pn] = inf
zn∈Zn

Jn(zn) +
〈
pn, ϑn(zn)

〉
, (2)

where we have supposed that V n[pn] < +∞, and local resource value functions V
n

: Rn →] − ∞,+∞]
defined by

V
n
[rn] = inf

zn∈Zn
Jn(zn) s.t. ϑn(zn) = rn , (3)

where we have supposed that V
n
[rn] > −∞,

We denote by S? ⊂ P the dual cone associated with the constraint set S:

S? =
{
p ∈ P |

〈
p, r

〉
≥ 0 , ∀r ∈ S

}
. (4)

The cone S? is called the dual admissible set, and an element {pn}n∈N ∈ S? is called an admissible price
vector. We now establish lower and upper bounds for Problem (1), and show how they can be computed in
a decomposed way, that is, unit by unit.

Proposition 1 For any admissible price vector p = {pn}n∈N ∈ S? and for any admissible resource vector
r = {rn}n∈N ∈ −S, we have the following lower and upper decomposed estimates of the global minimum V ]
of Problem (1): ∑

n∈N

V n[pn] ≤ V ] ≤
∑
n∈N

V
n
[rn] . (5)

Proof. Because we have supposed that V n[pn] < +∞, the left hand side of Equation (5) belongs to [−∞,+∞[. In
the same way, the right hand side belongs to ]−∞,+∞]. For a given p = {pn}n∈N ∈ S

?, we have∑
n∈N

V n[pn] =
∑
n∈N

inf
zn∈Zn

Jn(zn) +
〈
pn, ϑn(zn)

〉
,

= inf
z∈Z

∑
n∈N

Jn(zn) +
〈
p, {ϑn(zn)}n∈N

〉
, (since z = {zn}n∈N)

≤ inf
z∈Z

∑
n∈N

Jn(zn) +
〈
p, {ϑn(zn)}n∈N

〉
,

s.t. {ϑn(zn)}n∈N ∈ −S (minimizing on a smaller set)

≤ inf
z∈Z

∑
n∈N

Jn(zn) + 0 (as p ∈ S? and by definition (4) of S?)

s.t. {ϑn(zn)}n∈N ∈ −S ,

which gives the lower bound inequality.

The upper bound is easily obtained, as the optimal value V ] of Problem (1) is given by inf r̃∈−S
∑
n∈N V

n
[r̃n] ≤∑

n∈N V
n
[rn] for any r ∈ −S. �

2.2 The Special Case of Multistage Stochastic Optimization Problems

Now, we turn to the case where Problem (1) corresponds to a multistage stochastic optimization problem
elaborated from local data (local states, local controls, and local noises), with global coupling constraints at
each time step. We use the notation Jr, sK = {r, r + 1, . . . , s− 1, s} for two integers r ≤ s, and we consider a
time span J0, T K where T ∈ N? is a finite horizon.
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2.2.1 Local Data for Local Stochastic Control Problems

We detail the local data describing each unit. Let
{
Xnt
}
t∈J0,T K,

{
Unt
}
t∈J0,T−1K and

{
Wn
t

}
t∈J1,T K be sequences

of measurable spaces for each unit n ∈ N. We consider two other sequences of measurable vector spaces{
Rnt
}
t∈J0,T−1K and

{
Pnt
}
t∈J0,T−1K such that for all t, Rnt and Pnt are paired spaces, equipped with a bilinear

form
〈
· , ·
〉
. We also introduce, for all n ∈ N and for all t ∈ J0, T − 1K,

• measurable local dynamics gnt : Xnt × Unt ×Wn
t+1 → Xnt+1,

• measurable local coupling functions Θn
t : Xnt × Unt → Rnt ,

• measurable local instantaneous costs Lnt : Xnt × Unt ×Wn
t+1 →]−∞,+∞],

and a measurable local final cost Kn : XnT →] − ∞,+∞]. We incorporate possible local constraints (for
instance constraints coupling the control with the state) directly in the instantaneous costs Lnt and the final
cost Kn, since they are extended real valued functions which can possibly take the value +∞.

From local data given above, we define the global state, control, noise, resource and price spaces at time t
as

Xt =
∏
n∈N

Xnt , Ut =
∏
n∈N

Unt , Wt =
∏
n∈N

Wn
t , Rt =

∏
n∈N

Rnt , Pt =
∏
n∈N

Pnt .

We suppose given a global constraint set St ⊂ Rt at time t. We define the global resource and price spaces R
and P, and the global constraint set S ⊂ R, as

R =

T−1∏
t=0

Rt , P =

T−1∏
t=0

Pt , S =

T−1∏
t=0

St ⊂ R , (6)

and we denote by S? ⊂ P the dual cone of S (see Equation (4)).

2.2.2 Centralized and Decentralized Information Structures

We introduce a probability space (Ω,F ,P). For every unit n ∈ N, we introduce local exogenous noise
processes W n = {W n

t }t∈J1,T K, where each W n
t : Ω→Wn

t is a random variable.1 We denote by

W = (W 1, · · · ,W T ) where W t = {W n
t }n∈N (7)

the global noise process. We consider two information structures [7, Chap. 3]:

• the centralized information structure, represented by the filtration F = (Ft)t∈J0,T K, associated with
the global noise process W in (7), where

Ft = σ(W 1, · · · ,W t) = σ
(
{W n

1}n∈N , · · · , {W
n
t }n∈N

)
(8a)

is the σ-field generated by all noises up to time t ∈ J0, T K, with the convention F0 = {∅,Ω},

• the decentralized information structure, represented by the family {Fn}n∈N of filtrations Fn = (Fnt )t∈J0,T K,
where, for any unit n ∈ N and any time t ∈ J0, T K,

Fnt = σ(W n
1 , · · · ,W

n
t ) ⊂ Ft =

∨
n′∈N

Fn
′

t , (8b)

with Fn0 = {∅,Ω}. The local σ-field Fnt captures the information provided by the uncertainties up to
time t, but only in unit n.

In the sequel, for a given filtration G and a given measurable space Y, we denote by L0(Ω,G,P;Y) the space
of G-adapted processes taking values in the space Y.

1Random variables are denoted using bold letters.

4



2.2.3 Global Stochastic Control Problem

We denote by Xt = {Xn
t }n∈N and U t = {Un

t }n∈N families of random variables (each of them with values
in Xnt and in Unt ). The stochastic processes X = (X0, · · · ,XT ) and U = (U0, · · · ,UT−1) are called global
state and global control processes. The stochastic processes Xn = (Xn

0 , · · · ,X
n
T ) and Un = (Un

0 , · · · ,U
n
T−1)

are called local state and local control processes.
With the data detailed in §2.2.1 and §2.2.2, we formulate a family of optimization problems as follows.

At each time t ∈ J0, T K, the global value function Vt :
∏
n∈N Xnt → [−∞,+∞] is defined, for all {xnt }n∈N ∈∏

n∈N Xnt , by (with the convention VT =
∑
n∈NK

n)

Vt
(
{xnt }n∈N

)
= inf

X,U
E
[∑
n∈N

T−1∑
s=t

Lns (Xn
s ,U

n
s ,W

n
s+1) +Kn(Xn

T )

]
, (9a)

s.t. Xn
t = xnt and ∀s ∈ Jt, T−1K ,

Xn
s+1 = gns (Xn

s ,U
n
s ,W

n
s+1) , Xn

t = xnt , (9b)

σ(Un
s ) ⊂ Gns , (9c){

Θn
s (Xn

s ,U
n
s )
}
n∈N ∈ −Ss . (9d)

In the global value function (9), the expected value is taken w.r.t. (with respect to) the global uncertainty
process (W t+1, · · · ,W T ). We assume that measurability and integrability assumptions hold true, so that the
expected value in (9a) is well defined. Constraints (9c) — where σ(Un

s ) is the σ-field generated by the random
variable Un

s — express the fact that each decision Un
s is Gns -measurable, that is, measurable either w.r.t. the

global information Fs (centralized information structure) available at time s (see Equation (8a)) or w.r.t. the
local information Fns (decentralized information structure) available at time s for unit n (see Equation (8b)),
as detailed in §2.2.2. Finally, Constraints (9d) express the global coupling constraint at time s between all
units and have to be understood in the P-almost sure sense.

We are mostly interested in the global optimization problem V0(x0), where x0 = {xn0}n∈N ∈ X0 is the
initial state, that is, Problem (9) for t = 0.

2.2.4 Local Price and Resource Value Functions

As in §2.1.2, we define local price and local resource value functions for the global multistage stochastic
optimization problems (9).

For this purpose, we introduce a duality pairing between stochastic processes. For each n ∈ N, we
consider subspaces L̃(Ω,F ,P;Rn) ⊂ L0(Ω,F ,P;Rn) and L̃?(Ω,F ,P;Pn) ⊂ L0(Ω,F ,P;Pn) such that the

duality product terms E
[∑T−1

t=0

〈
P n
t ,Θ

n
t (Xn

t ,U
n
t )
〉]

in Equation (10) are well defined (like in the case of
square integrable random variables, when Θn

t (Xn
t ,U

n
t ) ∈ L2(Ω,Ft,P;Rd) and P n

t ∈ L2(Ω,Ft,P;Rd)).
Let n ∈ N be a local unit, and P n = (P n

0 , · · · ,P
n
T−1) ∈ L̃?(Ω,F ,P;Pn)) be a local price process —

hence, adapted to the global filtration F in (8a) generated by the global noises (note that we do not assume
that it is adapted to the local filtration Fn in (8b) generated by the local noises). When specialized to the
context of Problems (9), Equation (2) gives, at each time t ∈ J0, T K, what we call local price value functions
V nt [P n] : Xnt → [−∞,+∞[ defined, for all xnt ∈ Xnt , by (with the convention V nT [P n] = Kn)

V nt [P n](xnt ) = inf
Xn,Un

E
[ T−1∑
s=t

(
Lns (Xn

s ,U
n
s ,W

n
s+1)

+
〈
P n
s ,Θ

n
s (Xn

s ,U
n
s )
〉)

+Kn(Xn
T )

]
, (10)

s.t. Xn
t = xnt and ∀s ∈ Jt, T−1K, (9b), (9c).

We suppose that V nt [P n](xnt ) < +∞ in (10). We define the global price value function V t[P
n] : Xt →

[−∞,+∞[ at time t ∈ J0, T K as the sum of the corresponding local price value functions, that is, using the
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notation xt = {xnt }n∈N,

V t[P ](xt) =
∑
n∈N

V nt [P n](xnt ) , ∀xt ∈ Xt . (11)

In the same vein, let Rn = (Rn
0 , · · · ,R

n
T−1) ∈ L̃(Ω,F ,P;Rn) be a local resource process. Equation (3)

gives, at each time t ∈ J0, T K, what we call local resource value function, V
n

t [Rn] : Xnt →]−∞,+∞] defined,
for all xnt ∈ Xnt , by (with the convention V

n

T [Rn] = Kn)

V
n

t [Rn](xnt ) = inf
Xn,Un

E
[T−1∑
s=t

Lns (Xn
s ,U

n
s ,W

n
s+1) +Kn(Xn

T )

]
, (12a)

s.t.Xn
t = xnt and ∀s ∈ Jt, T−1K, (9b), (9c) and Θn

s (Xn
s ,U

n
s ) = Rn

s . (12b)

We suppose that V
n

t [Rn](xnt ) > −∞ in (12). We define the global resource value function V t[R] : Xt →
]−∞,+∞] at time t ∈ J0, T K as the sum of the local resource value functions, that is,

V t[R](xt) =
∑
n∈N

V
n

t [Rn](xnt ) , ∀xt ∈ Xt . (13)

We call the global processes P ∈ L̃?(Ω,F ,P;P) and R ∈ L̃(Ω,F ,P;R) respectively price coordination
processes and ressource coordination processes.

2.2.5 Global Upper and Lower Bounds

Applying Proposition 1 to the local price value functions (10) and resource value functions (12) makes it
possible to bound the values of the global problems (9). For this purpose, we first define the notion of
admissible price and resource coordination processes.

We introduce the primal admissible set S of stochastic processes associated with the almost sure con-
straints (9d):

S =
{
Y = (Y 0, · · · ,Y T−1) ∈ L̃(Ω,F ,P;R)

s.t. Y t ∈ St P-a.s. , ∀t ∈ J0, T−1K
}
. (14a)

Then, the dual admissible cone of S is

S? =
{
Z = (Z0, · · · ,ZT−1) ∈ L̃?(Ω,F ,P;P)

s.t. E
[〈
Y t ,Zt

〉]
≥ 0 , ∀ Y ∈ S , ∀t ∈ J0, T−1K

}
. (14b)

We say that P ∈ L̃?(Ω,F ,P;P) is an admissible price coordination process if P ∈ S?, and that

R ∈ L̃(Ω,F ,P;R) is an admissible resource coordination process if R ∈ −S. By considering admissible
coordination processes, we will now bound up and down the global value functions (9) with the local value
functions (10) and (12).

Proposition 2 Let P = {P n}n∈N ∈ S? be an admissible price coordination process, and let R = {Rn}n∈N ∈
−S be an admissible resource coordination process. Then, for all t ∈ J0, T K and for all xt = {xnt }n∈N ∈ Xt,
we have the inequalities ∑

n∈N

V nt [P n](xnt ) ≤ Vt(xt) ≤
∑
n∈N

V
n

t [Rn](xnt ) . (15)

Proof. For t = 0, the proof of the following proposition is a direct application of Proposition 1 to Problem (9).

For t ∈ J1, T−1K, from the definitions (14) of S and S?, the assumption that (R0, · · · ,RT−1) (resp. (P 0, · · · ,P T−1))

is an admissible process implies that the reduced process (Rt, · · · ,RT−1) (resp. (P t, · · · ,P T−1)) is also admissible

on the reduced time interval Jt, T − 1K, hence the result by applying Proposition 1. �
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3 Decomposition of Local Value Functions by Dynamic Program-
ming

In §2.2.5, we have obtained upper and lower bounds of optimization problems by spatial decomposition.
We now give conditions under which spatial decomposition schemes can be made compatible with temporal
decomposition, thus yielding a mix of spatial and temporal decompositions.

In §3.1, we show that the local price value functions (10) and the local resource value functions (12) can
be computed by Dynamic Programming, when price and resource processes are deterministic. In §3.2, we
sketch how to obtain tighter bounds by appropriately choosing the deterministic price and resource processes.
In §3.3, we show how to use local price and resource value functions as surrogates for the global Bellman
value functions, and then produce global admissible policies. In §3.4, we analyze the case of a decentralized
information structure.

In the sequel, we make the following key assumption.

Assumption 1 The global uncertainty process (W 1, · · · ,W T ) in (7) consists of stagewise independent ran-
dom variables.

In the case where Gnt = Ft for all t ∈ J0, T K and all n ∈ N (centralized information structure in §2.2.2),
under Assumption 1, the global value functions (9) satisfy the Dynamic Programming equations [7]

VT (xT ) =
∑
n∈N

Kn(xnT ) and, for t = T−1, . . . , 0, (16a)

Vt(xt) = inf
ut∈Ut

E
[∑
n∈N

Lnt (xnt , u
n
t ,W

n
t+1) + Vt+1

({
Xn
t+1

}
n∈N

)]
(16b)

s.t. Xn
t+1 = gnt (xnt , u

n
t ,W

n
t+1) , (16c){

Θn
t (xnt , u

n
t )
}
n∈N ∈ −St . (16d)

In the case where Gnt = Fnt for all t ∈ J0, T K and all n ∈ N (decentralized information structure in §2.2.2), the
common assumptions under which the global value functions (9) satisfy Dynamic Programming equations
are not met.

3.1 Decomposed Value Functions by Deterministic Coordination Processes

We prove now that, for deterministic coordination processes, the local problems (10) and (12) satisfy local
Dynamic Programming equations.

We first study the local price value function (10).

Proposition 3 Let pn = (pn0 , · · · , pnT−1) ∈ Pn be a deterministic price process. Then, be it for the centralized
or the decentralized information structure (see §2.2.2), the local price value functions (10) satisfy the following
recursive Dynamic Programming equations

V nT [pn](xnT ) = Kn(xnT ) and, for t = T−1, . . . , 0, (17a)

V nt [pn](xnt ) = inf
un
t ∈Un

t

E
[
Lnt (xnt , u

n
t ,W

n
t+1) +

〈
pnt ,Θ

n
t (xnt , u

n
t )
〉

(17b)

+ V nt+1[pn]
(
gnt (xnt , u

n
t ,W

n
t+1)

)]
.

Proof. Let pn = (pn0 , · · · , pnT−1) ∈ Pn be a deterministic price vector. Then, the price value function (10) has the
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following expression:

V n0 [pn](xn0 ) = inf
Xn,Un

E
[ T−1∑
t=0

Lnt (Xn
t ,U

n
t ,W

n
t+1)

+
〈
pnt ,Θ

n
t (Xn

t ,U
n
t )
〉

+Kn(Xn
T )

]
, (18)

s.t. Xn
0 = xn0 and ∀s ∈ J0, T−1K, (9b), (9c) .

In the case where Gnt = Ft, and as Assumption 1 holds true, the optimal value of Problem (18) can be obtained by
the recursive Dynamic Programming equations (17).

Consider now the case Gnt = Fnt . Since the local value function and local dynamics in (18) only depend on

the local noise process W n, there is no loss of optimality to replace the constraint σ(Un
t ) ⊂ Ft by σ(Un

t ) ⊂ Fnt .

Moreover, Assumption 1 implies that the local uncertainty process (W n
1 , . . . ,W

n
T ) consists of stagewise independent

random variables, so that the solution of Problem (18) can be obtained by the recursive Dynamic Programming

equations (17) when replacing the global σ-field Ft by the local σ-field Fnt (see Equation (8)). �

A similar result holds true for the local resource value functions (12) as stated now in Proposition 4
whose proof is left to the reader.

Proposition 4 Let rn = (rn0 , · · · , rnT−1) ∈ Rn be a deterministic resource process. Then, be it for the
centralized or the decentralized information structure in §2.2.2, the local resource value functions (12) satisfy
the following recursive Dynamic Programming equations

V
n

T [rn](xnT ) =Kn(xnT ) and, for t = T−1, . . . , 0, (19a)

V
n

t [rn](xnt ) = inf
un
t ∈Un

t

E
[
Lnt (xnt , u

n
t ,W

n
t+1) + V

n

t+1[rn]
(
gnt (xnt , u

n
t ,W

n
t+1)

)]
,

s.t. Θn
t (xnt , u

n
t ) = rnt . (19b)

3.2 Computing Upper and Lower Bounds, and Decomposed Value Functions

In the context of a deterministic admissible price coordination process pn = (pn0 , · · · , pnT−1) ∈ S? and resource
process rn = (rn0 , · · · , rnT−1) ∈ S, where S is defined in (6), the double inequality (15) in Proposition 2
becomes ∑

n∈N

V nt [pn](xnt ) ≤ Vt(xt) ≤
∑
n∈N

V
n

t [rn](xnt ) . (20)

• Both in the lower bound and the upper bound of Vt in (20), the sum over units n ∈ N materializes the
spatial decomposition for the computation of the bounds. For each of the bounds, this decomposition
leads to independent optimization subproblems that can be processed in parallel.

• For a given unit n ∈ N, the computation of the local value functions V nt [pn] and V
n

t [rn] for t ∈ J0, T K
can be performed by Dynamic Programming as stated in Propositions 3 and 4. The corresponding
loop in backward time materializes the temporal decomposition, processed sequentially.

Now, we suppose given an initial state x0 = {xn0}n∈N ∈ X0 and we sketch how, by suitably choosing the
admissible coordination processes, we can improve the upper and lower bounds (20) for V0(x0), that is, the
optimal value of Problem (9) for t = 0.

By Propositions 2 and 3, for any deterministic p = (p0, · · · , pT−1) ∈ S?, we have
∑
n∈N V

n
0 [pn](xn0 ) ≤

V0(x0). As a consequence, solving the following optimization problem

sup
p∈S?

∑
n∈N

V n0 [pn](xn0 ) (21)

8



gives the greatest possible lower bound in the class of deterministic admissible price coordination processes.
We can maximize Problem (21) w.r.t. p using a gradient-like ascent algorithm. Updating p requires the
computation of the gradient of

∑
n∈N V

n
0 [pn](xn0 ), obtained when computing the price value functions. The

standard update formula corresponding to the gradient algorithm (Uzawa algorithm) can be replaced by
more sophisticated methods (Quasi-Newton).

By Propositions 2 and 4, for any deterministic r = (r0, · · · , rT−1) ∈ −S, we have V0
(
{xn0}n∈N

)
≤∑

n∈N V
n

0 [rn](xn0 ). As a consequence, solving the following optimization problem

inf
r∈−S

∑
n∈N

V
n

0 [rn](xn0 ) (22)

gives the lowest possible upper bound in the set of deterministic admissible resource coordination processes.
Again, we can minimize Problem (22) w.r.t. r using a gradient-like algorithm. Updating r requires the
computation of the gradient of

∑
n∈N V

n

0 [rn](xn0 ), obtained when computing the resource value functions.
Again, the standard update formula corresponding to the gradient algorithm can be replaced by more
sophisticated methods.

At the end of the procedure, we have obtained a deterministic admissible price coordination process p =
(p0, · · · , pT−1) ∈ S? and a deterministic admissible resource coordination process r = (r0, · · · , rT−1) ∈ −S
such that V0(x0), the optimal value of Problem (9) for t = 0, is tightly bounded above and below like in (20)
for t = 0. We have also obtained the solutions {V nt [p]}t∈J0,T K and {V nt [r]}t∈J0,T K of the recursive Dynamic
Programming Equations (17) and (19) associated with these coordination processes.

3.3 Devising Policies

Now that we have decomposed value functions, we show how to devise policies. By policy, we mean a
sequence γ =

{
γt
}
t∈J0,T−1K where, for any t ∈ J0, T−1K, each γt is a state feedback, that is, a measurable

mapping γt : Xt → Ut.
Here, we suppose that we have at our disposal pre-computed local value functions {V nt }t∈J0,T K and

{V nt }t∈J0,T K solving Equations (17) for the price value functions and Equations (19) for the resource value

functions. For instance, one could use the functions {V nt [p]}t∈J0,T K and {V nt [r]}t∈J0,T K obtained at the end
of §3.2.

Using the sum of these local value functions as a surrogate for a global Bellman value function, we propose
two global policies as follows (supposing that the arg min are not empty and that the resulting expressions
provide measurable mappings [4]):
1) a global price policy γ =

{
γ
t

}
t∈J0,T−1K with, for any t ∈ J0, T−1K, the feedback γ

t
: Xt → Ut defined for

all xt = {xnt }n∈N ∈ Xt by

γ
t
(xt) ∈ arg min

{un
t }n∈N

E
[∑
n∈N

Lnt (xnt , u
n
t ,W

n
t+1) + V nt+1

(
gnt (xnt , u

n
t ,W

n
t+1)

)]
,

s.t.
{

Θn
t (xnt , u

n
t )
}
n∈N ∈ −St , (23)

2) a global resource policy γ =
{
γt
}
t∈J0,T−1K with, for any t ∈ J0, T−1K, the feedback γt : Xt → Ut defined

for all xt = {xnt }n∈N ∈ Xt by

γt(xt) ∈ arg min
{un

t }n∈N

E
[∑
n∈N

Lnt (xnt , u
n
t ,W

n
t+1) + V

n

t+1

(
gnt (xnt , u

n
t ,W

n
t+1)

)]
,

s.t.
{

Θn
t (xnt , u

n
t )
}
n∈N ∈ −St . (24)

Given a policy γ =
{
γt
}
t∈J0,T−1K and any time t ∈ J0, T K, the expected cost of policy γ starting from state xt

9



at time t is equal to

V γt (xt) = E
[∑
n∈N

T−1∑
s=t

Lns (Xn
s , γ

n
s (Xs),W

n
t+1) +Kn(Xn

T )

]
, (25)

s.t. ∀s ∈ Jt, T−1K , Xn
s+1 = gns (Xn

s , γ
n
s (Xs),W

n
s+1) , Xn

t = xnt .

We provide several bounds hereafter.

Proposition 5 Let t ∈ J0, T K and xt = {xnt }n∈N ∈ Xt be a given state. Then, we have∑
n∈N

V nt (xnt ) ≤ Vt(xt) ≤ V γt (xt) ≤
∑
n∈N

V
n

t (xnt ) , (26a)

Vt(xt) ≤ inf
{
V
γ

t (xt), V
γ
t (xt)

}
. (26b)

Proof. We prove the right hand side inequality in (26a) by backward induction. At time t = T , the result is
straightforward as V

n
t = Kn for all n ∈ N. Let t ∈ J0, T − 1K such that the right hand side inequality in (26a) holds

true at time t+ 1. Then, for all xt ∈ Xt, Equation (25) can be rewritten

V γt (xt) = E
[∑
n∈N

(
Lnt (xnt , γ

n
t (xt),W

n
t+1)

)
+ V γt+1(Xt+1)

]
,

Using the induction assumption, we deduce that

V γt (xt) ≤ E
[∑
n∈N

Lnt (xnt , γ
n
t (xt),W

n
t+1) + V

n
t+1(Xn

t+1)

]
.

From the very definition (24) of the global resource policy, γ , we obtain

V γt (xt) ≤ inf
{un

t }n∈N

E
[∑
n∈N

Lnt (xnt , u
n
t ,W

n
t+1) + V

n
t+1(Xn

t+1)

]
,

s.t.
{

Θn
t (xnt , u

n
t )
}
n∈N ∈ −St .

Introducing a deterministic admissible resource process {rnt }n∈N ∈ −St and restraining the constraint with it rein-
forces the inequality, thus giving

V γt (xt) ≤ inf
{un

t }n∈N

E
[∑
n∈N

Lnt (xnt , u
n
t ,W

n
t+1) + V

n
t+1(Xn

t+1)

]
(27a)

s.t. Θn
t (xnt , u

n
t ) = rnt , ∀n ∈ N , (27b)

so that
V γt (xt) ≤

∑
n∈N

(
inf
un
t

E
[
Lnt (xnt , u

n
t ,W

n
t+1) + V

n
t+1(Xn

t+1)
]

s.t. Θn
t (xnt , u

n
t ) = rnt

)
as we do not have any coupling left in (27). By Equation (19), we deduce that V γt (xt) ≤

∑
n∈N V

n
t (xnt ), hence the

result at time t.

Furthermore, for any admissible policy γ, we have Vt(xt) ≤ V γt (xt) as the global Bellman function gives the

minimal cost starting at any point xt ∈ Xt. We therefore obtain all the other inequalities in (26). �
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3.4 Analysis of the Decentralized Information Structure

An interesting consequence of Propositions 3 and 4 is that the local price and resource value functions V nt [pn]
in (11) and V

n

t [rn] in (13) remain the same when choosing either the centralized information structure or
the decentralized one in §2.2.2. By contrast, the global value functions Vt in (9) depend on that choice.
Let us denote by V C

t (resp. V D
t ) the value functions (9) in the centralized (resp. decentralized) case where

σ(Un
s ) ⊂ Fns (resp. σ(Un

s ) ⊂ Fs). Since the admissible set induced by the constraint (9c) in the centralized
case is larger than the one in the decentralized case (because Fnt ⊂ Ft by (8b)), we deduce that the lower
bound is tighter for the centralized problem, and the upper bound tighter for the decentralized problem: for
all xt = {xnt }n∈N ∈ Xt, ∑

n∈N

V nt [pn](xnt ) ≤ V C
t (xt) ≤ V D

t (xt) ≤
∑
n∈N

V
n

t [rn](xnt ) . (28)

Now, we show that, in some specific cases (but often encountered in practical applications), the best
upper bound in (28) is equal to the optimal value V D

t (xt) of the decentralized problem.

Proposition 6 If, for all t ∈ J0, T − 1K, we have the equivalence{
Θn
t (Xn

t ,U
n
t )
}
n∈N ∈ −St ⇐⇒(

∃ {rnt }n∈N ∈ −St , Θn
t (Xn

t ,U
n
t ) = rnt ∀n ∈ N

)
,

(29)

then the optimal value V D
0 (x0) of the decentralized problem — that is, given by (9) where σ(Un

s ) ⊂ Fns
in (9c) — satisfies

V D
0 (x0) = inf

r∈−S

∑
n∈N

V
n

0 [rn](xn0 ) . (30)

Proof. Using Assumption (29), Problem (9) for t = 0 can be written as

V D
0 (x0) = inf

r∈−S

(∑
n∈N

inf
Xn,Un

E
[T−1∑
t=0

Lnt (Xn
t ,U

n
t ,W

n
t+1) +Kn(Xn

T )

])
,

s.t. Xn
0 = xn0 and ∀s ∈ J0, T−1K, (9b), (9c),Θn

s (Xn
s ,U

n
s ) = rns ,

= inf
r∈−S

∑
n∈N

V
n
0 [rn](xn0 ) ,

the last equality arising from the definition of V
n
0 [rn] in (12) for t = 0. �

As an application of the previous Proposition 6, we consider the case of a decentralized information
structure with an additional independence assumption in space (whereas Assumption 1 is an independence
assumption in time).

Corollary 7 We consider the case of a decentralized information structure with the following two additional
assumptions:

• the random processes W n, for n ∈ N, are independent,

• the coupling constraints (9d) are of the form
∑
n∈N Θn

t (Xn
t ,U

n
t ) = 0.

Then, the assumptions of Proposition 6 are satisfied, so that Equality (30) holds true.

Proof. From the dynamic constraint (9b) and from the measurability constraint (9c), we have that each

term Θn
t (Xn

t ,U
n
t ) is Fnt -measurable in the decentralized information structure case. Since the random processes

W n, for n ∈ N, are independent, so are the σ-fields Fnt , for n ∈ N, from which we deduce that the random variables

Θn
t (Xn

t ,U
n
t ) are independent. Now, these random variables sum up to zero. But it is well-known that, if a sum

of independent random variables is zero, then every random variable in the sum is constant (deterministic). Hence,

each random variable Θn
t (Xn

t ,U
n
t ) is constant. By introducing their constant values {rnt }n∈N, the constraints (9d)

are written equivalently Θn
t (Xn

t ,U
n
t )− rnt = 0, ∀ n ∈ N, and

∑
n∈N r

n
t = 0. We conclude with Proposition 6. �
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Remark 8 In the case of a decentralized information structure (8b), it seems difficult to produce Bellman-
based online policies. Indeed, neither the global price policy in (23) nor the global resource policy in (24) are
implementable since both policies require the knowledge of the global state {xnt }n∈N for each unit n, which is
incompatible with the information constraint (8b). Nevertheless, one can use the results given by resource
decomposition to compute a local state feedback as follows. For a given deterministic admissible resource
process r ∈ −S, solving at time t and for each n ∈ N the subproblem

γnt (xnt ) ∈ arg min
un
t

E
[
Lnt (xnt , u

n
t ,W

n
t+1) + V

n

t+1

(
gnt (xnt , u

n
t ,W

n
t+1)

)]
,

s.t. Θn
t (xnt , u

n
t ) = rnt

generates a local state feedback γnt : Xnt → Ut which is both compatible with the decentralized information
structure (8b) and such that the policy γ =

{
γt
}
t∈J0,T−1K is admissible as it satisfies the global coupling

constraint (9d) between all units because r ∈ −S, where S is defined in (6).
By contrast, replicating this procedure with a deterministic admissible price process would produce a policy

which would not satisfy the global coupling constraint (9d).

4 Application to Microgrids Optimal Management

We illustrate the effectiveness of the two decomposition schemes introduced in Sect. 3 by presenting numerical
results. In §4.1, we describe an application in the optimal management of urban microgrids. In §4.2, we
detail how we implement algorithms to obtain bounds and policies. In §4.3, we illustrate the performance
of the decomposition methods with numerical results.

4.1 Description of the Problems

The energy management problem and the structure of the microgrids come from case studies provided by the
urban Energy Transition Institute Efficacity2. For more details on microgrid modeling and on the formulation
of associated optimization problems, the reader is referred to the PhD thesis [13].

We represent a district microgrid by a directed graph (N,A), with N the set of nodes and A the set of
arcs. Each node of the graph corresponds to a building. The buildings exchange energy through the edges of
the graph, hence coupling the different nodes of the graph by static constraints (Kirchhoff law). We manage
the microgrids over a given day in summer, with decisions taken every 15mn, so that T = 96.

Each building has its own electrical and domestic hot water demand profiles, and possibly its own solar
panel production. At node n, we consider a random variable W n

t , with values in Wn
t = R2, representing the

following couple of uncertainties: the local electricity demand minus the production of the solar panel; the
domestic hot water demand. We also suppose given a corresponding finite probability distribution on the
set Wn

t .
Each building is equipped with an electrical hot water tank; some buildings have solar panels and some

others have batteries. We view batteries and electrical hot water tanks as energy stocks so that, depending
on the presence of battery inside the building, we introduce a state Xn

t at node n with dimension 2 or 1
(energy stored inside the water tank and energy stored in the battery), and the same with the control Un

t

at node n (power used to heat the tank and power exchanged with the battery). Each node of a graph
is modelled as a local control system in which the cost function corresponds to import electricity from
the external grid. Summing the costs and taking the expectation (supposing that the (W 1, · · · ,W T ) are
stagewise independent random variables), we obtain a global optimization problem of the form (9).

We consider six different problems with growing sizes. Table 1 displays the different dimensions consid-
ered. As an example, the 12-nodes problem consists of twelve buildings; four buildings are equipped with
a battery, and four other buildings are equipped with solar panels. The devices are dispatched so that a
building equipped with a solar panel is connected to at least one building with a battery.

2Established in 2014 with the French government support, Efficacity aims to develop and implement innovative solutions to
build and manage energy-efficient cities.
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Problem |N| |A| dim(Xt) dim(Wt) supp(W t)

3-nodes 3 3 4 6 103

6-nodes 6 7 8 12 106

12-nodes 12 16 16 24 1012

24-nodes 24 33 32 48 1024

48-nodes 48 69 64 96 1048

Table 1: Microgrid management problems with growing dimensions

4.2 Computing Bounds, Decomposed Value Functions and Devising Policies

We apply the two decomposition algorithms, introduced in §3.2 and in §3.3, to each problem as described in
Table 1. We will term Dual Approximate Dynamic Programming (DADP) the price decomposition algorithm
and Primal Approximate Dynamic Programming (PADP) the resource decomposition algorithm described in
§3.2 and in §3.3. We compare DADP and PADP with the well-known Stochastic Dual Dynamic Programming
(SDDP) algorithm (see [10] and references inside) applied to the global problem. In this part, we suppose
given an initial state x0 = {xn0}n∈N ∈ X0.

Regarding the SDDP algorithm, it is not implementable in a straightforward manner since the cardinality
of the global noise support becomes huge with the number |N| of nodes (see Table 1), so that the exact
computation of an expectation w.r.t. the global uncertainty W t = {W n

t }n∈N is out of reach. To overcome
this issue, we have resampled the probability distribution of the global noise {W n

t }n∈N at each time t by using
the k-means clustering method (see [16]). Thanks to the convexity properties of the problem, the optimal
quantization yields a new optimization problem whose optimal value is a lower bound for the optimal value
of the original problem (see [12] for details). Thus, the exact lower bound given by SDDP with resampling
remains a lower bound for the exact lower bound given by SDDP without resampling, which itself is, by
construction, a lower bound for the original problem.

Regarding DADP and PADP, we use a quasi-Newton algorithm to perform the maximization w.r.t. p
in (21) and the minimization w.r.t. r in (22). More precisely, the quasi-Newton algorithm is performed using
Ipopt 3.12 (see [19]). The algorithm stops either when a stopping criterion is fulfilled or when no descent
direction is found.

Each algorithm (SDDP, DADP, PADP) returns a sequence of global value functions indexed by time.
Indeed, SDDP produces approximate global value functions, and, for DADP (resp. PADP), we sum the local
price value functions (resp. the local resource value functions) obtained as solutions of the recursive Dynamic
Programming equations (17) (resp. (19)), for the deterministic admissible price coordination process p =
(p0, · · · , pT−1) ∈ S? (resp. the deterministic admissible resource coordination process r = (r0, · · · , rT−1) ∈
−S) obtained at the end of §3.2 for an initial state x0 = {xn0}n∈N ∈ X0.

As explained in §3.3, these global value functions yield policies. Thus, we have three policies (SDDP,
DADP, PADP) that we can compare. As the policies are admissible, the three expected values of the
associated costs are upper bounds of the optimal value of the global optimization problem.

4.3 Numerical Results

We compare the three algorithms (SDDP, DADP, PADP) regarding their execution time in §4.3.1, the quality
of their theoretical bounds in §4.3.2, and the performance of their policies in simulation in §4.3.3.

4.3.1 CPU Execution Time

Table 2 details CPU execution time and number of iterations before reaching stopping criterion for the three
algorithms. For a small-scale problem like 3-nodes (second column of Table 2), SDDP is faster than DADP
and PADP. However, for the 48-nodes problem (last column of Table 2), DADP and PADP are more than
three times faster than SDDP.
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Problem 3-nodes 6-nodes 12-nodes 24-nodes 48-nodes
dim(Xt) 4 8 16 32 64

SDDP CPU time 1’ 3’ 10’ 79’ 453’
SDDP iterations 30 100 180 500 1500

DADP CPU time 6’ 14’ 29’ 41’ 128’
DADP iterations 27 34 30 19 29

PADP CPU time 3’ 7’ 22’ 49’ 91’
PADP iterations 11 12 20 19 20

Table 2: Comparison of CPU time and number of iterations for SDDP, DADP and PADP

Figure 1 depicts how much CPU time take the different algorithms with respect to the state dimension.
For this case study, we observe that the CPU time grows almost linearly w.r.t. the dimension of the state
for DADP and PADP, whereas it grows exponentially for SDDP. Otherwise stated, decomposition methods
scale better than SDDP in terms of CPU time for large microgrids instances.

4 8 16 32 64
State dimension
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400
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U 
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e 
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DADP
PADP

Figure 1: CPU time for the three algorithms as a function of the state dimension

4.3.2 Quality of the Theoretical Bounds

In Table 3, we give the lower and upper bounds (of the optimal cost V0(x0) of the global optimization
problem) achieved by the three algorithms (SDDP, DADP, PADP).

We recall that SDDP returns a lower bound of the optimal cost V0(x0), both by nature and also because
we used a suitable resampling of the global uncertainty distribution instead of the original distribution itself
(see the discussion in §4.2). DADP and PADP lower and upper bounds are given by Equation (21) and
Equation (22) respectively. In Table 3, we observe that

• SDDP’s and DADP’s lower bounds are close to each other,

• for problems with more than 12 nodes, DADP’s lower bound is up to 2.6% better than SDDP’s lower
bound,

• the gap between PADP’s upper bound and the two lower bounds is rather large.

To sum up, DADP achieves a slightly better lower bound than SDDP, with much less CPU time (and a
parallel version of DADP would give even better performance in terms of CPU time).
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Problem 3-nodes 6-nodes 12-nodes 24-nodes 48-nodes

SDDP LB 225.2 455.9 889.7 1752.8 3310.3
DADP LB 213.7 447.3 896.7 1787.0 3396.4
PADP UB 252.1 528.5 1052.3 2100.7 4016.6

Table 3: Upper and lower bounds (of the optimal cost V0(x0) of the global optimization problem) given by
SDDP, DADP and PADP

4.3.3 Policy Simulation Performances

In Table 4, we give the performances of the policies yielded by the three algorithms. The SDDP, DADP and
PADP values are obtained by Monte Carlo simulation of the corresponding policies on 5, 000 scenarios. The
notation ± corresponds to the 95% confidence interval for the numerical evaluation of the expected costs.
We use the value obtained by the SDDP policy as a reference, a positive gap meaning that the corresponding
policy makes better than the SDDP policy. All these values are statistical upper bounds of the optimal
cost V0(x0) of the global optimization problem.

Network 3-nodes 6-nodes 12-nodes 24-nodes 48-nodes

SDDP value 226 ± 0.6 471 ± 0.8 936 ± 1.1 1859 ± 1.6 3550 ± 2.3

DADP value 228 ± 0.6 464 ± 0.8 923 ± 1.2 1839 ± 1.6 3490 ± 2.3
Gap - 0.8 % + 1.5 % +1.4% +1.1% +1.7%

PADP value 229 ± 0.6 471 ± 0.8 931 ± 1.1 1856 ± 1.6 3508 ± 2.2
Gap -1.3% 0.0% +0.5% +0.2% +1.2%

Table 4: Simulation costs (Monte Carlo) for policies induced by SDDP, DADP and PADP

We make the following observations:

• for problems with more than 6 nodes, both the DADP policy and the PADP policy beat the SDDP
policy,

• the DADP policy gives better results than the PADP policy,

• comparing with the last line of Table 3, the statistical upper bounds are much closer to SDDP and
DADP lower bounds than PADP’s exact upper bound.

For this last observation, our interpretation is as follows: the PADP algorithm is penalized because, as
the resource coordination process is deterministic, it imposes constant importation flows for every possible
realization of the uncertainties (see also the interpretation of PADP in the case of a decentralized information
structure in §3.4).

5 Conclusions

We have considered multistage stochastic optimization problems involving multiple units coupled by spatial
static constraints. We have presented a formalism for joint temporal and spatial decomposition. We have
provided two fully parallelizable algorithms that yield theoretical bounds, value functions and admissible
policies. We have stressed the key role played by information structures in the performance of the decompo-
sition schemes. We have tested these algorithms on the management of several district microgrids. Numerical
results have showed the effectiveness of the approach: the price decomposition algorithm beats the reference
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SDDP algorithm for large-scale problems with more than 12 nodes, both in terms of theoretical bounds and
policy performance, and in terms of computation time. On problems with up to 48 nodes (corresponding to
64 state variables), we have observed that their performance scales well as the dimension of the state grew:
SDDP is affected by the well-known curse of dimensionality, whereas decomposition-based methods are not.

Possible extensions are the following. In §3.2 and in §3.3, we have presented a serial version of the
decomposition algorithms, but we believe that leveraging their parallel nature could decrease further their
computation time. In §3.1, we have only considered deterministic price and resource coordination processes.
Using larger search sets for the coordination variables, e.g. considering Markovian coordination processes,
would make it possible to improve the performance of the algorithms (see [13, Chap. 7] for further de-
tails). However, one would need to analyze how to obtain a good trade-off between accuracy and numerical
performance.
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