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Abstract

We consider the time harmonic scalar wave equation in junctions of several different
periodic half-waveguides. In general this problem is not well posed. Several papers propose
radiation conditions, i.e. the prescription of the behaviour of the solution at the infinities.
This ensures uniqueness - except for a countable set of frequencies which correspond to the
resonances- and yields existence when one is able to apply Fredholm alternative. This solution
is called the outgoing solution. However, such radiation conditions are difficult to handle
numerically. In this paper, we propose so-called transparent boundary conditions which
enables us to characterize the outgoing solution. Moreover, the problem set in a bounded
domain containing the junction with this transparent boundary conditions is of Fredholm
type. These transparent boundary conditions are based on Dirichlet-to-Neumann operators
whose construction is described in the paper. On contrary to the other approaches, the
advantage of this approach is that a numerical method can be naturally derived in order to
compute the outgoing solution. Numerical results illustrate and validate the method.

Keywords: Helmholtz equation, periodic media, waveguides, radiation condition, Dirichlet-
to-Neumann maps

MSC Code: 35J05, 65N22, 78A50, 78A40,78A45

1 Introduction

A waveguide is a structure that guides waves in one direction with minimal loss of energy. A
closed waveguide is unbounded in one direction and bounded in the other directions. As important
applications, let us mention first the light propagation in optical fibers for the telecommunications
industry. One of the challenge is to optimize the junction between optical fibers for instance in
order to maximise the transmission between 2 directions of the waveguide or to split modes in
different directions. The other application concerns the ultrasonic wave propagation in cables and
pipelines for non destructive testing purposes.
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Time harmonic scattering problems in unbounded waveguides raise several difficulties of the-
oretical and numerical nature which are intricately linked. From a theoretical point of view, the
difficulty concerns the definition of the physical solution that one would like to define as the unique
solution of a well-posed mathematical problem. However, the time harmonic scattering problems
in waveguides are in general not well posed in the classical L2 framework. This is linked to the fact
that the physical solution is in general not of finite energy (we mean here finite L2 norm) since a
propagation without attenuation is possible in the direction of the waveguide. On the other hand,
in the L2

loc framework, an infinity of solutions can be found. Usually radiation conditions which
characterize the behaviour at infinity of the physical solution have to be determined and added to
the problem in order to recover well-posedness. From a numerical point of view, the domain being
unbounded, the difficulty is to compute the physical solution.

These difficulties are well known and solved for homogeneous acoustic waveguides (see for instance
[24, 13, 12, 3, 4] ). To answer to the theoretical difficulties, radiation conditions expressed thanks
to a modal decomposition obtained using separation of variable techniques has been derived.
Dirichlet-to-Neumann (DtN) operators, enclosing the radiation conditions, can also be introduced
to reduce the problem to a problem set in a bounded domain. This formulation can then be used
numerically. Finally the original problem to which is added the radiation condition or equivalently
the problem set in a bounded domain with DtN conditions, are shown to be well-posed in the
Fredholm sense (see [28]for more details on the Fredholm theory). More precisely, if uniqueness
holds (which arises except for a countable set of frequencies, which corresponds in part to the
trapped modes, see for example [6, 27]) then existence holds as well. From a numerical point of
view, the formulation in a bounded domain with DtN conditions can be used. One can also use
the Perfectly Matched Layer (PML) technique (first introduced in [2]) which consists in putting on
each side of the computational domain an absorbing layer.

These results cannot be extended directly to periodic waveguides but lots of important con-
tributions have been obtained on this subject the past few years. First, concerning the theoretical
difficulties, one classical approach is to use the limiting absorption principle. The problem with
a dissipation term (or more or less equivalently a complex frequency) is well posed in a classical
setting. The physical solution of the problem without dissipation can then be defined as the
limit (if it exists) of the solutions of the problems with dissipation, when the dissipation tends
to 0. By studying the behaviour at infinity of this physical solution, radiation conditions can be
derived. The problem without dissipation to which is added the radiation condition is shown to be
well-posed, except at most for a countable set of frequencies. This approach has been used in [8,
10] for perfectly periodic waveguides using the Floquet-Bloch Transform. In [19], similar radiation
conditions were derived by using a singular perturbation method, introduced in [5, Theorem 1.32].
In [15], the author has performed limiting absorption principle for periodic half-waveguides (a
radiation condition could also be derived [14]). Finally, in [30, 31], a different approach based on
the Kondratiev theory [20] (see also [26, 33, 21, 22]) has been used. All the results are really similar
but the last one is probably the most complete in the sense that, by integrating the radiation
condition in the functional space and working with spaces with detached asymptotics introduced
in [32], the problem is shown to be of Fredholm-type. Nevertheless, even if these studies allow to
characterize the physical/outgoing solution, none of them leads to a numerical method in order to
compute the solution.

This takes us to the second difficulty: how can one restrict the computation in a bounded region?
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It is well-known that PMLs do not work in periodic waveguides. Indeed, the wave interacts with
the periodic heterogeneities up to infinity and this cannot be reproduced by an absorbing layer. We
investigate in this paper the generalization of the DtN approach to junctions of periodic waveguides.

More precisely, we propose in this paper, through this DtN approach, to answer both to the
theoretical and numerical difficulties by

1. constructing a Dirichlet-to-Neumann operator and introducing the problem set in a bounded
domain with associated transparent boundary conditions;

2. showing stability (Fredholm) property for this problem;

3. deriving a numerical method to compute this solution.

The construction of the Dirichlet-to-Neumann operator is intrincate because, on contrary to
homogeneous media, separation of variables can no longer be used and no explicit expression of the
operator can be derived in periodic media. In [16, 8], the authors consider the same problem with
dissipation and construct associated Dirichlet-to-Neumann operator. The construction is already
involved but it is simplified by the fact that the problem is coercive in a classical setting because
of the dissipation. In these previous papers, the authors proposed a limiting absorption process
without mathematical justification and without making the link with the radiation conditions. In
this paper, we consider more general problems and the construction of the DtN operators and the
related results are justified rigorously.

2 Model problem

2.1 Geometry of the propagation domain.

To simplify the presentation, we consider only one periodic outlet at infinity. The extension to
several outlets is straightforward (see Figure 1). For instance, numerical results will be shown in
Section 5 with two outlets. Let us then consider a half-waveguide which is an open connected

Figure 1: Domains with two or three periodic outlets at infinity

domain, unbounded in one direction and bounded in the other directions Ω ⊂ S × (−a,+∞).
A generic point of Ω has coordinates (xs, xd) where xd is the coordinate in the infinite direction
of the waveguide and xs ∈ S ⊂ Rd−1 (d ≥ 2) is the coordinate in the transverse direction. The
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semi-infinite part Ω+ = Ω∩{xd > 0} is L-periodic (Ω+ +L ed ⊂ Ω+). We denote C0 the periodicity
cell of Ω+ which is defined by

C0 = Ω ∩ {0 < xd < L} and Ω+ =
⋃
n∈N

Cn, Cn := C0 + nL ed

For the sequel, we also need to define the infinite unperturbed periodic waveguide

(1) Ω∞ =
⋃
n∈Z

Cn.

In an obvious way, all the interfaces Γn can be identified to Γ0 and all the cells Cn to C0. Accordingly,
with an abuse of notation, any function in Cn will be identified to a function in C0 through
v(xs, xd)→ v(xs, xd− nL). This kind of identification and abuse of notation will be systematically
used in the sequel, even when not necessarily mentioned.

Let Ω0 = Ω \ Ω+ be the remaining part of the propagation domain and Γ0 = Ω ∩ {xd = 0} the
interface between Ω0 and Ω+. Similarly, we shall denote, for n ≥ 1, Γn := Γ0 + nL the interface
between Cn and Cn+1. We assume that Ω has piecewise C1 and Lipchitz continuous boundary.
Along ∂Ω, ν denotes the unit normal vector, outgoing with respect to Ω.

C0

xs

xd

Γ0Ω0

Ω+

Ω = Ω0 ∪ Ω+

Ω∞

Figure 2: The domains Ω, C0 and Ω∞

Remark 2.1. The position of the boundary Γ0, which will serve later for bounding the computational
domain artificially in Section 3, or equivalently the position of the hyperplane xd = 0, is of course
artificial and can be modified provided that the domain Ω+ := Ω \ Ω0 coincides with a part of Ω∞.
Note however that changing Γ0 may also change the periodicity cell C0.

2.2 Setting of the problem and related difficulties

We wish to solve the Helmholtz equation

(2)

−∇ · (A∇u)− ω2 b u = f in Ω

A∇u · ν = 0 on ∂Ω

where the frequency ω belongs to R and
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• the source term f is in L2(Ω) and has a compact support. Without loss of generalities, we
suppose that its support is included in Ω0;

• the medium is characterized by the anisotropy tensor A ∈ (L∞(Ω))d×d) satisfying

∃ 0 < c ≤ C, ∀ ξ ∈ Rd, a. e. x ∈ Ω, c ‖ξ‖2 ≤ (A(x)ξ, ξ) ≤ C ‖ξ‖2,

and the coefficient b that is a L∞-function, positively bounded from below. Both A and b
are L-periodic in Ω+. More precisely

A|Ω+ = Ap|Ω+ , b|Ω+ = bp|Ω+ where ∀ x ∈ Ω∞, Ap(x + L ed) = Ap(x), bp(x + L ed) = bp(x).

The difficulty for solving (2) (from both mathematical and numerical points of view) comes from
frequencies ω such that ω2 lies in the (purely continuous) spectrum σ∞ of the unbounded operator
A∞ in the space L2(Ω∞) defined by

(3)

 D(A∞) = {u ∈ H1(Ω∞), ∇ · (Ap∇u) ∈ L2(Ω∞), Ap∇u · ν|∂Ω∞ = 0},

∀ u ∈ D(A∞), A∞u = − b−1
p ∇ · (Ap∇u),

This operator appears naturally when one deals with the propagation of waves in the purely
periodic waveguide Ω∞ but it will also play a role in our analysis. The set σ∞ is a countable union
of closed segments of R+ that ”go to ∞”. We shall describe it in much more details in Section 2.3,
see (9).

The fact is, when ω2 /∈ σ∞, except for exceptional frequencies, called resonances corresponding to
so-called trapped modes – defined in (28) in Section 2.4 – (2) has a unique solution in H1(Ω) which
is moreover nicely exponentially decaying at infinity (cf. the end of Section 2.3). At the contrary,
when ω2 ∈ σ∞, a solution of (2) cannot be expected to vanish at infinity : one says that waves
propagate up to infinity in the waveguide. Furthermore (2) is not sufficient to define u uniquely.
Even if one considers only bounded solutions, the solution, if it exists, is defined up to some finite
dimensional kernel. That is why a behaviour at infinity, which is no longer a decay condition,
needs to be added : this is the so-called radiation condition. Several radiation conditions can be
used to obtain uniqueness (and hopefully existence) but only one of them is physically relevant
: the outgoing radiation condition. Such a condition is obtained by imposing that the physical
solution should be the one obtained by a limiting absorption procedure. We shall not deal with
this aspect of the theory in this paper so we refer the reader to [8, 10, 19].

Remark 2.2. We have imposed Neumann boundary conditions on ∂Ω but all what we will do can
obviously be extended to any other boundary conditions which satisfy the periodicity properties of the
problem in Ω+. The framework of our method can be used to deal with Maxwell’s or elastodynamic
equations or other wave propagation models, up to specific technical difficulties that could appear in
the analysis.

2.3 The outgoing radiation condition

As explained in the introduction, the question of the radiation conditions has been addressed by
several authors : [10, 19] for periodic waveguides, [15, 8, 19] for periodic half-waveguides , [30, 31]
for general domain with periodic outlets at infinity. In all cases, this radiation condition relies on
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the notion of Floquet modes.

Floquet modes.

Propagating Floquet (or Bloch) modes of the periodic waveguide Ω∞ are functions of the form

(4) w(xs, xd) = Φ(xs, xd) e
ıkxd , where Φ ∈ H1

loc, L-periodic, Φ 6= 0, k ∈
]
− π
L
, π
L

]
which are non trivial solutions of

(5) − b−1
p ∇ · (Ap∇w) = ω2w, in Ω∞, Ap∇w · ν = 0, on ∂Ω∞.

Functions of the form (4) are called k− quasi-periodic. As the reader might anticipate, one cannot
expect to find nonzero functions of the form that are solutions of (5) for any value of k. In fact,
only finitely many values of k are possible. To see that, it is fruitful to exploit, as in [10], the link
between the study propagating Floquet modes and the spectral theory of the operator A∞ defined
in (3).

In the sequel, given û ∈ L2(C0), we shall denote by u ∈ L2
loc(Ω

∞) its periodic extension to Ω∞.
Then, we can define the space H1

per(C0) as the closed subspace of H1(C0) defined by

(6) H1
per(C0) = {û ∈ L2(C0) / ∇u ∈ L2

loc(Ω
∞)}

In the same way, we can define the closed subspace of H(div, C0):

(7) Hper(div, C0) = {v̂ ∈ L2(C0)d / ∇ · v ∈ L2
loc(Ω

∞)}

For simplicity, we shall often use the same notation u for a function defined in C0 and its periodic
extension to Ω∞. In this article, this can be done without any risk of ambiguity.

Next, for any k ∈ ]− π/L, π/L ], we introduce the unbounded operator A∞(k) in L2(C0) defined by

(8)


D
(
A∞(k)

)
=
{
u ∈ H1

per(C0) / Ap(∇− ık ed)u ∈ Hper(div, C0),

Ap(∇− ık ed)u · ν = 0 on ∂C0 ∩ ∂Ω∞
}
,

∀ u ∈ D(A∞(k)), A∞(k)u = − b−1
p (∇− ık ed) · (Ap (∇− ık ed)u),

As a self-adjoint positive operator with compact resolvent, A∞(k) has a discrete spectrum

σ(A∞(k)) = {λn(k), n ∈ N} where lim
n→+∞

λn(k) = +∞

whose associated eigenvectors Φn(·; k) form an orthonormal basis of L2(C0).

The curves in the (k, ω) plane with equation ω2 = λn(k) are called dispersion curves of the infinite
periodic waveguide.

Thanks to the Floquet Theory [23], we know that

(9) σ∞ =
⋃
n∈N

λn(
[
− π
L
, π
L

]
), λn(

[
− π
L
, π
L

]
) = [an, bn], an → +∞.
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Is it easy to see that w defined by (4) is a Floquet mode, i. e. solves (5), if and only if ω2 is an
eigenvalue of A∞(k) and Φ an associated eigenvector. Thus, Floquet modes can exist if and only if,
ω is propagative frequency that is to say ω2 ∈ σ∞. As a consequence, for a propagative frequency
ω, the only possible wavenumber k of a Floquet mode must belong to the set of the propagative
wavenumbers

(10) K(ω) := {k ∈ ]− π/L, π/L] / ∃n ∈ N, λn(k) = ω2} ( 6= ∅ by (9) ).

It is kwown that the set K(ω) is finite. For k ∈ K(ω) fixed, the Floquet modes at the frequency ω
which are k−quasi-periodic, form a finite dimensional vector space, namely

(11) F(ω, k) :=
{
w(xs, xd) = Φ(xs, xd; k) eıkxd , Φ(·, k) ∈ Ker (A∞(k)− ω2)

}
.

One shows easily that if w is in F(ω, k) then w is in F(ω,−k) which implies that the set K(ω)
is symmetric with respect to the origin. Let us now denote F(ω) the space spanned by all the
k−quasi-periodic Floquet modes when k describes K(ω)

(12) F(ω) :=
⊕

k∈K(ω)

F(ω, k) is finite dimensional

By construction, any function in F(ω) solves (5) and if w ∈ F(ω), w ∈ F(ω) too. When ω2 is not
in the spectrum σ∞, there is no propagative mode and we shall set F(ω) = {0}.

Energy flux of Floquet modes : left-going and right-going modes.

The energy flux of a function w in F(ω) is defined as

(13) q(w,w) = Im

∫
xd=a

(
Ap∇w · ed

)
w dxs

where, as any w ∈ F(ω) solves (5) the integral is independent of a (Green’s formula). Moreover,

(14) ∀w ∈ F(ω), q(w,w) = −q(w,w).

Of course w 7→ q(w,w) defines a quadratic form on F(ω) to which we can associate a hermitian
sesquilinear form (in the spirit of [32])

(15) ∀ (w, w̃) ∈ F(ω)2, q(w, w̃) =
1

2
Im

∫
xd=a

((
Ap∇w · ed

)
w̃ dxs +

(
Ap∇w̃ · ed

)
w
)
dxs.

On the other hand, one easily sees that the L2-inner product in C0

(16) (w, w̃)C0 :=

∫
C0
bpw w̃ dx

defines a scalar product in F(ω) and we can introduce the self-adjoint operator Q ∈ L
(
F(ω)

)
defined by

(17) ∀ (w, w̃) ∈ F(ω)2, (Qw, w̃) = q(w, w̃).

Of course, Q is diagonalizable in an orthonormal basis of F(ω) and if w is a normalized eigenvector,
the corresponding eigenvalue is λ = q(w,w). Then, as a consequence of (14), we see that the
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number of strictly positive eigenvalues of Q equals the number of its strictly negative eigenvalues.
Even more, if w is an eigenvector associated to λ, w is an eigenvector associated to −λ.

Let us now define the so-called cut-off frequencies or thresholds as the frequencies for which one
of the propagating Floquet mode has a null energy flux. More precisely, this set of frequencies,
denoted σth, is defined by

(18) σth = {ω2, ∃ w satisfying (4− 5) / q(w,w) = 0}.

In [10], this set is shown to be a discrete subset of σ∞ : it correspond to the values of λn(k) at the
points k where the slope of the dispersion curves k ∈ R 7→ λn(k) is horizontal.

If ω2 is not in σth, we deduce from what preceeds that 0 is not an eigenvalue of Q. As a
consequence, the dimension of F(ω) is 2N(ω) where N(ω) is the number of strictly positive
eigenvalues of Q and we can write the orthogonal decomposition

(19) F(ω) = F+(ω)⊕F−(ω), F±(ω) := span {w ∈ F(ω), ± q(w,w) > 0}

We can introduce an orthonormal basis (for the scalar product (16)) of F+(ω) (resp. F−(ω)) made
of eigenfunctions of Q associated to strictly positive (resp. strictly negative) eigenvalues of Q

(20) F±(ω) = span {w±1 , . . . , w±N(ω)} with ± q(w±j , w±j ) > 0, and w+
j = w−j .

Let us mention that by the definition (17) of Q, the eigenfunctions satisfy the so-called bi-
orthogonality relations

(21) ∀j 6= `, q(w+
j , w

+
` ) = 0 and q(w−j , w

−
` ) = 0.

To each w±j ∈ F±(ω), we can associate a wavenumber ± kj ∈ K(ω) and an index nj such that

(22) λnj(±kj) = ω2 and w±j = Φnj(·;±kj) e±ikjxd ,

Moreover, in [10], it is shown that q(w±j , v) = ±λ′nj(±kj).

The w+
j (resp. he w−j ) are called the right propagating (resp. left propagating) modes. Finally, for

all k ∈ K(ω), the space F(ω, k) defined in (11) is described by

(23) F(ω, k) = span{w+
j , kj = k} ⊕ span{w−j , −kj = k}

The outgoing radiation condition and related boundary value problem.

Let us define now the operator

(24) A = − b−1∇ · (A∇·), D(A) = {u ∈ H1(Ω), ∇ · (A∇·) ∈ L2(Ω), A∇u · ν
∣∣
∂Ω

= 0}

We can now define the radiation condition for Problem (2).

Definition 2.1. A solution u of (2) satisfies the outgoing radiation condition iff there exist

• (w, α) ∈ H1(Ω+)× R+
∗ such that eαxd w ∈ H1(Ω+),

• N(ω) complex numbers { a+
1 , . . . , a

+
N(ω) } such that
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(25) u = w +

N(ω)∑
j=1

a+
j w

+
j in Ω+

The above radiation condition means that, in a certain sense, u is exponentially close, when
xd → +∞ to a linear combination of outgoing modes

N(ω)∑
j=1

a+
j w

+
j .

For this reason, and for simplicity of the notation, the above radiation condition will be rewritten

(26) u ∼
xd→+∞

N(ω)∑
j=1

a+
j w

+
j .

We can now define the correct version of the problem we wish to investigate which consists in
looking for u ∈ H1

loc(Ω) such that

(27)



−∇ · (A∇u)− ω2 b u = f in Ω, (i)

A∇u · ν = 0 on ∂Ω, (ii)

∃ (a+
1 , . . . , a

+
N(ω)) ∈ CN(ω) such that u ∼

xd→+∞

N(ω)∑
j=1

a+
j w

+
j . (iii)

Note that when ω2 /∈ σess, N(ω) = 0 and the condition (27)(iii) is nothing but a condition of
exponential decay at infinity.

2.4 About the well-posedness of the problem

The problem (27) is well defined for ω2 /∈ σth. However, to show its well posedness, one needs to
exclude other frequencies called resonances and associated to the possible existence of trapped
modes. This set σres is defined via an eigenvalue problem (the homogeneous version of (2)).

(28)

∣∣∣∣∣∣∣∣∣
ω2 ∈ σres ⇐⇒ ∃ v 6= 0 ∈ H1(Ω) such that{

−∇ · (A∇v)− ω2 b v = 0 in Ω

A∇v · ν = 0 on ∂Ω

Roughly speaking, the associated trapped modes v are confined in a neighborhood of Ω0.

Remark 2.3. By using analytic Fredholm theory (Steinberg’s theorem) (mimicking for instance
the approach of [15] for the half-waveguide problem), it is possible to show that the set of resonances
σres is discrete in R \ σth.

We can now state the uniqueness result for (27).

Theorem 2.4. If ω2 /∈ σres ∪ σth, the solution of (27) is unique.
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Proof. For the ease of the reader, we give the proof of the uniqueness result that exploits the
properties of the energy fluxes of the Floquet modes explained in Section 2.3. Let us consider a
solution u of (27) with f = 0 . Multiplying (27)- (i) by u, integrating in ΩR = Ω ∩ {xd < R} for
R > 0, applying twice Green’s formula and using that u satisfies also (27)-(i) with f = 0 in ΩR,
one gets ∫

xd=R

Ap∇u · ed u dxs = 0

As u satisfies the radiation condition, it can be rewritten as in (25) and we deduce that

N(ω)∑
j=1

|a+
j |2 q(w+

j ) +

N(ω)∑
n=1

Im

∫
xd=R

Ap∇w · ed a
+
j w

+
j ds+

N(ω)∑
n=1

Im

∫
xd=R

Ap∇(a+
j w

+
j ) · edw ds

+ Im

∫
xd=R

Ap∇w · edw ds = 0

As w is exponentially decaying at infinity, the three last terms of the equality tend to 0 when R
tends to infinity. We end up with

N(ω)∑
n=1

|a+
j |2 q(w+

j ) = 0

where q(w+
j ) > 0 by definition of the right propagating modes w+

j . This implies that a+
j = 0 for all

n. So u = w ∈ H1(Ω) is solution of (27) with f = 0. As ω2 /∈ σres, this implies that u = 0.

The existence result is not as easy to prove. Thanks to the above uniqueness result, it suffices to
prove that the problem is equivalent to (or can be reduced to) a Fredholm type problem. Using
the Kondratiev’s theory, the framework of weighted Sobolev spaces and Fredholm’s alternative, it
was proven in [30, 31] that (27) is well posed for ω2 /∈ σres ∪ σth. As this proof is not constructive,
one can hardly see how it can lead to a numerical method. The DtN approach that we shall
develop in this paper, precisely aims at giving a numerical method and a by-product is that it is
an alternative proof of the existence result for (27) : see Theorem 3.8, Section 3.2.

3 Reduction to a bounded domain

The objective of the next two sections, which are the main sections of the article is to provide a
problem posed in the domain Ω0 (cf. Section 2.1 and Figure 2) which is equivalent to the problem
in the sense that it provides, under the assumptions of Theorem 2.4 the restriction to Ω0 of the
solution of (27). The idea is to replace the presence of the half-waveguide Ω+ by a boundary
condition, called transparent condition, on the artificial boundary Γ0. Moreover, as a by-product,
we shall provide a method that allows us to reconstruct the solution in the infinite half-waveguide
Ω+.

There are many ways to write a transparent condition. In the spirit of what was done in [16] for
the dissipative case we shall look for a transparent condition of DtN form, namely of the form

(29) A∇u · ed + Λu = 0,

where Λ is a Dirichlet-to-Neumann (DtN) operator, that maps H1/2(Γ0) into H−1/2(Γ0), and
requires to be appropriately defined.
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In the recap on the mathematical analysis of problem (27), we were led to exclude two particular
sets of values of the frequency ω that correspond to real physical obstructions to the existence
and uniqueness of the solution of (27), namely

• the thresholds frequencies ω2 ∈ σth, see (18) that are only related to the purely periodic
waveguide Ω∞. We recall that σth is discrete.

• the resonances are associated to so-called trapped modes which depend on the material and
the geometrical properties of Ω and more precisely of the bounded region where the perturbed
half-waveguide Ω differs from the periodic waveguide Ω∞ : these correspond to ω2 ∈ σres.
This is again a countable set which can be empty and generally expected to be finite (even
though we are not aware on mathematical results in this direction).

For the presentation of the DtN method, we shall be led to exclude two additional, but artificial
set of frequencies, namely, by order of their apparition in the forthcoming section

• the edge resonances ⇐⇒ ω2 ∈ σ+
edge (see (32, 33)): these are associated to edge states which

are the equivalent, for the half-waveguide problem with Dirichlet condition on Γ0, of the
resonances for the original problem (2). The set σ+

edge is again countable and generally
expected to be finite.

• the Dirichlet cell frequencies ⇐⇒ ω2 ∈ σcell (see (60, 61)). These correspond to the case
where ω2 cöıncides with one of the eigenvalues of the ”Dirichlet” problem posed in the unit
cell C0 : they form a sequence tending to +∞.

Contrary to σres and σth, the sets σ+
edge and σcell are artificial in the sense that they do not come

from the physics of the original problem but are linked to the method that we have chosen to
achieve the reduction to a bounded domain, in our case the DtN method. These are typically
the equivalent of the famous interior eigenvalues that appear when one wants to solve a classical
obstacle (Dirichlet) scattering problem in a homogeneous medium by an integral equation approach
using a single layer potential. To emphasize this fact, we have used the bold letter σ for the two
sets σres and σth.

As it will be seen in Section 3.1, the exclusion of these artificial frequencies is required to develop
the rigorous theory but this is not a real problem in practice since one avoids these frequencies
when changing the position of the artificial boundary Γ0 (see also Assumption A, Section 3.1 and
Remark 4.2) .

Alternative solutions are Neumann-to-Dirichlet (NtD) (resp. Robin-to-Robin (RtR)) transparent
conditions. In the case of dissipative media, these as presented in [8] for the NtD method and [9]
for the RtR one (see also Remark 3.2). Note that the artificial frequencies for the NtD method are
a priori different from the ones for the DtN method. They even do not exist anymore if one uses
the RtR (Robin to Robin) method (cf. Remark 3.2 again). We have chosen to present the DtN
method essentially for the simplicity of its exposition and of its implementation, in particular with
respect to the RtR method.

3.1 The half-waveguide problem and definition of the DtN operator

Considering the problem (27) and since the source term f is supported inside Ω0, in order to
characterize the restriction to Ω+ of the solution u of (27), it is natural to introduce the following

11



Dirichlet half-waveguide problem, with data ϕ ∈ H1/2(Γ0)

(30)



−∇ · (Ap∇u+)− ω2 bp u
+ = 0 in Ω+, (i)

Ap∇u+ · ν = 0 on ∂Ω+ ∩ ∂Ω, (ii)

u+ = ϕ on Γ0, (iii)

∃ (a+
1 , . . . , a

+
N(ω)) ∈ CN(ω) such that u ∼

xd→+∞

N(ω)∑
n=1

a+
j w

+
j . (iv)

Assuming that (30) is well-posed, it is clear that, provided that ϕ is the trace of u on Γ0, i.e.
ϕ = u|Γ0 , then u = u+(ϕ) in Ω+. From the continuity of u and Ap∇u · ed across Γ0 we deduce
that u satisfies the DtN condition (29) provided that the operator Λ is defined by

(31) ∀ϕ ∈ H1/2(Γ0), Λϕ := −A∇u+(ϕ) · ed

∣∣
Γ0

∈ H−1/2(Γ0).

In order that (30) is well posed, we need to exclude a (possibly empty) set of parasitic frequencies,
denoted σ+

edge, which is related to the eigenvalue problem

(32)


−∇ · (Ap∇v+)− ω2 bp v

+ = 0 in Ω+,

Ap∇v+ · ν = 0 on ∂Ω+ ∩ ∂Ω,

v+ = 0 on Γ0.

The set σ+
edge is then defined as

(33) σ+
edge = {ω2 ∈ R, ∃ v+ ∈ H1(Ω+), v+ 6= 0 satisfying (32)}.

In the literature, the set σ+
edge is often called the set of edge-resonances (see [17, 34] for instance).

The associated trapped modes are confined in a neighborhood of the boundary Γ0. According, to
[15], the set σ+

edge is discrete in R+ \ σth.

Remark 3.1. Assume the periodicity cell satisfies x + L
2

ed ∈ C0 ⇔ −x + L
2

ed ∈ C0 and the
coefficients Ap and bp have similar symmetry properties :

(34) Ap

(
x + L

2
ed

)
P = PAp

(
− x + L

2
ed

)
, and bp

(
x + L

2
ed

)
= bp

(
− x + L

2
ed

)
where P is the linear involution (symmetry) in Rd such that Pei = ei for i < d, Ped = −ed. Then
using a symmetry argument, it can be shown that the set of edge resonances is empty (this is linked
to the absence of the point spectrum of the periodic operator A∞, proven in [29, 38, 11]). Moreover,
in that case, the proof of Theorem 3.3 becomes straightforward thanks to the image principle.

Remark 3.2. The assumption ω2 /∈ σedge is exclusively linked to the introduction of the Dirichlet-
to-Neumann operator defined thanks to the half-waveguide problem with a Dirichlet boundary
condition (u+ = ϕ). This can be avoided by introducing instead Robin-to-Robin transparent
boundary conditions that have the form

(35) (Ap∇u · ν + ıαu) + Λr(Ap∇u · ν − ıαu) = 0.

with typically α = ω. The corresponding half-guide problem is of the same type than before with the
Dirichlet boundary condition on Γ0 replaced by a Robin boundary conditions(Ap∇u+ ·ν+ ıαu+ = ϕ).
For α > 0, the corresponding operator has no discrete spectrum.
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Let us now study the well-posedness of the half-waveguide problem (30). We shall follow the
approach of [19], that itself was based on the ideas of [15]. Their result were proven for Ap = 1 but
its extension to Ap non constant does not pose any additional difficulty. Both papers conclude
to the well-posedness of (30) except for a countable set of frequencies. The result [19] was more
precise than the one of [15] in the sense that it identified the set of frequencies to be excluded to
the set σ+

edge. However, by a thorough investigation in the proof of [19], we found a small mistake :
correcting this mistake leads to exclude also another set of frequencies, as we explain now.

This leads us to introduce the second half-waveguide Ω− which is the complement of Ω+ in the
whole periodic domain Ω∞, unbounded in the direction xd < 0:

Ω− :=
{
x ∈ Ω∞ / xd < 0

}
(remember that Ω+ :=

{
x ∈ Ω∞ / xd > 0

}
)

Similarly to σ+
edge, we introduce the set σ−edge associated with the half-waveguide Ω−

σ−edge = {ω2 ∈ R, ∃ v− ∈ H1(Ω−), v− 6= 0 satisfying (36)}

(36)


−∇ · (Ap∇v−)− ω2 bp v

− = 0 in Ω−,

Ap∇v− · ν = 0 on ∂Ω− ∩ ∂Ω∞,

v− = 0 on Γ0.

Again, the set σ−edge is discrete in R+ \ σth ([15]). Note that, except if the symmetry conditions of

Remark 3.1 are satisfied, the sets σ+
edge and σ−edge have no reason to coincide !

We can now state a first result about (30). In the following, σedge := σ+
edge ∪ σ

−
edge.

Theorem 3.3. If ω2 /∈ σedge∪σth, for any ϕ ∈ H1/2(Γ0), there exists a unique solution u+ = u+(ϕ)
in H1

loc(Ω
+) of (30). Moreover, for any compactly supported C∞ function χ, the application

ϕ→ χu+(ϕ) is continuous from H1/2(Γ0) in H1(Ω+).

Proof. For the uniqueness, the proof is very similar to the one of the Theorem 2.4 and will not be
detailed here. Simply note that one has to use that ω2 /∈ σ+

edge in order to conclude.

For the existence, the proof, adapted from [15, 19] consists in reducing the resolution to a
clever combination of two type of well-posed problems namely

• Homogeneous coercive Dirichlet half-waveguide problems

(37) −∇ · (Ap∇u+
1 ) + ω2 bp u

+
1 = 0 in Ω+, u+

1 = g on Γ0, u+
1 ∈ H1(Ω+)

for a given g ∈ H1/2(Γ0).

• Non-homogeneous full waveguide time harmonic problems

(38) −∇ · (Ap∇u2)− ω2 bp u2 = f in Ω∞, u2 is outgoing, u2 ∈ H1
loc(Ω

∞)

for a given f ∈ L2
1(Ω∞) := {w ∈ L2

loc(Ω
∞) / (1 + x2

d)
1
2 w ∈ L2(Ω∞)}.

Here saying that u2 is outgoing refers to radiation conditions for xd → −∞ and xd → +∞ :

(39) ∃ (a±1 , . . . , a
±
N(ω)) ∈ CN(ω) such that u ∼

xd→±∞

N(ω)∑
j=1

a±j w
±
j .
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In (37) and (38) and all the problems that appear in this proof, Neumann boundary conditions are
imposed on ∂Ω∞. The idea is then to construct the solution u+ of (30) as a difference of solutions
of such problems :

(40) u+ := u2|Ω+ − u+
1 ∈ H1

loc(Ω
+),

where the data (g, f) remain to be specified. We observe that

(i) Thanks to the (well known) exponential decay of u+
1 when xd → +∞, the function u+ is

automatically outgoing when xd → +∞.

(ii) From (37-38), we see that −∇· (Ap∇u+)−ω2 bp u
+ = f−2ω2 bp u

+
1 in Ω+. As a consequence,

in order that u+ be solution of (30), we must have

(41) f = 2ω2 bp u
+
1 in Ω+,

which is compatible with f ∈ L2
1(Ω) thanks again to the exponential decay of u+

1 .

Defining f in Ω− is somewhat arbitrary and several choices are possible (see Remark 3.4).
Let us follow the choice made in [19] that, by symmetry with respect to the construction of
f in Ω+, consists in taking

(42) f = 2ω2 bp u
−
1 in Ω−,

where u−1 solves the homogeneous coercive Dirichlet half-waveguide problem

(43) −∇ · (Ap∇u−1 ) + ω2 bp u
−
1 = 0 in Ω−, u−1 = g on Γ0, u−1 ∈ H1(Ω−).

(iii) It remains to play on the boundary data g in order to ensure the Dirichlet condition which
leads to u2 − u+

1 = ϕ on Γ0. This last step gives us an equation satisfied by g.

Let us put some formalism around the above description. We denote S1 ∈ L
(
H1/2(Γ0), L2

1(Ω∞)
)

the solution operator associated to (37) in Ω+ and to (43) in Ω−, more precisely

(44) ∀ g ∈ H1/2(Γ0), S1 g := u+
1 (sol. of (37)) in Ω+, S1 g := u−1 (sol. of (43)) in Ω−.

Let S2 ∈ L
(
L2

1(Ω∞), H1
loc(Ω

∞)
)

and T2 ∈ L
(
L2

1(Ω∞), H1/2(Γ0)
)

be respectively the solution operator
associated to (38) and its composition with the trace operator on Γ0. In other words

(45) ∀ f ∈ L2
1(Ω∞), S2 f := u2, T2 f := S2 f |Γ0 where u2 is the solution (38).

Let us recall that the fact that S2 is well defined follows from known results for the full waveguide
problem when ω2 /∈ σth (see for instance [15, 10, 19]). Moreover, for any compactly supported
function χ, the map f → χS2 f is continuous from L2

1(Ω∞) in H1(Ω∞). It also follows from the
above references.

Finally, we introduce T ∈ L
(
H1/2(Γ0)

)
defined by

(46) T := T2 ◦B ◦ S1, where B ∈ L(L2
1(Ω∞)) is the operator of multiplication by −2ω2 bp.
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a). We now set u1 := S1g, by (41, 42) and u1|Ω± = u±1 , f = B u1 = B S1g. Thus u2 = S2f =
S2B S1g. Therefore, (iii) means that looking for u+ in the form (40) leads to solve the problem

(47) Find g ∈ H1/2(Γ0) such that g − T g = ϕ

b). Reciprocally, reproducing the above approach and calculations in the opposite sense, one easily
checks that if g is solution of (47), then u+ := S2B S1g|Ω+ − S1 g|Ω+ is solution of (30). In other
words, the existence of g yields the existence of u+.

The analysis of (47) results from the following next two steps and Fredholm’s alternative :

Step 1 : T is compact. Let (gn)n be a bounded sequence in H1/2(Γ0). By continuity of the
operator BS1, vn := BS1gn is bounded in L2

1(Ω∞). Let us introduce the open and bounded subsets
of Ω∞, Kδ := Ω∞ ∩ {−δ ≤ xd ≤ δ}, which contain Γ0 for any δ > 0, S2 ∈ L

(
L2

1(Ω
∞), H1

loc(Ω
∞)
)
,

wn := S2B S1gn is bounded in H1(Kδ). Let us set Wn = χ∇wn where χ ∈ C∞(R) such that
χ(xd) = 1 for |xd| < δ/2 and χ(xd) = 0 for |xd| > δ. As ∇×Wn = ∇χ×∇wn, we deduce that
(Wn)n is a bounded sequence in the Hilbert space (implicitly equipped with the natural graph norm)
H(rot, Kδ) = {v ∈ L2(Kδ)

d, ∇ × v ∈ L2(Kδ)
d}. Let us also introduce H(div,Ap, Kδ) = {v ∈

L2(Kδ)
d,∇· (Apv) ∈ L2(Kδ)}, again a Hilbert space for its graph norm. From (38), we deduce that

(Wn)n is a bounded sequence of H0(div,Ap, Kδ) := {v ∈ H(div, Kδ), Ap(x) v · ν = 0 on ∂Kδ}. We
can now use a compactness result for vector fields, which is well-known from the theory of Maxwell’s
equations (see [1, Theorem 8.1.1] for instance): the embedding H(rot, Kδ) ∩H0(div,Ap, Kδ) ⊂
L2(Kδ)

d is compact. Thus, up to the extraction of a subsequence, (Wn)n converges in L2(Kδ)
which implies, since χ = 1 in Kδ/2, that (∇wn)n converges in L2(Kδ/2). Up to another subsequence
extraction, we conclude that (wn)n converges in H1(Kδ/2). Since, by definition of T , Tgn = wn|Γ0 ,
the convergence of (Tgn)n in H1/2(Γ0) follows from the trace theorem.

Step 2 : uniqueness for (47). Suppose that g ∈ H1/2(Γ0) is such that g − T g = 0. Then,
as already mentioned, see point b) above, u+ := S2(B S1g)|Ω+ − S1 g|Ω+ is solution of (30) with
u+|Γ0 = 0. By uniqueness for (30) (since ω2 /∈ σedge), u

+ = 0, thus S2(B S1g) = S1 g in Ω+.

Symmetrically (we omit the details) u− = S2(B S1g)|Ω−−S1 g|Ω− is solution of the ”same” problem
that (30) but in Ω−: apart from changing Ω+ into Ω−, the w+

j must be changed into the w−j in the
radiation condition (iv). Then, because ω2 does not belong to σ−edge (this is what was omitted in
[19]) we can conclude that u− = 0, in other words that S2(B S1g) = S1 g in Ω−.

Thus, setting v := S2(B S1g), we have shown that v = S1 g. From the definition (44) of S1, we
deduce that v± = v|Ω± satisfies, cf. (37, 43)

(48) −∇ · (Ap∇v±) + ω2 bp v± = 0 in Ω±, v± ∈ H1(Ω±).

On the other hand, from the definition (45) of S2, we know, see (38), that

(49) v ∈ H1
loc(Ω

∞), ∇ · (Ap∇v) ∈ L2
loc(Ω

∞).

Joining (48) and (49), we deduce that v ∈ H1(Ω∞) and −∇ · (Ap∇v) + ω2 bp v = 0 in Ω∞. Thus
v = 0, then S1 g = 0 and finally, again by definition of S1, g = (S1 g)|Γ0 = 0.

The continuity property of u+(ϕ) follows from the existence proof (this is left to the reader).
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Remark 3.4. There are of course infinitely many possible ways for extending f in such a way that
f still depends linearly on g, leading to an alternative definition of the operator S1. The simplest
choice would be, for instance f |Ω− := S1g|Ω− = 0. The rest of the proof would be the same, the
difference concerning only the uniqueness result of Step 2, which would leads values of ω2 inside a
new set of resonances, a priori different from σ−edge.

The result of Theorem 3.3 is somewhat frustrating because, if the exclusion of the set σ+
edge is

obviously needed, the set σ−edge of edge resonances for the half-waveguide Ω− should not have any
influence on the existence result for the problem posed in Ω+. Its exclusion is artificial : it is
clearly a technical artefact due to the method of proof (see also Remark 3.4).

In the following, we propose an attempt to avoid the exclusion of σ−edge. The idea is that, if we
move the position of the interface between Ω− and Ω+, the corresponding edge resonances should
move accordingly, a fact that we could then exploit. To express this in more mathematical terms,
let us introduce for a ∈ [0, L)

(50) Ω−a :=
{
x ∈ Ω∞ / xd < a

}
, Ω+

a :=
{
x ∈ Ω∞ / xd > a

}
,

to which we can associate (in an obvious manner that does not need to be detailed) two set of
edges resonances σ±edge(a). Our new result will rely on the following:

Assumption A : ∀ ω ∈ R+, there exists a ∈ [0, L) such that ω2 /∈ σedge(a) := σ+
edge(a) ∪ σ−edge(a).

Even though we did not prove it, we are convinced that the above assumption always holds.

Conjecture C : The property of Assumption A is always satisfied.

Theorem 3.5. Under assumption A, if ω2 /∈ σ+
edge ∪ σth, for any ϕ ∈ H1/2(Γ0), there exists a

unique solution in H1
loc(Ω

+) of (30) which depends continuously on ϕ as in Theorem 3.3.

Proof. The only difference with Theorem 3.3 is that we claim that Problem (30) is also well-posed
for ω2 ∈ σ−edge. Indeed, if ω2 ∈ σ−edge, from Assumption A, we know that there exists a ∈ [0, L) such
that ω2 /∈ σedge(a). By Theorem 3.3, the half-waveguide problem (30) set in Ω+

a is well posed. In
consequence, we can define a corresponding DtN operator that we denote here Λa. Then the result
will appear as a particular case of Theorem 3.8 (see Remark 3.9).

3.2 Reduction of the problem in a bounded domain and analysis

In this section, we use the DtN method to analyze the problem (27). Of course, under assumption
A, without loss of generality, we can assume that the position of Γ0 is chosen in such a way
that ω2 /∈ σedge so that, according to Theorem 3.5, the DtN operator Λ is well defined by (31).
According to the previous section, it is now natural to consider the problem posed in Ω0

(51)


−∇ · (A∇u0)− ω2 b u0 = f in Ω0,

A∇u0 · ν = 0 on ∂Ω0 \ Γ0,

A∇u0 · ed + Λu0 = 0 on Γ0.

The problem (51) is ”equivalent” to the original problem (27) in the sense of the following lemma
whose (obvious and standard) proof is left to the reader.
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Lemma 3.6. If u is solution of (27), then u0 := u|Ω0 is solution of (51). Reciprocally, if u0 := u|Ω0

is solution of (51) then the function u defined in Ω by:

(52) u|Ω0 = u0, u|Ω+ = u+(ϕ) with ϕ := u0|Γ0 ,

is solution of (27).

As a consequence of this lemma, the well posedness of (27) is reduced to the one of (51). The
variational formulation of (51) is given by

(53)

a0(u0, v) =

∫
Ω0

f v dx, ∀v ∈ H1(Ω0),

with a0(u, v) =

∫
Ω0

(
A∇u · ∇v − ω2 b u v

)
dx+

〈
Λ
(
u|Γ0

)
, v|Γ0

〉
Γ0
,

where, here and in the rest of the paper, 〈·, ·〉Γ0 denotes the duality product between H−1/2(Γ0) and
H1/2(Γ0). By Riesz theorem, there exists A0 ∈ L

(
H1(Ω0)

)
such that a0(u, v) = (A0 u, v)H1 , with

(·, ·)H1 the usual scalar product in H1(Ω0). Thus, the resolution of (51) relies on the invertibility
of A0.

Lemma 3.7. The operator A0 ∈ L
(
H1(Ω0)

)
is the sum of a coercive operator A+

0 and a compact
operator K0.

Proof. Of course, the decomposition of A0 relies on the one of a0. The only non trivial point is
the decomposition of the bilinear form associated to the DtN operator, namely 〈Λϕ, ψ〉Γ0 .

Let (ϕ, ψ) ∈ H 1
2 (Γ0)

2. Let us multiply by χu+(ψ) the equation (30) satisfied by u+(ϕ), where
χ(xd) is a smooth positive 1D function with support in [0, 1) such that χ = 1 in [0, 1/2]. Integrating
the result over Ω+ and using Green’s formula, we obtain

(54)

〈Λϕ, ψ〉Γ0 =

∫
Ω+

χ∇u+(ϕ) · ∇u+(ψ) dx+

∫
Ω+

(
∇χ · ∇u+(ϕ)

)
u+(ψ) dx

− ω2

∫
Ω+

χ b u+(ϕ)u+(ψ) dx

which suggests to decompose a0(u, v) = a+
0 (u, v) + k0(u, v) with

a+
0 (u, v) :=

∫
Ω0

(
A∇u · ∇v + ω2 b u v

)
dx+

∫
Ω+

χ∇u+(u|Γ0) · ∇u+(v|Γ0) dx dx

k0(u, v) :=

∫
Ω+

(
∇χ · ∇u+(u|Γ0)

)
u+(v|Γ0)− ω2

∫
Ω+

χ b u+(u|Γ0)u
+(v|Γ0) dx− 2ω2

∫
Ω0

b u v dx.

Let A+
0 and K0 the bounded operators in H1(Ω0) respectively associated to a+

0 (u, v) and k0(u, v)
through Riesz theorem. Since a+

0 (u, v) is coercive, A+
0 is coercive.

It remains to prove that K0 is compact. It suffices to prove that, if (un, vn) converge weakly to (u, v)
in H1(Ω0), then, up to the extraction of a subsequence, k0(un, vn) converges to k0(u, v). Indeed, if
un converges weakly to u, by continuity of K0, vn := K0un converges weakly to v := K0u and

‖K0(un − u)‖2
H1 = k0(un − u, vn − v) −→ 0.
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Since (un, vn) are bounded in H1(Ω0), by Rellich theorem, we can assume that (un, vn) converge
strongly to (u, v) in L2(Ω0). As a consequence

(55) −2ω2

∫
Ω0

b un vn dx −→ −2ω2

∫
Ω0

b u v dx

By the trace theorem, ϕn := un|Γ0 and ψn := vn|Γ0 converge weakly in H
1
2 (Γ0) towards ϕ := u|Γ0

and ψ := v|Γ0 . From Theorem 3.5, the map ϕ→ u+(ϕ)
∣∣
C0

is continuous from H1/2(Γ0) in H1(C0)

so that u+(ϕn)
∣∣
C0

and u+(ψn)
∣∣
C0

are bounded in H1
(
C0

)
(as defined in (50)), up to an extraction,

we have

u+(ϕn)
∣∣
C0
→ u+(ϕ)

∣∣
C0
, u+(ψn)

∣∣
C0
→ u+(ψ)

∣∣
C0
, weakly in H1

(
C0

)
and strongly in L2

(
C0

)
Since χ is adequately compactly supported, by weak-strong convergence arguments,

(56)

∫
Ω+

(
∇χ · ∇u+(ϕn)

)
u+(ψn) dx −→

∫
Ω+

(
∇χ · ∇u+(ϕ)

)
u+(ψ) dx

ω2

∫
Ω+

χ b u+(ϕn)u+(ψn) dx −→ ω2

∫
Ω+

χ b u+(ϕ)u+(ψ) dx

The conclusion easily follows from (55), (56) and the definition of k0(u, v).

Theorem 3.8. Under assumption A, if ω2 /∈ σres∪σth, the problem (27) admits a unique solution.

Proof. According to Lemma 3.6, we simply need to show the well-posedness of (51), and by Lemma
3.7 and Fredholm’s alternative, we simply need to prove the uniqueness of the solution of (51).

Let u0 be a solution (51) for f = 0. By Lemma 3.6, the function u given by (52) is solution of (27)
for f = 0, Thus by the uniqueness theorem 2.4, u = 0, thus u0 = u|Ω0 = 0.

Remark 3.9. The approach of this section (Lemmas 3.6 and 3.7 and Theorem 3.8) can clearly
be used for proving Theorem 3.5. Even though it is somewhat paradoxal and fussy, it suffices to

see the domain of Ω+ as the union of Ω+ \ Ω
+

a and the half-waveguide Ω+
a , where a is such that

ω2 /∈ σedge(a) so that the DtN operator for Ω+
a is well-defined! More precisely, it suffices to make

the substitutions

Ω0 becomes Ω+ \ Ω
+

a , Ω+ becomes Ω+
a , σres becomes σ+

edge.

The only remaining difference is the boundary condition on Γ0 (seen here as a part of ∂Ω+) which
is a non homogeneous Dirichlet condition instead as a homogeneous Neumann condition. However,
the reader will easily convince himself that this has no influence on the proof.

4 Construction of the DtN operator

In this section, we use the DtN method to build a numerical method for solving (27). We consider
that the artificial boundary Γ0, hence the domain Ω+, is imposed. Thus we have to assume that

(57) ω2 /∈ σ+
edge.
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4.1 Structure of the solution

Theorem 4.1. If ω2 /∈ σ+
edge ∪ σth, let u+(ϕ) be the unique solution of (30) and P ∈ L(H1/2(Γ0))

be the operator defined by

(58) ∀ϕ ∈ H1/2(Γ0), P ϕ := u+(ϕ)
∣∣
Γ1
.

where we have identified H1/2(Γ1) ≡ H1/2(Γ0). This operator is compact and its spectral radius is
less or equal than 1. Moreover,

(59) ∀ ϕ ∈ H1/2(Γ0), ∀ x ∈ Ω+, ∀n ∈ N, u+(ϕ)(x + nL ed) = u+(Pnϕ)(x).

Proof. Let us first show (59). Let us introduce for ϕ ∈ H1/2(Γ0), the function v defined by
v(x) = u+(ϕ)(x + L ed). By periodicity of Ap and bp, it is easy to show that v satisfies (30)(i) and
(ii). By definition of P , v satisfies the Dirichlet boundary conditions on Γ0

v = P ϕ on Γ0.

As u+(ϕ) satisfies the radiation conditions, by Definition 2.1, there exists w ∈ D(A) such that
∃ α > 0, eαxd w ∈ H1(Ω+), a+

1 , . . . , a
+
N(ω) ∈ C such that

u = w +

N(ω)∑
j=1

a+
j w

+
j ,

where by (22), w+
j is kj-quasi-periodic. We deduce that

v(x) = w(x + L ed) +

N(ω)∑
j=1

a+
j e

ıkjLw+
j (x),

in other words v satisfies also the radiation condition (30)(i) . Since v = P ϕ on Γ0, one then
deduces (see Theorem 3.5) that v = u+(P ϕ) and thus

∀ϕ ∈ H1/2(Γ0), ∀ x ∈ Ω+, u+(ϕ)(x + L ed) = u+(Pϕ)(x).

By induction, it is then clear that (59) holds.

Let us now show that P ∈ L(H1/2(Γ0)) is a compact operator. In the case Ap(x) = I, this appears
as a consequence of an interior elliptic regularity result. In the general case, the proof is a little bit
more elaborate but uses the arguments as in the proof of Theorem 3.5 (Step 2). We show that, for
any bounded sequence (ϕn)n of H1/2(Γ0), the sequence (Pϕn)n admits a converging subsequence in
H1/2(Γ0). Indeed, for such a sequence, u+(ϕn) is bounded in H1(K) for any open bounded subset
K of Ω+. Let us introduce the open subsets of Ω+, K+

δ := Ω+ ∩ {|xd − L| ≤ δ} which contain Γ1

for any δ. Let us set Wn = χ∇u+(ϕn) where χ ∈ C∞(R) is a smooth cut-off function such that
χ = 1 for |xd − L| ≤ δ/2 and χ = 0 for |xd − L| > δ. By using the same arguments than at the
end of the proof of Theorem 3.5, we show that there exists a subsequence of (Wn)n, still denoted
(Wn)n for simplicity, which converges in L2(K+

δ ). In particular ∇u+(ϕn)n converges in L2(K+
δ/2)

and up to another subsequence extraction, u+(ϕn) converges in H1(K+
δ/2). Then, by trace theorem,

Pϕn converges in H1/2(Γ0).
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Finally, let us prove that spectral radius of P satisfies ρ(P) ≤ 1. Since P is compact, it suffices to
show that the modulus of any eigenvalue is less than one. The proof is done by contradiction. Let
λ be an eigenvalue of P and ψ an associated eigenvector and suppose that |λ| > 1. Then using
(59) , for any n ∈ N, u+(ψ)|Cn = λnu+(ψ)|C0 , so that∫

Cn
|u+(ψ)|2 = |λ|2n

∫
C0
|u+(ψ)|2 →

n→+∞
+∞

which is in contradiction with the radiation condition.

4.2 Cell by cell construction of the solution

Once the operator P is known, the solution u+(ϕ) of (30) can be reconstructed in the whole domain
Ω+ by solving problems posed in bounded domains only. In order to give an explicit reconstruction,
we follow the method proposed in [16], which leads us to assume that, from now on

(60) ω2 /∈ σcell := σ(AC)

where the unbounded operator in L2(C), AC is defined by

(61)
D(AC) = {u ∈ H1(C0), ∇ · (Ap∇u) ∈ L2(C0), u

∣∣
Γ0∪Γ1

= 0, Ap∇u · ν
∣∣
∂Ω∞∩∂C0

= 0},

∀u ∈ D(AC), ACu = − b−1
p ∇ · (Ap∇u),

When ω2 /∈ σcell, we can consider, for any data ϕ in H1/2(Γ0), the cell problems

(62)

{
−∇ · (Ap∇e`)− ω2 bp e

` = 0 in C0

Ap∇e` · ν = 0 on ∂Ω∞ ∩ ∂C0

with the boundary conditions on Γ0 and Γ1

(63)
e0(ϕ)

∣∣
Γ0

= ϕ and e0(ϕ)
∣∣
Γ1

= 0

e1(ϕ)
∣∣
Γ0

= 0 and e1(ϕ)
∣∣
Γ1

= ϕ.

Of course, these problems are well posed and there exists a constant C(ω) > 0 such that

(64) ∀ϕ ∈ H1/2(Γ0), ‖e`(ϕ)‖H1(C0) ≤ C(ω) ‖ϕ‖H1/2(Γ0), ` ∈ {0, 1}.

Remark 4.2. Let us remark that we have to exclude the resonances of the Dirichlet cell problem
to define the solution of the cell problem without dissipation. Similarly to Remark 3.1 and 3.2, this
set of forbidden frequencies has been introduced artificially. If the frequency of interest is in this set,
it is possible to move the periodicity cell –which corresponds to move the artificial boundaries on
which the DtN conditions is imposed– or by introducing cell problem with Robin boundary conditions
instead of Dirichlet boundary conditions.

From (59) written for x ∈ Γ0, we have

∀n ∈ N, u+(ϕ)
∣∣
Γn

= Pnϕ.

By identifying all the cells Cn to C0, we have then, if ω2 /∈ σcell

(65) ∀ n ∈ N, u+(ϕ)
∣∣
Cn

= e0(Pnϕ) + e1(Pn+1ϕ).

The formula (65) is useful if one knows how to compute numerically the operator P . That is why
we need a more tractable characterization than its definition (58).
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4.3 Characterization of the propagation operator

Let us define then the local DtN operators for `, k ∈ {0, 1}, T `k ∈ L(H1/2(Γ0), H−1/2(Γ0))

(66) ∀ϕ ∈ H1/2(Γ0), T `k ϕ = (−1)k+1 Ap∇e`(ϕ) · ed

∣∣
Γk

where we have identified H1/2(Γ1) ≡ H1/2(Γ0) and H−1/2(Γ1) ≡ H−1/2(Γ0). We have in particular
for `, k ∈ {0, 1} and for all ϕ, ψ in H1/2(Γ0)

(67) 〈T `k ϕ, ψ〉Γ0 =

∫
C
Ap∇e`(ϕ) · ∇ek(ψ)− ω2bpe

`(ϕ) ek(ψ)

Let us first show the following properties of the local DtN operators T `k.

Proposition 4.3. We have

(68)
[
T 00
]∗

= T 00,
[
T 11
]∗

= T 11,
[
T 01
]∗

= T 10,
[
T 10
]∗

= T 01,

(69) T 01 and T 10 are compact operators from H1/2(Γ0) into H−1/2(Γ0)

and finally

(70) T 00, T 11 and T 00 + T 11 are Fredholm operators of index 0.

Proof. (68) can be obtained by using simply Green’s formulas. Since e0(ϕ) and e1(ϕ) are solutions
of (62-63) for all ϕ in H1/2(Γ0), we have for all `, k in {0, 1}

∀ ϕ, ψ ∈ H1/2(Γ0), 〈Ap∇e`(ϕ) · ν, ek(ψ)〉∂C0 = 〈e`(ϕ),Ap∇ek(ψ) · ν〉∂C0

This yields for ` = k = 0 to

∀ ϕ, ψ ∈ H1/2(Γ0), 〈T 00ϕ, ψ〉Γ0 = 〈ϕ, T 00ψ〉Γ0

since e0(ϕ) satisfies vanishing Neumann boundary conditions on ∂C0 \ (Γ0 ∪ Γ1) and similarly for
` = k = 1. For ` = 0 and k = 1, we obtain

∀ ϕ, ψ ∈ H1/2(Γ0), 〈T 01ϕ, ψ〉Γ0 = 〈ϕ, T 10ψ〉Γ0

and similarly for ` = 1 and k = 0.

For the proof of the compactness of the operators T 01 and T 10, it suffices to use the same arguments
than the one used for the compactness of the propagation operator P (see the proof of Theorem 4.1).

Let us now show that T 00 is a Fredholm operator of index 0, more precisely that it is the
sum of a coercive operator and a compact one (the proof for T 11 is similar). By (67), we have

T 00 = A00 +K00

where A00 and K00 are in ∈ L(H1/2(Γ0), H−1/2(Γ0)) and for all ϕ, ψ in H1/2(Γ0)

〈A00 ϕ, ψ〉Γ0 =

∫
C
Ap∇e0(ϕ) · ∇e0(ψ) + bp e

0(ϕ) e0(ψ), 〈K00 ϕ, ψ〉Γ0 = −
∫
C
(ω2 + 1)bp e

0(ϕ) e0(ψ)
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By continuity of the trace application, A00 is coercive thus invertible. Due to (64) and the compact
embedding of H1(C0) in L2(C0), the map K00 is compact. Thus, there exists C > 0 such that

∀ ϕ ∈ H1/2(Γ0), C 〈T 00ϕ, ϕ〉Γ0 ≥ ‖ϕ‖2
H1/2(Γ0) − ‖e

0(ϕ)‖2
L2(C0).

Since a similar inequality holds with T 11, and using the Cauchy-Schwarz inequality, we deduce
that for all ϕ in H1/2(Γ0)

‖ϕ‖H1/2(Γ0) ≤ C
(
‖(T 00 + T 11)ϕ‖H−1/2(Γ0) + ‖e0(ϕ)‖L2(C0) + ‖e1(ϕ)‖L2(C0)

)
We can now use Peetre’s lemma [35] (see also [25, Lemma 5.1]) to deduce that the operator
T 00 + T 11 is Fredholm. Since it is self-adjoint, its index is necessarily 0.

Given P ∈ L(H1/2(Γ0)) and ϕ ∈ H1/2(Γ0), let us define u(ϕ) ∈ L2
loc(Ω0) by

(71) ∀n ∈ N, u(ϕ)|Cn = e0(P nϕ) + e1(P n+1ϕ).

We then have the following lemma (partly a reciproque of (65)). Its proof is a direct consequence
of the properties of e0(ϕ) and e1(ϕ) and is left to the reader.

Lemma 4.4. The function u(ϕ) given by (71) belongs to H1
loc(Ω

+) and satisfies

(72) ∀n ∈ N, −∇ · (Ap∇u)− ω2 bp u = 0 in Cn, (Ap∇u) · ν = 0 on ∂Cn ∩ ∂Ω∞

However, the formula (65) is not sufficient to ensure that u(ϕ) solves the equation in all Ω+.
Obtaining such a property is precisely the object of the

Theorem 4.5 (Stationary Ricatti equation). The function u(ϕ) ∈ H1
loc(Ω0) defined by (71) satisfies

(73) −∇ · (Ap∇u(ϕ))− ω2 bp u(ϕ) = 0 in Ω+, (Ap∇u) · ν = 0 on ∂Ω+ \ Γ0,

if and only if P is solution of the stationary Ricatti equation

(74) T (P ) = 0, where ∀X ∈ L(H1/2(Γ0)), T (X) := T 10X2 +
(
T 00 + T 11

)
X + T 01

Proof. Thanks to lemma 4.4, u(ϕ) satisfies (73) if Ap∇u(ϕ) ·ed is continuous, in the sense of traces,
across each interface Γn. From the definition of the local DtN operators (66), and the identification
of each Cn to C0, one deduces from the expression (71) that this condition is equivalent to

(75) ∀ n ≥ 1, ∀ ϕ ∈ H1/2(Γ0), −T 01P n−1ϕ− T 00P nϕ = T 10 P nϕ+ T 11P n+1ϕ.

In particular, (75) for n = 1 gives −T 01−T 00P = T 10 P 2 +T 11P that is to say (74). Conversely, if
(74) holds, multiplying it by P n−1 (on the right), we get −T 01 P n−1−T 00 P n = T 10 P n +T 11P n+1,
that is to say (75).

Corollary 4.6. The propagation operator P is solution of

(76) Find P ∈ L
(
H1/2(Γ0)

)
such that T (P ) = 0 and ρ(P ) ≤ 1

where T (·) is defined by (74).
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This corollary does not characterize uniquely, in general, the propagation operator. To go further,
it is necessary to distinguish between propagative and non propagative frequencies. Indeed, when
ω is not a propagative frequency, i. e. when ω2 /∈ σ∞, the corollary admits a reciproque. The key
point is that, as already mentioned at the end of Section 2.3 , the radiation condition degenerates
and Problem (32) is well-posed in H1(Ω+).

Before going further, let us point out a property of any solution of the Ricatti equation (74) .

Lemma 4.7. If P is a solution of (74), then P is a compact operator in H1/2(Γ0).

Proof. According to Proposition 4.3, we can write T 00+T 11 = A+K, whereA ∈ L(H1/2(Γ0), H−1/2(Γ0))
is invertible and K is compact from H1/2(Γ0) in H−1/2(Γ0). If P is solution of (74), we can write

(A+K)P = −T 10 P 2 − T 01

Thus P = A−1
(
KP − T 10 P 2 − T 01

)
and the compactness of P follows from the ones of K, T 10

and T 01 (see Proposition 4.3).

Theorem 4.8. Let ω2 /∈ σth ∪ σ+
edge ∪ σcell. When moreover ω2 /∈ σ∞ the problem (76) admits a

unique solution and this solution satisfies ρ(P) < 1.

Proof. Corollary 4.6 gives that P is a solution of (76). Moreover, we can show that ρ(P) < 1.
Indeed, since P is compact, it suffices to show that the modulus of any eigenvalue is strictly less
than one. Let λ be an eigenvalue of P and ϕ an associated eigenvector. We have∫

Ω+

|u+(ϕ)|2 =
∑
n∈N

∫
Cn
|u+(ϕ)|2 =

∑
n∈N

∫
C0
|u+(Pnϕ)|2 =

∑
n∈N

|λ|2n
∫
C0
|u+(ϕ)|2

where we have used (59). Since u+(ϕ) ∈ L2(Ω+), |λ| < 1. Let us show now that P is the only
solution of (76). Let P be a solution of (76) with spectral radius less than one. Let for any
ϕ ∈ H1/2(Γ0), u(ϕ) be defined by

u(ϕ)|Cn = e0(P nϕ) + e1(P n+1ϕ).

Theorem 4.5 gives that u(ϕ) satisfies (72) in Ω+. Finally, we know that

(77) lim
n→+∞

‖P n‖1/n

L(H1/2(Γ0))
= ρ(P ),

If ρ(P ) < 1 this implies that for some α′ > 0 such that e−α
′ ∈ (ρ(P ), 1) and n large enough:

‖P n‖L(H1/2(Γ0)) ≤ e−α
′n,

so that by definition of u(ϕ) and by (64)

‖u(ϕ)‖H1(Cn) ≤ C e−α
′n ‖ϕ‖H1/2(Γ0).

Thus, it is easy to see that for 0 < α < α′, eαxd u(ϕ) ∈ H1(Ω+) and u(ϕ) is in particular solution
of (30). Thus, by Theorem 3.5, u+(ϕ) = u(ϕ) for all ϕ and P = P .

Let us finally show that ρ(P ) < 1. If not, then ρ(P ) = 1. As P is compact by Lemma 4.7, if
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ρ(P ) = 1 there exists an eigenvalue p with p = eikL. Let ϕ 6= 0 be an associated eigenvector and
consider u(ϕ) ∈ L2

loc(Ω
∞) defined as in (78) (except that n varies in Z instead of N), i. e.

(78) ∀n ∈ Z, u(ϕ)|Cn = e0(P nϕ) + e1(P n+1ϕ) ≡ eiknL
(
e0(ϕ) + eikL e1(Pϕ)

)
From this expression, it is easy to see that

(79) Φ := e−ikxd u(ϕ) is L-periodic.

Moreover, arguing as for Theorem 4.5, we know that u(ϕ) defined by (71) satisfies

(80) −∇ · (Ap∇u(ϕ))− ω2 bp u(ϕ) = 0 in Ω∞, (Ap∇u) · ν = 0 on ∂Ω∞.

From (79) and (80), we deduce that u(ϕ) is a propagative Floquet mode as defined in (4-5). This
is in contradiction with the fact that ω2 /∈ σ∞ (see Section 2.3).

It remains to treat the more interesting and more delicate case of the propagative frequencies. In
such a case, the solution defined by (71), with P a solution of (76), does not necessarily provide
a solution of (30) because there is a priori no guarantee that the radiation condition is satisfied.
As we shall see, there is no longer uniqueness for solutions of (76). We need to add additional
conditions to (76) in order to characterize the operator P . These new conditions refer to particular
spectral properties of P and that it is why we study the possible eigenvalues of the operators P
solutions of (76). As a useful preliminary result, let us mention the

Proposition 4.9. Let ω2 ∈ σ∞ \ (σ+
edge ∪ σth) and let

(81) ϕ±j := w±j
∣∣
Γ0
∈ H1/2(Γ0), 1 ≤ j ≤ N(ω),

where the w+
j ’s are the rightgoing propagating Floquet modes defined by (20-22). Then the set

{ϕ+
j , 1 ≤ j ≤ N(ω)} generates a vector space of dimension N(ω) and each ϕ+

j is an eigenvector of
P associated with an eigenvalue of modulus 1. More precisely :

(82) ∀ 1 ≤ j ≤ N(ω), P ϕ+
j = eıkjL ϕ+

j

where kj is the wavenumber associated to w+
j defined in (22).

Proof. The first (obvious) observation it that since ω2 /∈ σ+
edge ∪ σth, if one takes ϕ = ϕ+

j , then the

solution u+(ϕ) of (30) is nothing but w+
j , that is to say

(83) u+(ϕ+
j ) = w+

j .

In other words, by definition (58) of P and in view of (4),

(84) P ϕ+
j = w+

j |Γ1 = eikjLw+
j |Γ0 = eikjL ϕ+

j

To conclude that ϕ+
j is an eigenvector of P, it is thus sufficient to show that ϕ+

j 6= 0. If ϕ+
j was

equal to 0, w+
j would be a non zero solution of (30) with vanishing trace on Γ0 : this is impossible

by well-posedness of (30) for ω2 /∈ σ+
edge.

To conclude that {ϕ+
j , 1 ≤ j ≤ N(ω)} generates a vector space of dimension N(ω), they are linearly

independent. Assume that
∑
αj ϕ

+
j = 0 and consider w :=

∑
αj w

+
j . The function w satisfies (30)

with a vanishing Dirichlet conditions on Γ0, by well-posedness of this problem (see Theorem 3.5)
for ω2 /∈ σ+

edge, we conclude that w = 0. Since {w+
j , 1 ≤ j ≤ N(ω)} are linearly independent, we

conclude αj = 0 for all j.
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Considering (76), it is natural to introduce the ”generalized eigenvalue problem”

(85) Find λ ∈ C such that Ker T (λ) 6= 0.

Corollary 4.6 implies that the eigenvalues of P are contained in the set of solutions of (85) :

(86) λ ∈ σ(P) =⇒ Ker T (λ) 6= 0.

and more precisely

(87) P ϕ = λ ϕ, ϕ 6= 0 =⇒ T (λ) ϕ = 0.

Our goal is to characterize which subset of the solutions of (85) coincides with the spectrum of P .
Let us first show that the solutions of (85) naturally come by pairs (λ, 1/λ) where, without any
loss of generality |λ| ≤ 1.

Proposition 4.10. For any λ 6= 0, one has the property:

Ker T (λ) 6= 0 ⇐⇒ Ker T (1/λ) 6= 0.

Proof. This is linked to the properties of the local DtN operators T `k given in Proposition 4.3.
Indeed, we can deduce from the properties (70) that ∀λ, T (λ) is a Fredholm operator and then

Ker T (λ) 6= 0 ⇔ Ker T (λ)∗ 6= 0

From the properties (68), we deduce that for all λ 6= 0

[T (λ)]∗ = λ2 T 01 + λ (T 00 + T 11) + T 10 = λ2 T (1/λ).

The result follows easily.

On one hand, when (λ, 1/λ) is a pair of solutions of (85) with |λ| < 1, then the following result
states that, as expected, λ is an eigenvalue of P .

Proposition 4.11. Let ω2 /∈ σth ∪ σ+
edge ∪ σcell,. For any |λ| < 1, one has the property:

(88) Ker T (λ) 6= 0 =⇒ λ ∈ σ(P).

Proof. Let ϕ 6= 0 ∈ Ker T (λ) and consider the function v(ϕ) ∈ L2
loc(Ω

+) constructed cell by cell as

(89) ∀ n ∈ N, v(ϕ)|Cn = λn e0(ϕ) + λn+1 e1(ϕ).

By construction (and from the definition of e0(ϕ) and e1(ϕ)), −∇ · (Ap∇v(ϕ))− ω2 bp v(ϕ) = 0
in each cell Cn and v(ϕ) is continuous by definition across each interface Γn. Moreover, because
T (λ)ϕ = 0, Ap∇v(ϕ) · ed is continuous cross each interface Γn. Thus

−∇ · (Ap∇v(ϕ))− ω2 bp v(ϕ) = 0 in Ω+.

Moreover, |λ| < 1 implies that v(ϕ) ∈ H1(Ω+). In particular it satisfies the radiation condition
given in Definition 2.1 with a+

j = 0 for any 1 ≤ j ≤ N(ω). By Theorem 3.5, we have that
v(ϕ) = u+(ϕ) and thus, by (58), that v(ϕ)|Γ1 = Pϕ. However, by construction (use (89) for n = 0),
v(ϕ)|Γ1 = λϕ. We conclude that Pϕ = λϕ.
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On the other hand, as we are now going to see, when ω is a propagative frequency, i.e. when
ω2 ∈ σ∞, (finitely many) couples (λ, 1/λ) of solutions of (85) with |λ| = 1 exist, the solution of
(76) is not unique. As a matter of fact, it is not easy a priori to know whether λ or 1/λ is an
eigenvalue of P. We shall see below, one and only one of these two values is an eigenvalue of P
and give a criterion to determine which one.

Proposition 4.12. Let ω2 ∈ σ∞ \ (σth ∪ σ+
edge ∪ σcell). The generalized eigenvalue problem (85)

admits exactly N(ω) pairs of solutions (λ, 1/λ) with |λ| = 1 which are

(90)
{(
eıkjL, e−ıkjL

)
, 1 ≤ j ≤ N(ω)

}
where the kj’s are the rightgoing propagative wavenumbers defined in (22).

(91) ∀ k = kj or − kj, Ker T
(
eıkL

)
= span{ϕ+

` / k` = k} ⊕ span{ϕ−` / k` = −k}.

Proof. Step 1. We prove first that e±ıkjL is solution of the generalized eigenvalue problem (85).
By definition of the kj’s (see (22)), w±j is ±kj-quasi-periodic thus

w±j
∣∣
Γ1

= e±ıkjL ϕ±j and w±j
∣∣
Γ2

= e±2ıkjL ϕ±j .

Thanks to (5) and by definition of the operators ϕ→ e`(ϕ), ` = 0, 1,

w±j
∣∣
C0

= e0
(
ϕ±j
)

+ e±ıkjL e1
(
ϕ±j
)

and w±j
∣∣
C1 = e±ıkjLe0

(
ϕ±j
)

+ e±2ıkjL e1
(
ϕ±j
)
.

From the continuity of the normal derivative of w±j accross Γ1 and the definition (66) of the T `k’s,
we conclude that

T
(
e±ıkjL

)
ϕ±j = 0.

Step 2. Reciprocally, let λ be a solution of (85) with modulus 1. There exists k ∈ ]− π/L, π/L]
such that λ = eıkL and there exists ϕ 6= 0 such that

(92) T
(
eıkL

)
ϕ = 0

Let us define u(ϕ) ∈ L2
loc as

u(ϕ)|Cn = C eınkL
(
e0(ϕ) + eıkL e1(ϕ)

)
, ∀ n ∈ N,

where C is defined such that ‖u(ϕ)‖L2(C0) = 1. By definition of e0 and e1, u(ϕ) is solution of
(5) in each cell Cn. By construction u(ϕ) is continuous across each Γn and because of (92), the
co-normal derivative of u(ϕ) is also continuous across each Γn. Finally, e−ıkxd u(ϕ) is L−periodic
by construction. In conclusion, u(ϕ) is a propagative Floquet mode in the sense of (4-5) which is
k-quasi periodic. Thus u(ϕ) belongs to F(ω, k) defined by (11) and described by (23). Thus

u(ϕ) =
∑
`,k`=k

α+
` w

+
` +

∑
`,−k`=k

α−` w
−
` ,

and we deduce that ϕ ∈ span{ϕ+
` /k` = k} ⊕ span{ϕ−` /k` = −k}.

We are now in position to characterize P through its eigenvalues of modulus 1.
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Theorem 4.13. Let ω2 /∈ σth ∪ σ+
edge ∪ σcell. The propagation operator P is the unique solution of

(93) Find P ∈ L
(
H1/2(Γ0)

)
such that T (P ) = 0 , ρ(P ) ≤ 1,

that satisfies

(94) ∀λ ∈ σ(P ) with |λ| = 1, ∀ϕ ∈ Ker (P − λ I) \ {0}, Im 〈(T 00 + λT 10)ϕ, ϕ〉Γ0 < 0.

Proof. Step 1. We know (Corollary 4.6) that P is a solution of (93). Let us now show that it
satisfies (94). By Proposition 4.9, each ϕ+

j = w+
j |Γ0 is an eigenvector of P associated to λ := eıkjL.

As a consequence of (93), any λ ∈ σ(P) is a solution of the quadratic eigenvalue problem (85) (cf.
(86)). Therefore, thanks to Proposition 4.12, we have the double inclusion{

eıkjL, 1 ≤ j ≤ N(ω)
}
⊂ σ(P) ∩

{
|z| = 1

}
⊂
{
e±ıkjL, 1 ≤ j ≤ N(ω)

}
.

Let us now show that none of the {e−ıkjL
}

can be an eigenvalue of P. By contradiction, assume
that e−ıkjL ∈ σ(P). Then by Proposition 4.12 again, and more precisely (91), the corresponding
eigenvector would necessarily be ϕ−j = w−j |Γ0 , i. e. Pϕ−j = e−ıkjL ϕ−j . Let us now consider u+(ϕ−j ),
as (65), we obtain

u+(ϕ−j )
∣∣
Cn

= e0

(
Pnϕ−j

)
+ e1

(
Pn+1ϕ−j

)
= e0

(
e−ı n kjL ϕ−j

)
+ e1

(
e−ı (n+1) kjL ϕ−j

)
which we can also write, as w−j is (−kj)-quasi-periodic,

u+(ϕ−j )
∣∣
Cn

= e0

(
w−j |Γn

)
+ e1

(
w−j |Γn+1

)
= w−j ,

the last equality coming from the fact that w−j solves (5). This is of course a contradiction since
u+(ϕ−j ) is supposed to be outgoing. We have thus shown that

σ(P) ∩
{
|z| = 1

}
=
{
eıkjL, 1 ≤ j ≤ N(ω)

}
.

Now let us show the property (94). By (87), Ker
(
P − eıkjL I

)
⊂ Ker T (eıkjL) and by (91) and

since any ϕ−j is not an eigenvector of P , we have Ker
(
P − eıkjL I

)
= span {ϕ+

` , k` = kj}. Let now
φ ∈ span {ϕ+

` , k` = kj}

φ =
∑
k`=kj

a`ϕ
+
` from which we define v(φ) = e0

(
φ
)

+ eıkjL e1

(
φ
)

Since, the function w+
j satisfies w+

j

∣∣
C0

= e0

(
ϕ+
j

)
+ eıkjL e1

(
ϕ+
j

)
, v(φ) =

∑
k`=kj

a`w
+
` . Proving (94)

amounts to proving that

∀ 1 ≤ j ≤ N(ω), Im 〈(T 00 + eıkjL T 10)φ, φ〉Γ0 < 0.

By definition of the local DtN operators (66), it is not difficult to check that

(95) Im 〈(T 00 + eıkjL T 10)φ, φ〉Γ0 = − q(v(φ), v(φ)).

If the set {`, k` = kj} has only one element (` = j) then q(v(φ), v(φ)) = |aj|2q(w+
j , w

+
j ) < 0 a

property which results from the definition of the rightgoing propagative modes, see (20). In general,
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one has to use the bi-orthogonality property given in (21) which can be written in terms of the ϕ+
`

as follows

(96) ∀ ` 6= j,
〈(
T 00 + eıkjLT 10

)
ϕ+
` , ϕ

+
j

〉
Γ0

= 0,

to deduce that

Im 〈(T 00 + eıkjL T 10)φ, φ〉Γ0 =
∑
k`=kj

|a`|2
〈(
T 00 + eıkjLT 10

)
ϕ+
` , ϕ

+
`

〉
Γ0

= −
∑
k`=kj

|a`|2q(w+
` , w

+
` ) < 0.

Step 2. Let us now show that P is the unique solution. Let P be a solution of (93-94) and let us
prove that P = P. The proof is similar to the proof of Theorem 4.8. We introduce the function
defined in Ω+ by

(97) u(ϕ)|Cn = e0(P nϕ) + e1(P n+1ϕ).

If we can show that u(ϕ) = u+(ϕ), then we shall conclude as in the proof of Theorem 4.8 that
P = P . Thanks to Theorem 4.5, we know that u(ϕ) satisfies (30)(i),(ii) and (iii). It only remains
to prove that u(ϕ) also satisfies the radiation condition (30)(iv) and conclude with the uniqueness
result for (30). This is where (94) will come into play.

The condition (30)(iv) relies on the behaviour of u(ϕ) when xd → +∞, i.e. the behaviour of
u(ϕ)|Cn when n→ +∞. According to (97), we study the behaviour of P n when n→ +∞.

This behaviour is of course related to the spectrum of P . On the other hand, the condition (94)
involves the eigenvalues of P of modulus one, in other words σ(P ) ∩ {|z| = 1}, which is a finite set
since P is compact (Lemma 4.7). These are the object of the forthcoming analysis.

For the sequel, we introduce the finite dimensional space

(98) E1(P ) :=
⊕

λ∈σ(P )∩{|z|=1}

Ker (P − λ I)

This space satisfies obviously P E1(P ) ⊂ E1(P ).

Step 2.a : Description of σ(P ) ∩ {|z| = 1} and E1(P ). According to T (P ) = 0, reasoning as
in Step 1, we know that any λ ∈ σ(P ) ∩ {|z| = 1} is solution of the quadratic eigenvalue problem
(85) and by Proposition 4.12,

σ(P ) ∩
{
|z| = 1

}
⊂
{
e±ıkjL, 1 ≤ j ≤ N(ω)

}
,

and
E1(P ) ⊂ span {ϕ±j , 1 ≤ j ≤ N(ω)}.

However, in the same way that we proved the inequality (95) for ϕ+
j , one proves that

(99) Im 〈(T 00 + eıkjL T 10)ϕ−j , ϕ
−
j 〉Γ0 = − q(w−j , w−j ) > 0,

Therefore by (94), we deduce that E1(P ) does not contain any of the ϕ−j , in other words

(100) E1(P ) ⊂ span {ϕ+
j , 1 ≤ j ≤ N(ω)}
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Step 2.b: Each eigenvalue λ in σ(P ) ∩ {|z| = 1} is semi-simple

This amounts to prove that for any λ ∈ σ(P ) ∩ {|z| = 1}

(101) Ker (P − λ I)2 = Ker (P − λ I)

Let us prove that algebraic multiplicity of λ = eıkjL is 1. The proof for λ = e−ıkjL is the same. If
(101) were not true, there would exist ψ 6= 0 ( a generalized eigenvector) such that

(P − eıkjL)2 ψ = 0 and (P − eıkjL)ψ 6= 0.

As (P − eıkjL)ψ ∈ Ker(P − eıkjL), according to Proposition 4.12 and (100), we deduce that

(P − eıkjL)ψ =
∑

`/k`=kj

a+
` ϕ

+
` .

We then easily compute by induction over n ≥ 1 that

(102) ∀n ∈ N, P nψ = eınkjLϕ+ n eı(n−1)kjL
∑

`,k`=kj

a+
` ϕ

+
` .

Let us now define the function v(ψ) ∈ L2
loc(Ω

+) by

(103) ∀n ∈ N, v(ψ)|Cn = e0
(
P nψ

)
+ e1

(
P n+1ψ

)
,

which belongs to H1
loc(Ω

+) and satisfies (30)(i)(ii)(iii) by Theorem 4.5 again. Let us compute the
energy flux of this function, as defined in (13)

q
(
v(ψ), v(ψ)

)
:= Im

∫
xd=n

(
Ap∇v(ψ) · ed

)
v(ψ) dxs.

Since v(ψ) satisfies (30)(i)(ii), we recall that the above integral is independent of n which gives,
using (103) and the definition (66) of the operators T jk,

(104) ∀n ∈ N, Im
〈(
T 00 + eıkjLT 10

)
ψ, ψ

〉
Γ0

= Im
〈(
T 00 + eıkjLT 10

)
P nψ, P nψ

〉
Γ0

Using the expansion (102) and the bi-orthogonality property (21) in (104), we compute that, for
all n,

(105)

∣∣∣∣∣∣∣∣∣
n2

∑
`,k`=kj

|a+
` |

2 q(w+
` , w

+
` ) = n Im

〈
eıkjL

(
T 00 + eıkjLT 10

)
ψ,

∑
`,k`=kj

a+
` ϕ

+
`

〉
Γ0

+ n Im
〈 ∑
`,k`=kj

a+
` ϕ

+
` , e

ıkjL
(
T 00 + eıkjLT 10

)
ψ
〉

Γ0

.

Dividing (105) by n and making n→ +∞, we deduce that, for all ` such that k` = kj , q(w
+
` , w

+
` ) = 0.

This is impossible since ω2 /∈ σth.

Step 2.c : Spectral decomposition of u(ϕ). Since the spectrum of P is discrete and the subset
situated on the unit circle has no accumulation point, according to [18, Theorem 6.17], we can
introduce the Riesz’s projector Π1 (see [7, 36]) defined by the Cauchy integral

(106) Π1 =
1

2iπ

∫
cδ

(P − z)−1dz, cδ =
{

(1 + δ/2) eiθ, θ ∈ [0, 2π]} ∪ {(1− δ/2) e−iθ, θ ∈ [0, 2π]
}
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where δ is less than the distance between σ(P ) ∩ {|z| 6= 1} and the unit circle. From Step 2.b., we
have Im Π1 = E1(P ) since the Riesz’s projector is a projector on a generalized eigenspace. We
then define the second projector Π2 = I − Π1 with image E2(P ) := Im Π2, and using [37], we can
assert that

(107) H1/2(Γ0) = E1(P )⊕ E2(P ), P E2(P ) ⊂ E2(P ).

These two projectors thus satisfy the properties

(108) Π2
j = Πj, ΠjP = P Πj, j = 1, 2, Π1 Π2 = Π2 Π1 = 0

from which it is easy to deduce that, defining Pj = ΠjP ≡ P Πj,

(109) ∀n ∈ N, P n = P n
1 + P n

2 .

therefore, according to (97), u(ϕ) can be decomposed as

(110) u(ϕ) = u1(ϕ) + u2(ϕ), uj(ϕ)|Cn = e0(P n
j ϕ) + e1(P n+1

j ϕ), ∀ n ∈ N, j = 1, 2.

Note that each Pj is a solution of the Riccati equation so that, by Theorem (4.5),

(111) u(ϕ) ∈ H1
loc(Ω0), −∇ · (Ap∇u(ϕ))− ω2 bp u(ϕ) = 0, in Ω+, (Ap∇u) · ν = 0 on ∂Ω+ \ Γ0.

Step 2.d : Behaviour at infinity of u(ϕ). By construction, the spectrum of P2 is σ(P2) =
{0} ∪

(
σ(P ) ∩ {|z| < 1}

)
so that the spectral radius of P2, ρ(P2), satisfies ρ(P2) ≤ 1− δ < 1.

Since ρ(P2) = lim
m→+∞

‖P n
2 ‖

1
n , where ‖ · ‖ is the norm in L

(
H1/2(Γ0)

)
, we deduce that for all n

(112) ‖P n
2 ‖ ≤ C e−α

′n, for some C, α′ > 0.

Then, according to (110) and (111), it is easy to see that for 0 < α < α′

(113) eαxd u2(ϕ) ∈ H1(Ω+).

Since P1 = PΠ1, for n ≥ 1, P n
1 = P nΠ1, thus u1(ϕ)|Cn = e0(P nΠ1ϕ) + e1(P n+1Π1ϕ). Since

Π1ϕ ∈ E1(P ) ⊂ span {ϕ+
j , 1 ≤ j ≤ N(ω)}, we can write

(114) ∀ n ≥ 1, u1(ϕ)|Cn =

N(ω)∑
j=1

αj
(
e0(P nϕ+

j ) + e1(P n+1ϕ+
j )
)

=

N(ω)∑
j=1

αj w
+
j .

where the last equality comes from w+
j = u+(ϕ+

j ), cf. (83), and formula (65). Joining (110), (113)
and (114), it is clear that u(ϕ) satisfies the outgoing radiation condition (Definition (2.1)). This
concludes the proof.

4.4 The DtN reduction method and corresponding algorithm

In this last section, we put together all the pieces of the puzzle that we began in Section 3.2 and
continue up to section 4.3.
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According to Section 3.2, we first wish to compute the solution u of (27) inside the bounded
domain Ω0 by solving the problem

(115)


−∇ · (A∇u0)− ω2 b u0 = f in Ω0,

A∇u0 · ν = 0 on ∂Ω0 \ Γ0,

A∇u0 · ed + Λu0 = 0 on Γ0.

From Lemma 3.7 and Theorem 3.8, we know that this problem is well-posed and from Lemma 3.6
we know that its solution u0 characterizes the restriction of u to Ω0. This lemma also says that
the restriction of u to Ω+ = Ω \ Ω0 is then given by u+(ϕ), see (30), with ϕ := u0|Γ0 .

From the practical point of view the problem is that finding u+(ϕ), and thus the operator Λ which
is defined from u+(ϕ) amounts to solving a problem in an infinite domain, namely Ω+. However,
the content of Sections 4.1 to 4.3 allows us to circumvent this problem, through the introduction of
the local DtN operators T `k (see (66, 67), the propagator P characterized by Theorem 4.13, and
the cell by cell reconstruction formula (65) for u+(ϕ). The last piece of the puzzle is a practical
formula for the operator Λ. Such a formula is an immediate consequence of

Proposition 4.14. Let ω2 /∈ σth ∪ σ+
edge ∪ σcell, the DtN operator Λ is given by

(116) Λ = T 00 + T 10P .

where P is the propagator, characterized by Theorem 4.13, and the T `k are the local DtN operators.

Proof. From , we know that, in the first cell C0, u+(ϕ) = e0(ϕ) + e1(Pϕ). Thus

Λϕ = −Ap∇u+(ϕ) · ed|Γ0 = −Ap∇e0(ϕ) · ed|Γ0 − Ap∇e0(Pϕ) · ed|Γ0

and the conclusion follows from the definition of T 00 and T 10.

We then propose the following algorithm for the solution of (27) (at the continuous level - see
Section 5.1 for the discrete counterpart).

• Step 1 : Compute the DtN operator Λ:

– solve the two cell problems (62-63);

– compute the local DtN operators T `k, `, k ∈ {0, 1} defined in (66);

– compute the unique solution P of spectral radius less than 1 satisfying the stationary
Ricatti equation (93) such that the unitary eigenvalues satisfy (94) (cf. Theorem 4.13);

– compute the DtN operator Λ by formula (116);

• Step 2 : Solve the problem (51) in Ω0;

• Step 3 : Reconstruct the solution of (27) in Ω+, cell by cell, using the formula

(117) ∀n ∈ N, u+(ϕ)
∣∣
Cn

= e0(Pnϕ) + e1(Pn+1ϕ).
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5 Numerical approximation : algorithm and results

5.1 Finite element approximation and related algorithm

We now describe in some details, the discretization of the algorithm of section 4.4 in the case d = 1
(however, the generalization to d = 2 is quite straightforward). The discretization of the various
PDEs to be handled is chosen to be based on the Lagrange finite element method.

For the cell problems, we shall consider a conforming triangular mesh Th(C) whose ”trace” on Γj

defines a 1D mesh Th(Γj) of Γj. A useful property that we shall ask to this mesh is

(118) The mesh Th(Ω) is periodic, that is to say Th(Γ1) = Th(Γ0) + L ed

where, implicitly, each mesh is identified to the set of its edges. In the following, we denote
Vh(Ω) ⊂ H1(Ω) the usual approximation subspace based on Pk-Lagrange finite elements (for some
degree k ≥ 1) and define the corresponding trace spaces (also of Pk-Lagrange type, but in 1D)

(119) Vh(Γ
j) := {vh|Γj / vk ∈ Vh(Ω)} ⊂ H1/2(Γ0).

The interest of the periodicity assumption (118) lies in the following observation

(120) (118) =⇒ one can make the identification Vh(Γ1) ≡ Vh(Γ0).

In the following, we shall denote N := dim Vh(Γ0) and we explain below how we construct a
discrete DtN operator Λh, which is decomposed into several steps according to Section 4.4.

Definition of the discrete local DtN operators. These will be defined as operators T `kh in
L
(
Vh(Γ0)

)
, `, k ∈ {0, 1}2, thanks to the identification (120). In some sense, we use the same finite

dimensional subspace Vh(Γ0) for the approximation of both infinite dimensional spaces H1/2(Γ0)
and H−1/2(Γ0). We simply need to define T `kh ϕh for any ϕh ∈ Vh(Γ0). This is done consistently
with the definition (66) of T `kϕ, in a weak (or variational) sense :

• We introduce e`h(ϕh) ∈ Vh(Ω) the function issued from the standard Lagrange finite element
approximation of the boundary value problem (62, 63) for ϕ = ϕh (we omit the details).

• We define T `kh ϕh from

(121) ∀ ψh ∈ Vh(Γ0), 〈T `kh ϕh, ψh〉Γ0 =

∫
C0

(
Ap∇e`h(ϕh) · ∇ekh(ψh)− ω

2 bp e
`
h(ϕh) e

k
h(ψh)

)
In practice, given a basis {ϕ1

h, . . . , ϕ
N
h }, for instance the usual finite element basis, each T `kh is

represented by a N ×N matrix.

Definition of the discrete propagation operator Ph. Again, this operator will be searched
as an element of L

(
Vh(Γ0)

)
. Of course, in view of (93), this operator will be searched as a solution

of the Riccatti equation
(122)

Find Ph ∈ L
(
Vh(Γ0)

)
such that Th(X) := T 10

h P2
h +

(
T 00
h + T 11

)
Ph + T 01

h = 0 and ρ(Ph) ≤ 1.

More precisely, in view of the characterization of the continuous propagation operator P as the
unique solution of (93) that satisfies (94), we use a spectral approach to characterize the operator
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Ph as ”the good” solution of (122). The approach is as follows.

We introduce the following quadratic eigenvalue problem seen as an approximation of (85):

(123) Find λ ∈ C such that Ker Th(λh) 6= 0.

The determinant det Th(λ) is a polynomial of degree 2N and, for simplicity of the presentation,
we shall assume in the following that

(124) All the roots of det Th(λ) = 0 are simple.

This situation is of course generic and is the one that one encounters most often in practice.

Since the matrices T `kh , `, k ∈ {0, 1} are easily shown to satisfy the same adjointness properties as
T `k, `, k ∈ {0, 1} as described in Proposition 4.3, it is easy to show that for any λ 6= 0

Ker Th(λ) 6= 0 ⇐⇒ Ker Th(1/λ) 6= 0.

As a consequence, the set Sh of solutions of (123) can be described as follows

(125) Sh = {(λ1, λ
−1
1 ), · · · , (λN , λ−1

N )} |λj| ≤ 1, λj 6= λ′j for j 6= j′

A consequence of (124) is that

∀ 1 ≤ j ≤ N, dim Ker Th(λj) = dim KerTh(λ−1
j ) = 1

and one can find, for each j, (ϕj, ϕ
∗
j) ∈ Vh(Γ0), normalized in L2(Γ0) for instance, such that

(126) Ker Th(λj) = span ϕj, Ker Th(λ−1
j ) = span ϕ∗j ,

Let us partition {1, 2, · · · , N} as

{1, 2, · · · , N} = Ip ∩ Ie, where j ∈ Ip ⇐⇒ |λj| = 1.

Let us define

(127) ch(ϕh) := Im 〈(T 00
h + λhT 10

h )ϕh, ϕh〉Γ0 for any ϕh ∈ Vh(Γ0).

When j ∈ Ip, according to Theorem 4.13, we expect that one and only one of the two numbers(
ch(ϕj), ch(ϕ

∗
j)
)

is strictly positive.

If (124) holds then we can now construct the operator Ph by constructing a system of hopefully
linearly independent {ψ1, ψ2, · · · , ψN} of Vh(Γ0), so that they form a basis of Vh(Γ0), in which the
operator Ph will be diagonal. More precisely

(128)

∣∣∣∣∣∣∣∣
(i) For i ∈ Ie, we set ψj := ϕj and Phψj := λj ψj

(ii) For i ∈ Ip, we set

{
ψj := ϕj and Phψj := λj ψj if ch(ϕj) < 0,

ψj := ϕ∗j and Phψj := λ−1
j ψj if ch(ϕ

∗
j) < 0.

The operator Ph is then fully defined if we assume that {ψ1, ψ2, · · · , ψN} is a basis of Vh(Γ0).
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Definition of the discrete DtN operator Λh. According to (116), we simply define

(129) Λh = T 00
h + T 10

h Ph ∈ L(Vh
(
Γ0)
)
.

The discrete problem in bounded domain Ω0. As for the cell problems, we shall consider a
conforming triangular mesh Th(Ω0) whose trace on Γ0 coincides with the 1D mesh Th(Γ0) introduced
previously and we denote Vh(Ω0) ⊂ H1(Ω) the usual approximation subspace based on Pk-Lagrange
finite elements of degree k. According to Section 3.2 and more precisely (53), the discrete solution
in Ω0, denoted u0

h, will be the solution of the variational problem

(130)

Find u0,h ∈ Vh(Ω0) such that a0,h(u0,h, v) =

∫
Ω0

f vh, ∀vh ∈ Vh(Ω0), with

∀ (uh, vh) ∈ Vh(Ω0)2, a0,h(uh, vh) =

∫
Ω0

[
A∇uh · ∇vh − ω2 b uhvh

]
+ 〈Λhuh vh〉Γ0

The discrete solution outside Ω0. According to (117), once u0,h is computed, we can construct
an approximation uh of the exact solution u, cell by cell, with the formula

∀n ∈ N, uh|Cn = e0
h(Pnh ϕh) + e1(Pn+1

h ϕh) with ϕh := u0,h|Γ0 .

5.2 Numerical experiments

In this last section, we report on two series of numerical experiments done in the 2D case (d = 1).

Numerical experiments 1: This concerns the case of a locally perturbed periodic waveguide.
More precisely, we consider the following problem

(131)

{
−4u− ω2 b u = f in Ω

∇u · ν = 0 on ∂Ω.

where Ω is a locally perturbed periodic waveguide whose shape is represented in Figure 3, the
periodicity cell C is such that C ⊂ (1/2, 3/2)× (0, 1), f , represented in Figure 3 (top figure), is a
compactly supported source such that

(132) f = 25χΩ0(x1, x2) exp(−100(x2
1 + (x2 − 1/2)2)), with Ω0 := Ω ∩ {−1/2 < x1 < 1/2},

and b, represented in Figure 3 (bottom figure), is a local perturbation of a periodic coefficient:

Supp(b− bp) ⊂ Ω0, b
∣∣
Ω0

= 1, bp
∣∣
C =

{
10 if (x1 − 1)2 + (x2 − 0.5)2 ≤ 0.22

1 else
.

In Figure 3, the domain Ω0 is delimited by white lines. As the domain has two periodic outlet
at infinity, one has a priori to solve not one half-waveguide problem but two (independent) half-
waveguide problems set in Ω± := Ω ∩ {±xd > a} in order to compute two Dirichlet-to-Neumann
operators Λ± and restrict the computation in Ω0

(133)


−4u0 − ω2 b u0 = f in Ω0

∇u · ν = 0 = 0 on ∂Ω ∩ ∂Ω0;

±∇u0 · ed + Λ± u0 = 0 on Γ± := {(x, y), x = ±a}
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Figure 3: The compactly supported source term (top figure) and the local perturbation of the
periodic coefficient (bottom figure) represented in the locally perturbed periodic waveguide Ω that
are considered in Problem 131.

However because of the position of the artificial boundaries Γ±, the symmetry in x1 of the period-
icity cell, one can show that the associated propagative operators are equal and the same holds for
DtN operators: P+ = P− = P and Λ+ = Λ− = Λ.

In order to illustrate the theoretical results of the paper and the algorithm presented in the
previous section, we consider different values of ω: three values, ω1

e =
√

29, ω2
e =
√

360, ω3
e =
√

418
are such that (ωie)

2 /∈ σ∞, i.e the ωie’s are not propagative frequencies and three values, ω1
p =

10, ω2
p = 20, ω3

p = 50 are such that ωip ∈ σ∞, i.e the ωip’s are propagative frequencies, where we
recall that σ∞ is the essential spectrum of the underlying periodic operator (defined in (3)). The
position of these values with respect to the essential spectrum (in blue) is represented in Figure 4.
Note that the essential spectrum is obtained from a numerical computation (this is done only for
the illustration, this computation is not necessary in our algorithm).

σ∞

0

(ω1
e)

2 (ω2
e)

2 (ω3
e)

2(ω1
p)

2 (ω2
p)

2 (ω3
p)

2

Figure 4: Essential spectrum (in blue) and position of the non propagative frequencies ωie and the
propagative ones ωip.

For each frequency, we use P1-Lagrange finite elements with h = 0.005. As described at the
end of Section 4.4, we solve the two cell problems, compute the discrete local DtN operators and
finally solve the discrete Ricatti equation by solving the discrete quadratic eigenvalue problem,
as described in Section 5.1. We represent, for the values of the frequencies mentioned above, in
Figure 5 the eigenvalues of the discrete propagative operator Ph and some of the solutions of the
quadratic eigenvalue problem which are not eigenvalues of Ph. We recall that for non propagative
frequencies, the solutions of the quadratic eigenvalue problem are strictly inside the unit cell or
strictly outside: the operator Ph is constructed from the eigenvalues, which are strictly inside the
unit circle, and their associated eigenvector. Whereas for propagative frequencies, a finite (and
even) number of the solutions of the quadratic eigenvalue problem are on the unit circle. For each
of theses values, we compute the associated quantity defined in (127): this is an eigenvalue of Ph if
and only if this quantity is negative.
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Figure 5: The eigenvalues of the discrete propagative operator Ph (filled circle) and some other
solutions of the quadratic eigenvalue problem (empty circle) for the values of the frequencies
represented in Figure 4

We can finally compute the DtN operator and solve (133). The solution can be reconstructed in the
whole waveguide, as explained in (117). The solution of the values of the frequencies represented
in Figure 4 is represented in Ω ∩ {−6.5 < xd < 6.5} in Figure 6. Note that all the solutions
are symmetric with respect to the axis x1 = 0 and x2 = 1/2. This is due the same symmetry
property of the domain Ω, the source term f and the coefficient b (see Figure 3). Note also that
the solutions for the non-propagative frequencies decay when x1 → ±∞: each solution is actually
exponentially decaying at the infinities and its exponential rate is linked to the modulus of the
largest (in modulus) eigenvalue of the associated propagative operator (see Theorem 4.8 and its
proof). Note for instance that ω = ω2

e , the decay of the solution is really clear whereas for ω = ω1
e

or ω3
e , the decay of the solution is not obvious (for theses cases, the largest eigenvalue has a modulus

closed to one).

Numerical experiments 2: This concerns the case of the junction of two different half-
waveguides. More precisely, we consider the solution of (131) for the domain Ω whose shape is
represented in Figure 7, the source term f , represented in Figure 7 (top figure), is given by (132)
(same as the first numerical experiment) and the coefficient b, represented in Figure 7 (bottom
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Figure 6: Solution of Problem (131) for the datas represented in Figure 3 and for the values of the
frequency represented in Figure 4: from top to bottom ω = ω1
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figure), is 1−periodic in Ω ∩ {x1 < −1/2} and given by

b
∣∣
Ω∩{−3/2<x1<−1/2} =

{
10 if |x1 + 1| < 0.4 and |x2 − 0.5| ≤ 0.4

1 else;

it is 1−periodic in Ω ∩ {x1 > 1/2} and given by

b
∣∣
Ω∩{1/2<x1<3/2} = 1 + 16 exp(−((x1 − 0.9)2 + (x2 − 0.4)2)/0.22)

and finally
b
∣∣
Ω0

= 1,

The waveguide has two different periodic outlets at infinity (different geometries and different
coefficient). One has to solve the two different (independent) half-waveguide problems in order to
compute the two propagative operators P±h corresponding to each half-waveguide (the eigenvalues
of the two propagative operators are represented in Figure 8 for ω = 20). Note that the considered
frequency ω = 20 is a propagative frequency for each half-waveguide. Note also that there are
much more propagative modes for the left half-waveguide than for the right one. Finally, the DtN
operators can be computed, Problem (133) can be solved and the solution can be reconstructed in
the whole waveguide. The solution for ω = 20 is represented in Ω ∩ {−6.5 < x1 < 6.5} in Figure 9.

0

25

17

1

Figure 7: The compactly supported source term (top figure) and the coefficient (bottom figure)
represented in the junction of two different half-waveguides Ω, the associated solution is represented
in Figure 9 for ω = 20.
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[8] S. Fliss. “Étude mathématique et numérique de la propagation des ondes dans des milieux
périodiques localement perturbés”. PhD thesis. PhD thesis, Ecole Polytechnique, Nov. 2009.

[9] S. Fliss and P. Joly. “Exact boundary conditions for wave propagation in periodic media
containing a local perturbation”. In: Wave Propagation in Periodic Media, Book Series:
Progress in Computational Physics 1 (2009), pp. 108–134.

[10] S. Fliss and P. Joly. “Solutions of the time-harmonic wave equation in periodic waveguides:
asymptotic behaviour and radiation condition”. In: Archive for Rational Mechanics and
Analysis 219.1 (2016), pp. 349–386.

[11] L. Friedlander. “On the spectrum of a class of second order periodic elliptic differential
operators”. In: Comm. Math. Phys. 229.1 (2002), pp. 49–55.

[12] T. Hagstrom. “Radiation boundary conditions for the numerical simulation of waves”. In:
Acta numerica, 1999. Vol. 8. Acta Numer. Cambridge: Cambridge Univ. Press, 1999, pp. 47–
106.

[13] I. Harari, I. Patlashenko, and D. Givoli. “Dirichlet-to-Neumann maps for unbounded wave
guides”. In: J. Comput. Phys. 143.1 (1998), pp. 200–223. issn: 0021-9991.

39



[14] V. Hoang. “A radiation condition for a periodic semi-infinite waveguide”. In: 71.3 (2011),
p. 7. url: http://www.math.kit.edu/iana1/~hoang/media/radwaveguidehoang.pdf.

[15] V. Hoang. “The Limiting Absorption Principle for a Periodic Semi-Infinite Waveguide.” In:
SIAM J. Appl. Math. 71.3 (2011), pp. 791–810. url: http://dblp.uni-trier.de/db/
journals/siamam/siamam71.html#Hoang11.

[16] P. Joly, J.-R. Li, and S. Fliss. “Exact boundary conditions for periodic waveguides containing
a local perturbation”. In: Commun. Comput. Phys 1.6 (2006), pp. 945–973.

[17] Y. E. Karpeshina. Perturbation theory for the Schrödinger operator with a periodic potential.
Vol. 1663. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1997.

[18] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Reprint of the
1980 edition. Berlin: Springer-Verlag, 1995, pp. xxii+619. isbn: 3-540-58661-X.

[19] A. Kirsch and A. Lechleiter. “A radiation condition arising from the limiting absorption
principle for a closed full- or half-waveguide problem”. In: Mathematical Methods in the
Applied Sciences 41.10 (2018), pp. 3955–3975. doi: 10.1002/mma.4879. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/mma.4879. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/mma.4879.

[20] V. A. Kondratiev. “Boundary-value problems for elliptic equations in domains with conical
or angular points”. In: Trans. Moscow Math. Soc. 16 (1967), pp. 227–313.
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Advances and Applications. Basel: Birkhäuser Verlag, 1993, pp. xiv+350. isbn: 3-7643-2901-7.

[24] M. Lenoir and A. Tounsi. “The localized finite element method and its application to the
two-dimensional sea-keeping problem”. In: SIAM J. Numer. Anal. 25.4 (1988), pp. 729–752.
issn: 0036-1429.

[25] J.-L. Lions and E. Magenes. “Problemes aux limites non homogenes et applications”. In:
(1968).
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