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Abstract
The interactions among concurrent tasks pose a challenge in the design of real-time multi-core
systems, where blocking delays that tasks may experience while accessing shared memory have to be
taken into consideration. Various memory arbitration schemes have been devised that address these
issues, by providing trade-offs between predictability, average-case performance, and analyzability.
Time-Division Multiplexing (TDM) is a well-known arbitration scheme due to its simplicity and
analyzability. However, it suffers from low resource utilization due to its non-work-conserving nature.
We proposed in our recent work dynamic schemes based on TDM, showing work-conserving behavior
in practice, while retaining the guarantees of TDM. These approaches have only been evaluated
in a restricted setting. Their applicability in a preemptive setting appears problematic, since they
may induce long memory blocking times depending on execution history. These blocking delays may
induce significant jitter and consequently increase the tasks’ response times.

This work explores means to manage and, finally, bound these blocking delays. Three different
schemes are explored and compared with regard to their analyzability, impact on response-time
analysis, implementation complexity, and runtime behavior. Experiments show that the various
approaches behave virtually identically at runtime. This allows to retain the approach combining
low implementation complexity with analyzability.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Dynamic Time-Division Multiplexing, Predictable Computing, Multi-Crit-
icality, Preemption
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1 Introduction

Multi-core architectures pose many challenges in real-time systems, which arise from the
manifold interactions between concurrent tasks during their execution – most notably accesses
to shared main memory. These interactions make it difficult to tightly bound the Worst-
Case Execution Time (WCET) of real-time tasks. Systematically considering the worst-case
behavior of an arbitration policy with regard to memory accesses in the presence of concurrent
requests is too pessimistic, as it leads to low resource utilization at runtime. Considering
Mixed-Criticality (MC) systems is one approach to increase resource utilization. In an MC
system, tasks with different levels of criticality, and even non-critical tasks, execute on the
same multi-core architecture. The non-critical tasks in such a system may then exploit
resource budgets that have not been fully consumed by critical tasks – which rarely fully
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19:2 Arbitration-Induced Preemption Delays

exploit the worst-case budgets reserved for them. However, most MC systems take decisions
only at the level of task scheduling. Our aim here is, hence, to apply similar ideas to the
arbitration of memory requests in order to improve memory utilization.

Amongst the memory arbitration policies, Time-Division Multiplexing (TDM) divides
time into slots and allocates them to cores to exclusively access memory. Using TDM, the
accesses within a slot no longer depend on whether concurrent requests exist or not. TDM
provides predictable behavior and improves composability by bounding access latencies and
guaranteeing bandwidth independently from other cores. However, the access latency of a
memory request when using TDM now depends on the scheduling of these time slots, even if
they are unused. Such unused slots appear when the owner of a TDM slot does not (yet) have
a memory request ready to be served. Under a strict TDM scheme, these unused slots cannot
be reclaimed by another task. This non-work-conserving behavior of TDM often leads to low
resource utilization. This problem is further amplified as the number of cores increases,
leading to longer TDM schedules. Another source of TDM pessimism stems from the length
of TDM slots, expressed in clock cycles, which have to be longer than the worst-case latency
for handling memory requests. The arbiter consequently has to wait for the beginning of
the next TDM slot, even when memory requests complete earlier than this worst-case latency.
Resulting in low average-case performance and poor memory utilization.

To overcome these limitations, we recently explored novel dynamic TDM-based arbitration
schemes [13]. In that work, we envisioned that the task’s criticality level should not only
be used by the task scheduler, but also by the memory arbiter. The arbiter associates a
deadline with each memory request of a critical task, which corresponds to the end of its
corresponding slot under a strict TDM scheme. The deadline then allows to compute the
slack time of a critical task, i.e., the amount of time that the task’s last request completed
before the request’s deadline. This slack time then can be exploited by the arbiter, under
certain conditions, to favor requests of non-critical tasks over requests from critical tasks, to
freely reorder memory requests, and to schedule memory requests at the granularity of clock
cycles – instead of being confined to TDM slots. The resulting arbiter significantly reduces the
memory idle time, compared to a regular TDM arbiter. The improvements go up to a factor
of 350 and even remain above a factor of 50 under high memory load [13].

However, the proposed dynamic TDM-based arbitration techniques face issues under a
preemptive execution model. In this paper, we define two memory delays induced by
preemptions, the memory blocking delay and the misalignment delay, which may lead to
significant jitter and increase task response times. Even worse, due to non-critical tasks,
the memory blocking delay may be unbounded in some circumstances. We explore three
different approaches to analyze the impact of these arbitration-induced preemption delays
considering preemptive [18] (SHDp) and non-preemptive [1] (SHDw) memory requests. Finally,
we propose a new technique (SHDi) to resolve these issues by adapting (priority or rather)
criticality inheritance known from scheduling theory. This allows us to manage and easily
bound these preemption delays. Our evaluation shows that our new approach successfully
limits the worst-case preemption delays experienced at runtime under our dynamic TDM-
based arbitration schemes. At the same time we see virtually no impact on average-case
performance and success rate. Note, in addition, that the proposed technique is not limited
to the dynamic TDM-based arbitration schemes and is also applicable to other arbitration
techniques, e.g., arbitration based on fixed priorities [1].

The remainder of this paper is organized as follows. Section 2 describes the considered
system model. In Section 3, we briefly review the dynamic TDM-based arbitration schemes.
Section 4 identifies the different delays caused by preemptions in dynamic TDM-based arbitra-
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tion strategies, while Section 5 proposes three preemption models to handle these delays.
In Section 6, we evaluate our contributions and demonstrate the improvements in terms
of blocking delay reductions and success rates on randomly generated task sets. Section 7
presents related work, before concluding in Section 8.

2 System Architecture

2.1 Task Model
In our previous work [12, 13] on TDM-based dynamic memory arbitration, we assumed a
restricted task model, where each core executes a single independent and periodic task without
preemption. Here, we relax these assumptions to allow multiple tasks to be scheduled on each
core under a fixed-priority preemptive scheduler. We assume a finite task set Γ consisting
of independent and periodic tasks. Each task τi ∈ Γ is assigned a fixed priority1 i and is
characterized by the tuple τi = (Ci, Ti, Di,Mi), representing the task’s WCET, its period,
its implicit deadline, and finally its worst-case number of memory requests respectively. Each
task generates an infinite sequence of jobs at runtime, which, in turn, generate sequences
of memory requests τi,j where j ≤ Mi. Requests are separated by a dynamic number of
processor clock cycles (see Section 3). This distance represents the amount of computation
performed between the completion of request τi,j and the issuing of the consecutive request
τi,j+1 or the job’s termination. This allows us to model any dynamic job execution (even
input-dependent) considering a deterministic hardware platform (see below).

Ultimately we aim at mixed-criticality systems, where tasks can be associated with
multiple WCETs depending on the system’s execution mode (criticality). This work focuses
on the impact of the memory arbitration scheme on such MC systems, more precisely the
interplay between dynamic TDM-based arbitration and task preemptions. We consider two
classes of tasks: critical tasks τ c

i and non-critical tasks τnc
i . However, we currently only

consider a single Ci value per task in our task model, i.e, we assume a multi-criticality
system. Our experiments are based on simulations to evaluate memory arbitration under
realistic circumstances. We here assume that the WCETs (Ci) and deadlines (Di) of critical
tasks are firm and have to be respected under all circumstances. An execution thus fails if
a critical task misses its deadline. Non-critical tasks, on the other hand, are executed in a
best-effort manner by the underlying computer platform and memory arbitration scheme.
During execution, they may exceed their WCET budget, potentially causing deadline misses –
for themselves or other (critical) tasks. Handling timing failure events, in particular switching
critical tasks to a different behavior as in MC scheduling [5], is out of the scope of this work.
It will be addressed in future work. For the formal analysis, based on response-time analysis
(RTA) [2], we simply require (for now) firm WCETs and deadlines for non-critical tasks in
order to bound the response times of critical tasks.

2.2 Hardware Architecture
We assume a hardware platform consisting of m cores connected via a central arbiter to a
shared main memory. The memory requests dynamically generated by the jobs at runtime
thus compete for this shared resource. We assume that each core is equipped with internal
caches. Memory requests thus represent transfers of cache blocks resulting from cache misses.

1 A larger task index indicates higher priority.
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19:4 Arbitration-Induced Preemption Delays

In order to ensure that the aforementioned distances between requests are independent
from the execution of other tasks, we assume composable compute cores [9] and the absence
of any external events that may interfere with the execution of a core. The interference
between the independent tasks consequently stems from accesses to the shared memory only
and, in particular, depends on the employed memory arbiter.

For simplicity, we assume that all cores, the memory bus/arbiter, and the memory itself
operate at the same clock speed. We thus generally refer to time in clock cycles.

2.3 Scheduling Policy
On multi-core platforms, task scheduling can be performed globally among all/a subset of
the available m cores [16] or in a partitioned manner [3, 4]. Partitioned scheduling statically
assigns each task onto a fixed core, while global scheduling allows tasks to migrate among
cores dynamically. In principle both of these scheduling policies could be combined with
the approaches proposed here. For brevity, we limit our discussion on partitioned scheduling
using fixed priorities.

This enables the scheduler on each core to determine at any moment in time and in advance,
which task will need to be activated next on its core. Instead of triggering preemptions
periodically, we assume that the scheduler programs a hardware component that signals the
need to preempt the currently running task to both the core and the memory arbiter. This
ensures that preemption handling does not interfere with the execution on a given core – up
until to the moment when a preemption is triggered. We assume that each core is equipped
with such a component, separately tracking the next upcoming preemptions stemming from
a non-critical or a critical task. This also ensures that the preemption mechanism does not
interfere with the computation (distance) between memory accesses.

3 Background

This section provides a brief introduction to our recent work on TDM-based dynamic memory
arbitration as well as well-established iterative techniques for response-time analysis.

3.1 TDM-Based Dynamic Memory Arbitration
TDM-based arbitration is popular due to its simplicity and predictability, despite the fact
that strictly applying TDM often results in under-utilization of resources. Our recent work on
dynamic TDM-based memory arbitration schemes [12, 13] addresses resource under-utilization
by (a) introducing two classes of memory requests (critical and non-critical) and (b) by
exploiting slack to allow for more dynamic scheduling decisions as long as the deadlines of
critical requests can be met safely.

The key idea of the dynamic TDM with slack counters (TDMds) arbitration scheme [12] is
to interpret TDM scheduling as driven by deadlines. Under strict TDM each request completes
precisely at the end of the request owner’s next TDM slot, which can be seen as a deadline.
The deadlines of TDMds similarly correspond to the end of TDM slots. However, instead
of systematically delaying requests until their respective deadlines, requests are processed
dynamically in any order – as long as deadlines are met. This allows to compute the slack
time of a critical task, i.e., by how much the task’s last request completed earlier w.r.t.
the request’s deadline. This slack is stored in dedicated counters and allows to prioritize
non-critical requests, i.e., spend the slack of a critical task in favor of a non-critical task.
Note, however, that slack accumulated within one job of a task naturally is not preserved for



F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:5

subsequent jobs. Slack counters are consequently reset at job start. Also note that deadlines
are ensured for critical requests only, while non-critical requests are processed in a best-effort
manner. The dynamic processing allows non-critical tasks, for instance, to reclaim otherwise
unused TDM slots.

A critical request may arrive earlier than expected under a strict TDM scheme if the
request’s owner accumulated some slack before. The request’s deadline would then also
appear earlier than under strict TDM if one would simply consider the request’s issue date to
compute the deadline, i.e., the end of the next TDM slot after the issue date. Under TDMds
the deadline of a new critical request is instead computed from a delayed issue date, which
is derived by adding the previously accumulated slack to the request’s original issue date.
Given enough slack this may push the request’s deadline into the future, i.e., past the next
TDM slot, and provide additional freedom to the arbiter. This also ensures that the deadlines
under TDMds exactly correspond to the deadlines/completion dates that would be observed
under strict TDM. This holds for any dynamic execution of any program [13].

The TDMds arbiter keeps critical requests in a priority queue (ordered by increasing
deadlines) and non-critical requests in a simple FIFO. At the beginning of each TDM slot the
arbiter schedules the top-most request from one of these two queues in order to be processed
by the shared memory. The arbiter prioritizes non-critical requests over critical requests, as
long as the deadline of the top-most critical request is not at the end of the current TDM slot.
This ensures that non-critical requests can quickly access memory as long as critical requests
have enough slack, while also guaranteeing that deadlines of critical requests are met.

An extension of TDMds, called dynamic TDM with early release (TDMer) even goes a step
further by performing arbitration at the level of (bus) clock cycles instead of TDM slots [13].
The key insight is that memory can begin the processing of a request at any moment (even
in the middle of a slot), if the arbiter can ensure that subsequent critical requests do not
miss their deadlines. Two cases can be distinguished. Firstly, consider that memory is idle
during TDM slot i, while a request by the owner of the upcoming TDM slot i+ 1 is pending.
This request can immediately be processed, as the TDM slot i is unused and the request is
guaranteed to finish before its deadline, which may not lie before the end of TDM slot i+ 1.
The processing cannot interfere with requests of other slots (e.g., i+ 2). A similar argument
can be built for arbitrary pending requests, if the owner of the upcoming TDM slot has enough
slack (e.g., more than a slot length). In this case, the processing of another request can start
in the middle of the unused TDM slot i and complete in slot i+ 1. This may, in the worst-case,
delay a request of the owner of slot i+ 1. However, the deadline of the delayed request, under
all circumstances, falls into the next TDM period, due the use of the delayed issue date to
derive its deadline. Exploiting these two cases, TDMer was shown to be work-conserving even
under high memory load, when every job of critical tasks is granted an initial slack counter
value of a single slot length [13] (not shown in the following example).

Figure 1 shows an execution of a task set under TDMer, considering two critical tasks (τ c
0 ,

τ c
1 ) and a non-critical task (τnc

2 ). All tasks execute on separate cores, which issue critical
and non-critical requests on behalf of the respective tasks. Only critical tasks have dedicated
TDM slots (C0, C1) that take 8 clock cycles each and 16 clock cycles for both, corresponding
to the TDM slot length Sl and the TDM period P respectively. The non-critical task thus
may only access memory during unused slots or when the slack of critical tasks permits.
The visualization of a request includes the request’s issue date ( ) and deadline ( ). The
processing of a request by the main memory is indicated using a solid green hatched bar
( ), whose right edge indicates the request’s completion date. The memory is not always
busy, memory idling is indicated by a red hatched bar ( ). The deadline may lie after the
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1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc,0∆
0,0 τc,10∆

0,1 τc,11∆
0,2

τc,0∆
1,0 τc,10∆

1,1 τc,8∆
1,2

τnc
2,0 τnc

2,1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

Figure 1 Dynamic arbitration using TDMer of critical tasks τ c
0 and τ c

1 and non-critical task τnc
2 .

request’s completion date, which then generates slack for the task issuing the request. The
value of the slack counter when issuing a request is displayed as a superscript. For instance,
task τ c

0 accumulated 11 cycles of slack due to the early completion of requests τ c
0,0 and τ c

0,1.
When issuing request τ c

0,2 this slack (superscript 11∆) pushes the request’s deadline beyond
the next TDM slot owned by τ c

0 (beyond slot 9 to 11). The arbiter is no longer tied to TDM
slots and can choose one of the issued requests, independently from the actual owner of the
slot and the alignment with the TDM schedule – given enough slack. This is illustrated by
the non-critical request τnc

2,1, which is issued in TDM slot 5. The request first has to wait for
the ongoing request τ c

1,1 to complete. Then, τ c
0,1 is prioritized, since τ c

0 is the owner of the
upcoming TDM slot 7. At the moment when the processing of τnc

2,1 starts, τ c
0 is the owner of

the upcoming slot 7, but has no pending request. However, any request issued by τ c
0 is known

to have a deadline that lies beyond slot 7, due to its slack counter value of 11. It is thus safe
to begin the processing of τnc

2,1. We can also see that the non-critical request is prioritized
over the pending critical request τ c

1,2, as τ c
1 has accumulated 8 cycles of slack. Note, that the

slack counters are all reset for subsequent job instances of the critical tasks τ c
0 and τ c

1 .

3.2 Worst-Case Response Time Analysis

We assume that schedulability is verified using a variant of Response-Time Analysis (RTA) [2]
based on the usual recurrence equations:

Rn+1
i = Ci +Bi +

∑
∀j∈hp(i)

⌈
Rn

i

Tj

⌉
Cj (1)

The recurrence equations are initialized to R0
i = 0 and then iteratively reevaluated until a

fixed point is reached. Ri then indicates the response time of task i, having a WCET bound
Ci (see Section 2). In addition, the impact of preemptions by tasks with higher priority than
i (j ∈ hp(i)) is considered via their WCET bounds Cj and periods Tj . Bi indicates an upper
bound on the time task i may be blocked (e.g., by semaphores). However, we will ignore this
part of the equation in the remainder of this paper and instead consider additional delays
potentially caused by the memory arbitration policy.

The dynamic memory arbitration approaches presented above may induce additional
preemption delays and jitter that need to be considered during schedulability analysis in
order to be certain that the tasks actually meet their deadlines safely. Both issues are caused
by the way memory requests are processed as explained in the following section.
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(a) Three different scenarios of τi+1 preempting τi

at release dates (1), (2), and (3).
(b) Alignment of task τi w.r.t. to its TDM slot C1
without (top) and with preemption (bottom).

Figure 2 Preemption effects w.r.t. TDM memory arbitration.

4 Arbitration-Induced Preemption Delays

We now investigate the issues raised by TDM-based arbitration in general and our dynamic
schemes [12, 13] in particular, considering the preemptive system model from Section 2. For
brevity, we will focus on preemption costs caused by the arbitration policy and ignore other
costs due to the scheduler invocation, context switching, pipeline flushes, or Cache-Related
Preemption Delays (CRPD). From here on, we use the term preemption cost to refer to the
costs related to the arbitration policy only.

4.1 Preemption Costs for strict TDM Arbitration

Subfigure 2a depicts three preemption scenarios of a task τi+1 that preempts a lower-priority
task τi at different release dates (red vertical lines). The first case (1) refers to a preemption
occurring while the CPU performs computations (gray area). The task then can be preempted
right away (ignoring potential pipeline stalls). The second case (2) refers to a situation where
the preemption occurs while the CPU stalls, waiting to access the shared memory. While it
would be possible to abort the pending memory request and immediately preempt τi [18],
this requires modifications to the processor pipeline. In the last case (3), the preemption
occurs while the memory actually processes a memory request. It would theoretically be
possible to also abort the request at this stage – requiring modifications to the processor
pipeline and throughout the entire memory hierarchy. A simpler alternative for cases (2)
and (3), both in terms of hardware and timing analysis, would be to avoid aborting the
request and simply wait for its completion [1].

Clearly, all three cases may induce preemption-related delays that need to be bounded
and taken into consideration by the schedulability test (in addition to classical CRPD). The
worst case delay experienced for case (1) is trivial and only depends on the characteristics of
the processor pipeline. Case (3) similarly is analyzable and can be bounded by the worst-case
memory latency, e.g., a TDM slot length [1]. The analysis of case (2) is more complex, since the
behavior potentially depends on the other tasks in the system and the memory arbitration
policy. We first analyze the timing behavior for strict TDM and later extend this analysis to
the dynamic TDM-based approaches.

I Definition 1. Under a system with fixed-priority preemptive scheduling, the memory
blocking delay (MB) denotes the number of clock cycles that a higher-priority task τh is
blocked from executing on its core after its release, due to a pending memory request by a
lower-priority task τl (l < h).

ECRTS 2019



19:8 Arbitration-Induced Preemption Delays

However, the blocking time does not cover all preemption-related delays of strict TDM.
Recent work [14, 19] proposed sophisticated WCET analyses, which exploit the relative
alignment of the program execution with regard to the TDM schedule, without preemption. A
preemption may impact the program’s relative alignment – unless task scheduling itself is
aligned with the TDM period.

I Definition 2. The misalignment delay (MA) denotes the number of additional clock
cycles that the first memory access of a task takes, w.r.t. the worst case considered by the
WCET analysis, when resuming after a preemption.

Subfigure 2b depicts such a misalignment delay under strict TDM for a request of a critical
task τi, owning TDM slot C1. Case 1 (top) illustrates an execution without preemption, where
a request is issued right at the beginning of the task’s TDM slot at time instant tnp. The
program’s alignment w.r.t. the TDM schedule is ideal and the request is processed immediately.
The second case (bottom) shows the same execution of τi after a preemption by τi+1. In the
absence of other side-effects, such as CRPDs, the same computations are performed by τi up
to its first memory request (as indicted by the red dotted lines), which now is issued at time
instant tp. However, the task’s alignment w.r.t. the TDM schedule was slightly shifted due to
the preemption. The request thus has to wait longer than expected by the WCET analysis,
which assumed an execution without preemption.

4.2 Preemption Costs for Dynamic TDM-based Arbitration
The dynamic TDM-based arbitration schemes [12, 13] inherit the memory blocking and
misalignment delays from strict TDM. Figure 3 shows 3 tasks executing on 2 cores that share
slots C0 and C1 within a TDM period under the TDMds arbitration scheme. The mapping
between tasks and cores is indicated by matching colors (yellow and orange ). Critical
tasks τ c

0 and τ c
1 are executed on the same core, which results in a preemption of task τ c

0 by
τ c

1 ( ). Non-critical task τnc
2 executes alone on the other core. A core has a dedicated TDM

slot when it executes a critical task (τ c
1 , τ c

0 ), while the slots of cores executing non-critical
tasks (here only τnc

2 ) are shared by the running non-critical tasks (see the next section).
Lets assume that tasks cannot be preempted while performing a memory access [1]. Task τ c

0
then blocks the higher-priority task τ c

1 after its release in TDM slot 4. The preemption’s
blocking time, highlighted by the blue cross-hatched bar ( ), appears to be larger than
the worst-case memory access latency under strict TDM. The latency of request τ c

0,2 amounts
to two entire TDM periods and τ c

1 starts executing only after its completion. The reason for
this long delay is the high slack counter value (∆16) for request τ c

0,2, combined with the
interference of the non-critical task τnc

2 running on the other core. The non-critical task

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2 τc,0∆

0,3 τc,0∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 3 Impact of slack accumulation on the memory blocking time for TDMds.
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consumes all the slack of the critical request τ c
0,2, delaying its completion, and thus also

delaying the preemption. The situation is potentially even worse when a non-critical task
is preempted during a memory request. Recall that non-critical requests are executed in a
best-effort manner. The blocking time caused by such a request may even be unbounded.

The example illustrates that preemption-induced delays need to be taken into consid-
eration during system analysis. Note that the same reasoning (see Section 4.1) used for
strict TDM to establish the misalignment delay bound applies for all dynamic TDM-based
approaches considered here. Next, we investigate three different approaches to integrate the
memory blocking delay due to preemptions for our dynamic TDM-based arbitration schemes
by extending response-time analysis. In addition, we compare the approaches w.r.t. their
implementation complexity and actual runtime behavior.

5 Arbitration-Aware Preemption Techniques

Let us assume that memory requests are never aborted – cf. cases (2) and (3) from
Subfigure 2a. In this case, preemptions have to be delayed until a potentially ongoing request
completes. Under strict TDM arbitration, this corresponds to the usual worst-case memory
access latency w.r.t. the TDM period P and TDM slot length Sl, which can be bounded by [1]:

MBTDM = P + Sl − 1 (2)

As demonstrated in Section 4, this bound is not valid for TDMds and TDMer, due to additional
delays caused by the slack counters. While it certainly appears feasible to determine
bounds on the slack counter values of tasks, it can be expected that these bounds would
be rather pessimistic. In this section, we first explore this option to simply wait [1] due to
its uncomplicated hardware implementation and later refer to it as SHDw (for ScHeDuling
wait). Next, we explore an alternative option (SHDp, for ScHeDuling preempt), which assumes
that ongoing requests can be preempted as long as they are not yet processed by the main
memory [18] – cf. case (2) from Subfigure 2a. Finally, we propose a new solution (SHDi, for
ScHeDuling inheritance) that tries to limit the impact of the slack counters by imposing a
(new) deadline on an ongoing request when the core’s timer signals a preemption by a critical
task, i.e., the request of the preempted task inherits the criticality of the preempting task.
However, before discussing these preemption models, we first need to refine the architecture
model considering the fact that the cores can be shared by the tasks. Finally, we show how
these models can be integrated into a response time analysis.

5.1 TDM Schedule and Preemption
We assume a multi-core platform with m cores and partitioned fixed-priority scheduling
on each core. Critical and non-critical tasks may reside on the same core – without any
restrictions on priority assignment. Notably, non-critical tasks may have a higher priority
than critical tasks.

This raises the question on how TDM slots are assigned among cores/tasks. We propose a
pragmatic solution for this work, but other alternatives are obviously possible. Since each
core that executes at least one critical task may require a TDM slot at some moment, we
assign one TDM slot to each such core. However, the slot is only reserved exclusively for that
core when it actually executes a critical task, i.e., the core is considered critical. Cores that
do not execute a critical task at a specific moment are themselves non-critical. The TDM slots
that are not reserved by critical cores are marked as NC and shared among all running tasks
on all cores in the system. This strategy is illustrated by Figure 4, showing a system with
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(a) All TDM slots are reserved by critical cores. (b) One reserved TDM slot, two are shared (NC).

Figure 4 Hardware architecture.

4 cores. The TDM schedule consists of three slots (C0, C1, and C2), since only three of the
cores may execute critical tasks (red). In Subfigure 4a, these three cores execute critical
tasks and are thus themselves critical. In Subfigure 4b, on the other hand, only a single
critical task executes. Consequently two of the TDM slots are marked NC and shared by all
running tasks. Note, that non-critical tasks on core 3 may suffer from starvation on the
depicted platform. For the formal analysis we require that at least one TDM slot is marked NC
whenever a non-critical task executes in order to rule starvation out. This can be seen as a
form of hierarchical arbitration similar to the work by Paolieri et al. [18] on Round-Robin. We
thus define a larger TDM period for non-critical tasks using an application-specific constant k
(e.g., k represents the number of non-critical cores divided by the number of NC slots when
applying FIFO arbitration among non-critical requests): Pnc = k · P .

Also, recall that we assume that preemptions are pre-programmed through a timer-like
hardware component (see section 2.3). Using these components, we can control under which
conditions preemptions are actually triggered, e.g., to block the current preemption until an
ongoing memory request has completed or to preempt a pending request, et cetera.

5.2 Scheduling with Request Waiting (SHDw)

This strategy simply waits that an on-going memory request finishes [1]. Compared to
strict TDM, the memory blocking time can however be considerably larger due to the slack
counters. Consequently, a timing analysis technique is required that allows to bound the
maximum slack counter value of a critical task τ c

i . A trivial bound ∆max
i can be computed

by multiplying a task’s worst-case number of memory requests (Mi) with the maximum slack
possibly accumulated per request: Mi ·(P −Sl) (TDMds) orMi ·(P +Sl−1− l) (TDMer), where
l indicates the minimum memory latency. The resulting bound appears highly pessimistic,
but more precise bounds are out of the scope of this work.

To bound the memory blocking time of a critical task τ c
i two cases need to be considered.

Firstly, the blocking delay of preempting some lower-priority non-critical tasks (lpnc(i)) has
to be considered via MBnc,SHDw

i – which is similar to Equation 2 for strict TDM. Secondly, the
blocking delay of preempting another lower-priority critical task (lpc(i)) has to be considered
via MBc,SHDw

i . Here, the maximum slack counter values (∆max
l ) over all lower-priority critical
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tasks τ c
l , has to be considered in addition to the cost of a single memory access as follows:

MBc,SHDw
i =

{
0 if lpc(i) = ∅,
P + Sl − 1 + max

l∈lpc(i)
∆max

l else

MBnc,SHDw
i =

{
0 if lpnc(i) = ∅,
Pnc + Sl − 1 else

MBSHDw
i = max(MBc,SHDw

i , MBnc,SHDw
i ) (3)

The main advantage of this approach is its simplicity in terms of hardware complexity.
The timer-like component triggering the preemption on behalf of the task scheduler simply
has to detect whether a memory request is pending and, if so, delay the preemption until the
request completes. The downside is that it requires precise information on slack counters, so
a complex analysis that appears to go against a simple analysis, main advantage of TDM.

5.3 Scheduling with Request Preemption (SHDp)
An alternative approach is to preempt ongoing memory requests. We consider that requests
can only be preempted while pending at the arbiter, but not while being processed by
the memory [18]. Consequently, preemptions are still delayed when a request is currently
processed by the memory (cf. case 3 of Subfigure 2a). The memory blocking delay for critical
and non-critical tasks then can trivially be bounded by the worst-case memory latency, which
in turn is bounded by Sl:

MBSHDp
i = Sl − 1 (4)

However, the preempted task later has to reissue the memory request that was preempted,
which causes additional delays that need to be accounted for in its response time. A trivial
bound for this reissuing delay is the TDM period P , i.e., the maximum latency of a pending
request after the preemption. Note that there is no need to consider the slack counter value,
since it is already covered by the WCET. Furthermore, the misalignment delay always applies
to the preempted/reissued request. The misalignment delay thus already covers this overhead
(see Subsection 5.5).

Figure 5 shows an execution of the same task set introduced in Subsection 4.2 using
TDMds and the SHDp preemption scheme. This time request τ c

0,2, waiting to access the
memory, is immediately preempted by task τ c

1 and is reissued once τ c
0 resumes execution.

The request τ c
0,2 thus appears twice in the figure, once before the preemption (aborted) and

once thereafter (reissued). Note that the slack counter, due to the request’s preemption,
diminished from 16∆ to 13∆.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2

τc,13∆
0,2

τc,8∆
0,3

τc,8∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 5 Memory blocking delays considering request preemption (SHDp).
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This solution appears to be ideal in terms of preemption costs. However, preempting
ongoing memory requests can be complex to implement. The processor pipeline has to be
extended such that the memory access instruction and all instructions that started execution
after it can be aborted. All these instructions have to be reexecuted and thus are not
allowed to cause side-effects on the processor state. Such side-effects are, unfortunately, very
common. Examples include branch prediction and instruction cache accesses, which occur
early in processor pipelines and whose side-effects cannot (easily) be reverted. These effects
consequently need to be taken into consideration through dedicated timing analyses. Similarly
extensions are required on the memory hierarchy, including caches (aborting cache updates),
the memory bus (cache coherence), and the memory arbiter itself. It thus appears preferable
to explore an alternative approach that strikes a compromise in terms of implementation
and analysis complexity.

5.4 Scheduling with Criticality Inheritance (SHDi)

The aim of this approach is to provide a means to control the impact of the slack counters and
the interference from non-critical tasks on the memory blocking delay of preempting tasks.
The dynamic TDM-based arbiters considered here are all based on the notion of deadlines.
The idea of criticality inheritance is to impose a new deadline on a pending request at the
moment when a critical task is released, regardless of the criticality of the preempted task.
The preemption is still delayed – as before under the SHDw scheme. However, the blocking
time is bounded by the newly imposed deadline.

This new deadline is computed in the same way as ordinary request deadlines. The
only difference is that the issue date is replaced by the release date of the preempting task
and that the current value of the slack counter, belonging to the preempted task, is always
considered to be 0 (TDMds) or Sl (TDMer). This yields a deadline that certainly falls within
the current or the next TDM period, and thus effectively bounds the memory blocking delay.
An important aspect is that the slack counter for TDMer needs to be Sl for this computation,
and not 0. This is required for the simple reason that, without slack, the deadline could
fall on the immediate next TDM slot. Under TDMer this could cause a clash with an ongoing
request from another core that was granted access by the arbiter based on the – then valid –
slack counter value of the preempted task. Setting the slack counter to Sl thus ensures that
any ongoing request can finish before the request from the preempted task is handled.

At runtime two scenarios can be distinguished, depending on the criticality of the
preempted task. Firstly, if another critical task is preempted it is clear that its pending
critical request already carries a deadline. Replacing this deadline is easy, it suffices to signal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2

τc,16∆
0,3

τc,16∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 6 Memory blocking delays considering criticality inheritance (SHDi).
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to the memory arbiter that the recomputation of the deadline is needed using the current
cycle, i.e., the release of the preempting task. Non-critical requests do not carry a deadline
and may be held in a structure separated from critical requests (e.g., a FIFO for TDMer).
The request thus needs to be taken out of this structure and reissued as a critical request
with the appropriate deadline. Finally, the core has to reclaim its TDM slot, which up to now
has been marked non-critical, i.e. NC . These operations only concern the arbiter and do not
impact the processor pipeline or other parts of the memory hierarchy.

Assuming that both cases require a constant amount of clock cycles tid to associate the
ongoing request with the newly imposed deadline, we obtain the following bound for the
memory blocking delay under SHDi for TDMds and TDMer respectively:

MBSHDids
i = P + Sl − 1 + tid (5)

MBSHDier
i = P + 2 · Sl − 1 + tid (6)

Note that the second Sl in Equation 6 stems from the non-zero slack counter, which ensures
that all requests can access memory without clashes. We currently do not apply criticality
inheritance when the preempting task is non-critical.2 This falls in the domain of defining
a (sensible) task model, which is not the subject of this work. We plan to address this in
future work, along with the handling of timing failure events, in order to fully implement
mixed-criticality systems. Non-critical tasks currently implicitly follow the SHDw strategy.

Figure 6 again shows an execution of the same task set as in the previous examples, this
time under TDMds combined with SHDi. Critical task τ c

1 is released while critical request τ c
0,2

is pending. The pending request has its original deadline at the end of TDM slot 7 ( ). As
before, it is subject to interference from task τnc

2 on the other core, which otherwise would be
prioritized due to the far deadline of τ c

0,2. However, the preemption imposes a new deadline
at the end of the immediate next TDM slot (slot 5). The arbiter thus has to prevent the
interference from the other core and has to assign the next slot to the preempted task –
effectively bounding the memory blocking delay.

This approach combines a reasonable memory blocking delay bound with moderate
implementation complexity and simple analysis. The hardware modifications only concern
the memory arbiter that reacts to the core’s timer, providing the release date and the
criticality of the preempting task.

5.5 Misalignment Delays
Strict TDM as well as the dynamic TDM-based schemes all suffer from misalignment delays,
highlighted in Section 4, for the same reasons. The delay appears when the task’s misalignment
at the first memory access after a preemption is larger w.r.t. the task’s own TDM slot as
determined by the WCET analysis [14, 19]. In the worst case the associated memory request
misses the task’s TDM slot by a single cycle, i.e., the issue date (TDM) or delayed issue date
(dynamic TDM) miss the slot by a cycle. The request consequently completes in the worst case
in the next TDM period, resulting in the following bound for all the TDM-based approaches:

MATDM = MATDMds = MATDMer = P (7)

The delay can be larger for non-critical tasks (Pnc = k · P ). Also note that the bound
is smaller than the worst-case memory access latency of strict TDM (P + Sl − 1), since the
memory wait time of to the first TDM slot is accounted for in the WCET (highlighted in beige

in Subfigure 2b).

2 Deadlines could easily be imposed for preemptions by non-critical tasks.
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5.6 Response-Time Analysis
The memory blocking (MB) and misalignment delay (MA) bounds, as described above for
the preemption mechanisms SHDw, SHDp, and SHDi as well as the arbitration policies TDMds
and TDMer, can now be integrated into the recurrence equations of the response-time analysis.

With regard to a task τi, the misalignment delay may appear every time any task τj

(i < j) resumes after a preemption. This is independent of whether τj directly preempts τi

or some other task. The misalignment delay bound MA of the respective arbitration scheme
thus needs to be added for every potential preemption that might occur.

Every preempting critical or non-critical task τi (i > 0) may experience the memory
blocking delay before starting to execute. The bound thus can be seen as part of the task’s
WCET, i.e., the ongoing memory request of the preempted task is essentially considered to
be executed by the preempting task. We thus add MB to those parts of the equation that
represent a WCET (Ci, Cj):

Rn+1
i = (Ci + MBi) +

∑
∀j∈hp(i)

⌈
Rn

i

Tj

⌉
((Cj + MBj) + MA) (8)

For the SHDw and SHDp schemes, independently of the TDM policy, but also for SHDi when
combined with TDMds, the term MBj can thus be safely removed from this equation. The
latency of the ongoing memory request, owned by the preempted task, is indeed counted
twice: once for the preempting task (MBj) and the preempted task (Ci). This is illustrated
by Figure 6, were the blue area ( ), representing the MBj term for task τ c

1 , ends at the
deadline of request τ c

0,2 and thus the Ci of τ c
0 . For TDMer under SHDi, the imposed deadline

may be greater than the original deadline of the ongoing request, since the imposed deadline
is recomputed with a slack counter of Sl. The term MBj is thus pessimistic and a possible
refinement is to subtract the minimal memory latency l from this term.

6 Experiments

We use simulation to evaluate the runtime behavior of the various preemption mechanisms.
Before discussing the results, we provide details on the experimental setup.

6.1 Experimental Setup
We developed a simulation engine that is able to simulate a dynamic execution trace of an
entire multi-core platform. Traces are specified according to the system/hardware model
from Sections 2 and 5. The engine includes a fixed-priority preemptive task scheduler, and
various memory arbitration schemes (TDMfs, TDMds, TDMer), which can be combined with the
aforementioned preemption mechanisms (SHDw, SHDp, SHDi). The TDMfs arbiter represents a
variant of strict TDM, where non-critical tasks may only reclaim unused slots, and serves as a
baseline for our measurements.

The engine can be configured in terms of the number of (non-)critical cores, TDM slots in a
period (at least 1 per critical core), and (non-)critical tasks. The task scheduler respects user-
defined core affinities that can be assigned freely to tasks. However, for our experiments each
task is assigned to a single fixed core only (partitioned scheduling). Tasks are represented
by a sequence of jobs, which, in turn, represent dynamic execution traces consisting of
memory accesses that are separated by a fixed amount of computation time (cf. the various
examples). This allows to simulate the same execution trace of a task set using different
platform configurations and compare the results. Note that the framework does not model
the actual computations, only the time needed for computations.
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6.1.1 Task Set Generation
The UUniFast algorithm [6] allows to randomly generate a task set based on two parameters
n and U , where n specifies the total number of tasks and U the total utilization desired. As
we assume partitioned scheduling, we apply the algorithm for each core of the multi-core
system separately and combine the resulting tasks, with the corresponding affinities, into a
final task set Γ.

For each core, UUniFast first generates n different utilization values {u0, u1, . . . , un−1},
one for each task τi. The sum of these utilization numbers yields the core utilization U ≤ 1.
From the utilization parameters, the task periods Ti are generated. Note that we constrain
our system to harmonic periods, which ensure that hyper-periods and simulation times
remain reasonable. The period of the first task T0 is 20ms, while all other periods are
random multiples of T0, obtained from a uniform random distribution in the range [1, 5].
The individual task periods are hence in the range from 20ms to 100ms. From the task
periods and the utilization numbers as well as the task set’s hyper-period h, we then derive
the worst-case execution time of each task Ci = Ti · ui, the implicit deadline Di = Ti, and
the number of jobs for each task Ji = h/Ti. Finally, task priority and criticality (on critical
cores) are randomly assigned when the final task set Γ is constructed.

6.1.2 Traffic Generator
The simulation framework then requires a memory trace for each job of the generated task
set, i.e., the (time) distances between consecutive memory accesses (see Section 2). We use
the same traffic generator as in our previous work [13]. We thus only provide a brief overview
here and invite interested readers to consult the original paper for additional details.

The goal of the traffic generator is to provide synthetic memory access patterns repres-
enting cache misses of some random dynamic program execution. The generator is thus
calibrated against actual dynamic execution traces collected using the MiBench benchmark
suite [8] on the Patmos processor architecture [20]. Note, however, that the generated memory
accesses have to be consistent with the task’s WCET (Ci). The generator thus tracks the
evolution of a WCET bound as it proceeds. For each newly generated memory access this
WCET bound is incremented by the worst-case memory access latency, which is bounded by
P −1+Sl cycles. Note that the same bound is applied for critical and non-critical tasks, even
if no TDM slot is allocated to a core executing only non-critical tasks. The generator simply
stops once the bound reaches the task’s Ci. The resulting execution times thus rather closely
approach the tasks’ WCETs. The memory load is higher than can be expected in the average
case. Note that we capture this effect in our experiments by varying the total system load.

6.1.3 TDM Schedule
The duration of a TDM slot length Sl, corresponds to an upper bound of the memory access
latency previously determined on a Terasic DE-10 Nano evaluation board that is equipped
with an Intel Cyclone V SoC-FPGA and 1GB of DDR3 memory. A single Patmos processor
was implemented in the FPGA and performed memory accesses in isolation via the SoC’s
multi-port memory controller running at 100 Mhz (the remaining components of the SoC were
deactivated). At any moment a single memory access was in-flight during these measurements.
Depending on the internal state of the memory controller and DDR memory (refresh, open
page, etc.), we measured a memory latency between 21 and 40 cycles. In the simulation runs
we thus consider a TDM slot length of 40 cycles. For TDMer, which is able to exploit memory
requests completing faster than the TDM slot length, we simulate a varying latencies using a
uniform random distribution in the range [21, 40] clock cycles.
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6.1.4 Simulation Setup
Using the task set and memory traffic generators, we perform simulations with varying
numbers of cores (2, 4, 8, 16), critical cores (power of 2 in the range from 1 to the number of
cores), and the normalized system utilization (steps of 10 from 10% to 100%, normalized
to the number of cores). The number of tasks is randomly chosen between the number of
cores and 32 tasks, while the number of critical tasks is randomly chosen between 1 and the
number of tasks assigned to a critical core.

The TDM schedule assigns a single slot to each critical core, where each slot takes Sl = 40
cycles. The period P hence ranges from 40 to 640 cycles. The slack counters are reset at
every job start to 0 or 40 cycles for TDMds and TDMer respectively. For each of these system
configurations, 10 simulation runs were performed using 10 different task sets, which results
in 12 600 runs.

6.2 Results for Preemption Schemes
We start by analyzing the memory blocking delays on the simulated task sets with the three
preemption mechanisms considered. Subfigure 7a shows the cumulative average memory
blocking delay over an entire simulation run for the SHDw preemption mechanism considering
the TDMfs, TDMds, and TDMer arbitration policies.3 As expected, the cumulative overhead
can become very large going up to 1.6 · 106 cycles for both TDMfs and TDMds (showing
virtually identical results), while only reaching 3 · 103 cycles for TDMer– despite the fact that
preemptions are rare events.4 We observed a task set executing on 16 cores experiencing
502ms (an average of 31ms per core) of blocking delays within 590ms of total execution
time (assuming a clock speed of 100 Mhz). The other approaches, SHDp and SHDi, have
significantly lower overhead compared to SHDw (not shown due to space considerations).

Since non-critical tasks execute in a best-effort manner, their memory blocking delays
are expected to potentially become quite large, in particular, when preempting another
non-critical task. Subfigure 7b thus highlights the average maximum memory blocking delay
experienced by non-critical tasks across utilization levels for SHDw in combination with either
TDMfs, TDMds, or TDMer. As can be seen, individual preemptions consistently take thousands
of cycles, which corresponds to about 18ms (maximum observed memory blocking delay).
As these events are still rare, some volatility in the simulations is visible through the large
drop at 90% utilization. Note that typically non-critical tasks represent the majority of the
computation and memory load of the generated task sets. Consequently, non-critical tasks
experience most of the preemptions as well as the associated memory blocking delays.

Finally, Subfigure 8a shows the maximum memory blocking delays experienced by critical
tasks considering all three preemption mechanisms in combination with TDMfs, TDMds, and
TDMer. The delays are normalized w.r.t. the TDM period in order to avoid penalizing simulation
configurations with shorter periods. These delays are representative of the upper bounds
defined in Subsection 5. Note that the results for TDMfs are virtually identical to those for
TDMds and are thus not shown.

As expected, the SHDp scheme presents very low memory blocking delays, as can be
seen in more detail in Subfigure 8b. Under TDMds this preemption mechanism leads to no
noticeable memory blocking. This is explained due to the non-work-conserving nature of this
arbitration technique, which leads to long memory wait times and consequently increases

3 Each point represents an average value over all schedulable task sets at the corresponding normalized
utilization.

4 On average, there are 7 preemptions per run, with a maximum number of 288 preemptions in rare cases.
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(b) Average maximum memory blocking delay for
non-critical tasks.

Figure 7 Memory blocking delays across normalized system utilization for SHDw.

the probability of preempting a pending request. The situation is different for TDMer. Due
to its high efficiency, the probability of preempting a pending request is much lower. It is
instead more likely to preempt a request that is currently processed by the memory, resulting
in moderate memory blocking delays for SHDp. Note that these delays may never exceed a
single TDM period, notably for configurations with a single critical core. The highest memory
blocking delays are observed for SHDw under TDMds. The memory delay amounts to up to
16 TDM periods for a configuration with 2 cores, where both cores are critical (i.e., P = 80
cycles). The TDMer arbiter fares slightly better, with a maximum of about 12 TDM periods.
This demonstrates the high overhead experienced even by critical tasks when using SHDw.

The SHDi scheme, as expected, falls in-between the two other schemes. In combination
with TDMds the memory blocking delay is at most one TDM period. However, starting from
50% utilization, we can notice that TDMer exhibits slightly worse results compared to TDMds.
Nevertheless, the preemption cost for TDMer always stays below 2 TDM periods (highlighted
by Subfigure 8b) – notably for configurations with a single critical core (cf. Equation 6).

These result confirm the intuitive expectation that the overhead induced by the three
preemption schemes is strictly increasing from SHDp over SHDi to SHDw. However, this is
not always the case due to the extra costs induced by the slack counters under TDMer (a
counter-example was encountered for a larger slot length of Sl = 100, while evaluating the
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Figure 8 Maximum memory blocking delay for critical tasks across normalized system utilization.
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impact of varying the memory access latency5). Recall that the newly imposed deadline
during a preemption is computed considering a minimum slack of a single TDM slot length (Sl)
in order to avoid clashes on the immediate next TDM slot (see Subsection 5.4). Accounting for
this additional runtime overhead ε ≤ Sl, we can derive a relationship between the various
preemption schemes: MBSHDp

i ≤ MBSHDi
i ≤ MBSHDw

i + ε.
To conclude, the arbitration-induced preemption costs for critical tasks can be very

high at runtime when the SHDw scheme is used, while it is similar for the SHDi and the
SHDp schemes. This means that other criteria, such as predictability and implementation
complexity, can be used to choose among the schemes. SHDi appears to strike a reasonable
balance between these two criteria. Besides, the memory blocking delays are lower using
TDMer than when using TDMfs or TDMds.

6.3 Results for (Preemptive) Arbitration Schemes
We now evaluate the success rate of our preemptive arbitration policies. The success ratio
refers to the number of task sets6 that were schedulable for each level of utilization, i.e.,
simulation ended its execution without any deadline miss for critical tasks. Subfigures 9a, 9b,
and 9c depict this success rate for our 3 arbitration policies under SHDw, SHDp, and SHDi
respectively. Results are shown considering the same task set for all combinations. Comparing
the impact of the preemption schemes across all utilization levels, little difference among them
is visible. This can be explained by the number of preemptions, which is small compared to
the total execution time of each simulation. As seen in Section 6.2, individual preemptions
may however cause considerable overhead.

Overall, there was no significant difference in the success ratio of TDMfs and TDMds, except
for a normalized utilization above 70%. In that case, we can notice better results for TDMds,
regardless of the preemption technique. This is different from the results obtained in our
previous work [12, 13], which shows an improved memory utilization for TDMds compared to
TDMfs. In this previous work, the observed improvement reached up to a factor of 3.3 [13] in
terms of memory utilization at low total system utilization, which then leveled off considerably
at higher load. It appears that, TDMds improves the memory utilization mostly for situations
where system load is not jeopardizing schedulability, explaining the small impact on success
rates. However, regardless of the preemption techniques, TDMer shows better results at
almost all utilization levels. This can be explained by the decoupling from TDM slots and

5 Results not shown due to space constraints.
6 Each point represents an average value over 124 runs.
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Figure 9 Average schedulability success ratio through normalized system utilization.
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(a) Critical jobs execution time.
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(b) Non-critical jobs execution time.

Figure 10 Average jobs execution times with varying normalized system utilization using SHDi.

the fine-grained dynamic memory arbitration. This effectively renders the TDMer scheme
work-conserving. These results confirm those previously obtained considering a restricted
task model (one task per core), where the observed memory utilization improvements for
TDMer were considerable, even at high utilization levels [13]. TDMer thus has a relevant impact
on the success rates.

As the most reasonable choice for a preemption scheme is SHDi, Subfigures 10a and 10b
depict the average execution time of critical and non-critical tasks respectively using this
scheme. The relative gain by TDMer is particularly visible for the average execution time of
non-critical tasks at high utilization levels. For instance, at 100% system utilization TDMer
achieves an improvement of 36%. Clearly concluding that TDMer improves the execution
times of critical and non-critical tasks, and thus can reduce the probability of missing the
deadline of critical tasks. Additionally, as preemptions are rare events, the runtime impact of
the different preemption schemes is small compared to the impact of the arbitration policy.

7 Related work

TDM strategies have been used at different design levels of real-time systems. Tabish et
al. [21] split tasks into execution phases with and without main memory activities, which are
scheduled in order to avoid contention by applying TDM. TDM is applied at the task scheduling
level, with slot sizes accommodating the longest phase. Phases without main memory activity
may only access data stored in a scratchpad. Preemption-related delays due to memory
accesses thus cannot appear.

The slot shifting approach by Fohler [7], applies a similar idea as our dynamic arbitration
schemes, but to task scheduling. The granularity of slots allocated to tasks is consequently
much larger than individual memory requests considered here. Memory blocking delays may
be present, depending on the underlying platform, even when only a single core is considered,
but not taken into consideration.

ECRTS 2019
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Altmeyer et al. [1] worked on a compositional framework for multi-core response time
analysis. Among other things, they explored the impact of different arbitration schemes
(Fixed-Priority, FIFO, Round-Robin and TDM) and defined upper-bounds for the arbitration
induced preemptions delays. They assume that all requests sent to the bus are non-preemptive,
which is similar to our SHDw approach. Their results only apply to strict TDM and not to
our dynamic TDM-based approaches. However, their bounds for Fixed-Priority arbitration
seem to be incorrect. Suppose a higher-priority task τi preempts another tasks τj (j < i).
The bus interference experienced by an ongoing request of τj may then block τi, i.e., the
memory blocking delay. The proposed equation [1, Eq. 12], however, misses interference
from requests issued by a higher priority task τk running on another core, where j < k < i.
This cannot be resolved easily using the framework of Altmeyer et al. – except if a scheme
similar to SHDi is applied. In that case it suffices to consider the ongoing request of the
preempted task in the context of the preempting task – via the term Sx

i (t).
Yonghui et al. skip unused slots in a TDM period, supporting variable-sized TDM slots [17].

Hassan et al. [11, 10] similarly propose a work-conserving variant of TDM along with a
technique to generate harmonic TDM schedules accommodating critical and non-critical tasks.
The approaches do not preserve the relative alignment of the program execution with the
TDM schedule, offset analyses [14, 19] thus cannot be applied. Preemption mechanism are not
explicitly discussed, it appears that a strategy similar to SHDp is envisioned by the authors.
Memory blocking delays exist and have not been analyzed previously. The bounds for strict
TDM appear to be applicable – except for preemptions of non-critical tasks in a harmonic TDM
schedule. Finally, it is unclear whether the TDM schedule can be changed in response to a
task preemption.

Paolieri et al. [18] propose a multi-core platform for mixed-criticality systems that is
equipped with a hierarchical Round-Robin arbiter, which always to prioritizes critical tasks. In
contrast to the approaches presented here, their arbiter is not able to exploit task criticalities
to improve memory utilization or to reduce the average execution time of non-critical tasks.
The authors envision a preemption scheme similar to SHDp, but do not analyze the preemption
costs. The ideas underlying Altmeyer’s analysis for Round-Robin and Fixed-Priority [1]
could be used to model the system.

Kostrzewa et al. [15] propose a mechanism, which provides latency guarantees for hard
real-time transmissions in a network-on-chip. For each critical task the amount of slack time
is computed off-line and programmed into a counter at the level of NoC interface at every
job start. Best-effort transmissions, similar to the dynamic arbiters considered here, may
then delay critical transmissions as long as slack is available. Task preemptions are then
considered for hard real-time and best-effort transmissions. Critical tasks may run out of
slack in the middle of a best-effort transmission which are thus preempted. A delay – similar
to the memory blocking delay – is taken into consideration to avoid exhausting the slack
budget before all best-effort transmissions are successfully suspended.

8 Conclusion

The work presented in this paper extends previous work on dynamic TDM-based memory
arbitration schemes by adding support for a preemptive execution model and by identifying
the limitations of such a system. We identify two sources of arbitration-induced preemption
delays, the memory blocking delay and the misalignment delay, and propose means to manage,
and finally bound these delays. While bounding the misalignment delay is straightforward,
limiting the memory blocking delay is more involved. We thus propose formal bounds for two
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obvious preemption schemes based on waiting and preemptable memory requests (SHDw and
SHDp). Additionally, we propose an alternative scheme (SHDi), which imposes new deadlines
for critical requests and leverages criticality inheritance when a critical task is blocked by a
non-critical request. The experimental results showed that the preemption mechanisms show
little difference at runtime, which allows us to select the best approach according to other
criteria, such as low implementation complexity and analyzability. The new SHDi approach
appears to offer the best trade-off in terms these criteria.
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