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We extend the lubrication approximation for a viscous flow in two-dimensional channels with arbitrary shape functions and moderate aspect ratio. The higher-order model is obtained following an asymptotic analysis. Velocity and pressure profiles for the approximated model are given analytically and involve the derivatives of the shape functions of the walls up to the secondorder. Comparisons with full-scale simulations are given and show good agreement as well as improvements from the classical standard lubrication approximation.

Introduction 1

The Classical Lubrication Approximation (CLA) accounts for the behav-2 ior of viscous flows in thin channels under assumptions of small Reynolds 3 numbers and for slowly varying walls. Under these hypotheses, the flow is 4 characterized by (i) a constant pressure across the transverse, say vertical, 5 section and with variations along the channel axis governed by the Reynolds The CLA, as it avoids to resolve a full-scale fluid calculation, is used in 9 many fields such as film lubricant [START_REF] Hamrock | Fundamentals of fluid film lubrication[END_REF], hydraulic fracture mechanics [START_REF] Detournay | Propagation regimes of fluid-driven fractures in impermeable rocks[END_REF][START_REF] Taisne | Conditions for the arrest of a vertical propagating dyke[END_REF], 10 dykes and sills in volcanism [START_REF] Lister | Buoyancy-driven fluid fracture: similarity solutions for the horizontal and vertical propagation of fluid-filled cracks[END_REF], or flows in biological systems such as blood 11 Email address: kim.pham@ensta-paristech.fr (corresponding author) (K. Pham) cell transport in narrow capillaries [START_REF] Aboelkassem | A bioinspired pumping model for flow in a microtube with rhythmic wall contractions[END_REF]. However, its validity as that of the associated Reynolds equation have to be questioned when the curvature of the channel is not negligible anymore. A systematic way to do so is to use asymptotic techniques which are well-adapted due to the small thickness of the channel compared to the others dimensions. Starting in the 80s, such Extended Lubrication Approximation (ELA) has been applied to channels with a single wavy wall [START_REF] Hasegawa | On steady flow through a channel consisting of an uneven wall and a plane wall: Part 1. case of no relative motion in two walls[END_REF] and with two symmetric wavy walls [START_REF] Van Dyke | Slow variations in continuum mechanics[END_REF]. In these references, power series of the stream function have been obtained for low Reynolds numbers and the results have been applied in hydraulic fracture mechanics, see e.g. [START_REF] Sisavath | A simple model for deviations from the cubic law for a fracture undergoing dilation or closure[END_REF] and references herein. We also mention the works of [START_REF] Fabricius | Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary[END_REF] concerning roughnesses for which the asymptotic analysis is combined to homogenization to extract the macroscopic effective behavior. Recently, Tavakol and co-workers have revisited the problem of a single wavy wall using a slightly different approach in which the asymptotic analysis is applied to the Stokes equations [START_REF] Tavakol | Extended lubrication theory: improved estimates of flow in channels with variable geometry[END_REF]. Experimental and numerical results support their analytical result and exemplify the interest of the improved model to capture accurately the velocity profiles and the pressure drop. Our study follows from this work and extends the lubrication approximation to two non-symmetric wavy wall.

The paper is organized as follows. The problem is introduced in Section 2 along with the main result of the paper. In Section 3, we will proceed to the derivation of ELA by means of asymptotic techniques. Finally, in Section 4, we compare the behavior of the second order asymptotic approximation to direct numerical simulations and to the prediction from the standard lubrication theory.

Problem setting and main result

We consider an incompressible, steady, two-dimensional pressure-driven flow in a channel of length L. The geometry is defined through the introduction of the upper shape function y = h + (x) and the lower shape function y = h -(x) for x ∈ (0, L) with h + > h -(see Fig. 1). These functions are assumed to be at least C 2 continuous. We introduce the mean line level y m and the local half-thickness h of the channel defined by

y m = h + + h - 2 , h = h + -h - 2 , (1) 
both being function of x. We then rescale the vertical coordinate and center it around the average level according to

y = y -y m (x) h(x) . (2) 
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y m h h + h Figure 1
: Schematic view of a channel of length L with arbitrary upper and lower shape profiles h + (x) and h -(x). The functions h(x) and y m (x) denote the half-distance between the walls and the average level respectively.

The Reynolds number is assumed to be small so that the flow is governed by the Stokes equations

∇ • u = 0, µ∇ 2 u = ∇p, (3) 
where u = ue x +ve y and p are the velocity and the pressure fields respectively, and µ is the viscosity of the fluid. Additionally to a no-slip condition on the walls, the boundary conditions are defined as prescribed a Poiseuille inlet velocity profile and a vanishing outlet pressure

u(x, h + (x)) = u(x, h -(x)) = 0, u(0, y) = 3Φ 4h(0) 1 -y 2 e x , p(L, y) = 0, (4) 
with Φ the fluid flux. To conduct the asymptotic analysis, we define the small parameter

ε = h(0) L , (5) 
which accounts for the slenderness ratio of the channel. The main result of the paper is the following approximation of the exact solution of the problem up to the second order in the small parameter ε

u(x, y) = 3Φ 4h 1 -y 2 1 + 4h 2 -hh 10 1 -5y 2 + 2hy m -12h y m 3 y +u c o(ε 2 ), (6) 
v(x, y) = 3Φ 4h 1 -y 2 (h y + y m ) +u c o(ε 2 ), (7) 
p(x, y) = µΦ L x 3 2h 3 1 + 2 5 h 2 + hh + 5y 2 m dx + 3µΦ 4h 2 h (1 -3y 2 ) -2y m y +p c o(ε 2 ), (8) 
where the characteristic velocity u c and p c are given by

u c = Φ 2h(0) , p c = µΦL 2(h(0)) 3 . (9) 
The classical lubrication approximation is obtained from Eqs. ( 6)-( 8) by simply putting the derivative of y m and h to zero. Hence, in the standard case, the velocities and the pressure depend only on the (half) relative distance h between the walls. Note that the prescribed parabolic inlet velocity profile Eq. ( 4) is matched in average by the second-order approximation. It is matched exactly if we have simultaneously y m = h = 0 and y m = h = 0.

If not, there is a discontinuity and the approximation is correct far enough from the inlet while near the inlet, there exists a boundary layer which can be determined by a matched asymptotic expansion of the governing equations.

Asymptotic analysis

Dimensionless problem and rescaled equations

In order to non-dimensionalize the problem, the following variables are introduced

x = x L , u(x, y) = u u c , v(x, y) = v u c , p(x, y) = p p c . ( 10 
)
The recentered and rescaled vertical coordinate, defined by Eq. ( 2), reads now

y = y -h(0)y m (x) h(0)h(x) , (11) 
where

y m (x) = y m (Lx) h(0) , h(x) = h(Lx) h(0) , (12) 
denote the rescaled shape functions that define the channel's geometry.

Introducing the dimensionless differential operators

∂x = ∂ x - h y + y m h ∂ y , ∂y = 1 h ∂ y , ∂yy = 1 h 2 ∂ yy , ( 13 
) ∂xx = ∂ xx + (h y + y m ) 2 h 2 ∂ yy -2 h y + y m h ∂ xy + 2h (h y + y m ) h 2 - h y + y m h ∂ y , (14) 
where ∂ x and ∂ y are the usual derivatives with respect to x and y respectively, the Stokes equations read in non dimensional form as

∂x u + 1 ε ∂y v = 0, ( 15 
) ∂xx u + 1 ε 2 ∂yy u = 1 ε 2 ∂x p, (16) 
∂xx v + 1 ε 2 ∂yy v = 1 ε 3 ∂y p. ( 17 
)
These equations are written in the rescaled region (0, 1) × (-1, 1), and are complemented by the boundary conditions

u(0, y) = 3 2 1 -y 2 , v(0, y) = u(x, ±1) = v(x, ±1) = 0, p(1, y) = 0. (18)
Next, we follow an asymptotic approach, valid for small ε, in which we assume that the solution (u, v, p) can be expanded in powers of ε, namely

u(x, y) = ∞ i=0 ε i u i (x, y), v(x, y) = ∞ i=0 ε i v i (x, y), p(x, y) = ∞ i=0 ε i p i (x, y). (19)
The fields (u i , v i , p i ) will be determined by inserting expressions (19) in Eqs. (15)-(18).

Correction to CLA in the vertical velocity v 1

To begin with, we shall see that the analysis of the problem at the leading orders provides the standard Reynolds equation within CLA, corrected by a non vanishing vertical velocity. Introducing expressions (19) in Eqs. ( 15)-(18), we firstly examine the dominant order terms. The continuity equation (15) reads as ∂y v 0 = 0, which leads to

v 0 = 0, ( 20 
)
because of the no-slip conditions v 0 (x, ±1) = 0. The momentum balance along y (17) gives ∂y p 0 = 0, so that p 0 is independent of y and we set p 0 = p0 (x). The momentum balance along x (16) then reads as ∂yy u 0 = ∂ x p0 (x), which can be integrated with respect to y using the no-slip boundary conditions u 0 (x, ±1) = 0. This gives the classical parabolic shape for the longitudinal velocity at the dominant order

u 0 (x, y) = - h 2 2 ∂ x p0 (1 -y 2 ). (21) 
At the next order, the continuity equation (15) reads as

∂x u 0 + ∂y v 1 = 0. ( 22 
)
By integrating this equation with respect to y over (-1, 1), we obtain the standard Reynolds equation

∂ x - 2 3 h 3 ∂ x p0 = 0, (23) 
where we used the expression of u 0 (21) and the no-slip boundary conditions v 1 (x, ±1) = 0. This shows us that the rescaled flux

φ 0 = - 2 3 h 3 ∂ x p0 , (24) 
is a quantity conserved along the channel. Comparing the boundary conditions u 0 (0, y) = 3 2 (1y 2 ) to Eq. ( 21) provides φ 0 = 2. Finally, the longitudinal velocity at the dominant order reads as

u 0 (x, y) = 3 2h (1 -y 2 ). ( 25 
)
The pressure p0 in the channel can now be deduced by integration of Eq. ( 24).

Given the boundary condition p 0 (1, y) = 0, we get

p 0 (x, y) = p0 (x) = 1 x 3 h 3 dx . ( 26 
)
We are now able to derive the first non-trivial contribution to the vertical velocity. Since u 0 is known from Eq. ( 25), the continuity equation ( 22) can be integrated with respect to y, which leads to the first correction to CLA in the vertical velocity

v 1 (x, y) = 3 2 1 -y 2 h y + y m h . ( 27 
)
3.3. Extended lubrication approximation and corrections in (u 2 , p 2 )

We shall now complement the correction in the vertical velocity obtained above by deriving the correction in the pressure and the associated horizontal velocity. To achieve this, we examine the terms of higher orders in Eqs. ( 15)-(17). Because of v 0 = 0, the terms p 1 , u 1 and v 2 satisfy the same relations as at lower order, namely

∂x u 1 + ∂y v 2 = 0, ∂yy u 1 = ∂x p 1 , ∂y p 1 = 0. ( 28 
)
This provides the same result, with p 1 (x, y) = p1 (x), u 1 (x, y) = h 2 2 ∂ x p1 (y 2 -1) and the flux φ 1 = -2 3 h 3 ∂ x p1 conserved along x. However the boundary conditions (18), by means of the prescribed inlet velocity u 1 (x, 0) = 0 and pressure at the exit p 1 (1, y) = 0, imply φ 1 = 0 and

u 1 (x, y) = 0, p 1 (x, y) = 0. ( 29 
)
Integrating the continuity equation at this order leads to

v 2 (x, y) = 0. ( 30 
)
The pursuit of the analysis at the next order is necessary to reveal new contributions from Eqs. (15)-(17). Specifically, we now start with ∂x u 2 + ∂y v 3 = 0, ∂xx u 0 + ∂yy u 2 = ∂x p 2 , ∂yy v 1 = ∂y p 2 .

(31)

Given the non trivial value (27) of v 1 , the pressure p 2 is deduced, up to a constant of x, by integrating the third equation of (31). We obtain

p 2 (x, y) = p2 (x) + 3 2h 2 h 1 -3y 2 -2y m y , (32) 
where p2 (x) is the average of p 2 over y ∈ (-1, 1). The longitudinal velocity u 2 is then calculated thanks to the second equation of (31). Plugging the forms of u 0 and p 2 from Eqs. ( 25) and (32) into this equation leads to

∂ yy u 2 = - 3 h hh 3y 2 -1 + 2h 2 1 -6y 2 -2y m 2 + 2 (hy m -6h y m ) y + h 2 ∂x p2 . ( 33 
)
The integration of this expression, taken into account the no-slip conditions u 2 (x, ±1) = 0, provides u 2 of the form

u 2 (x, y) = 3(1-y 2 ) hh -4h 2 4h y 2 - hh + y m 2 4h + y m 3 - 2h y m h y - h 2 6 ∂x p2 , (34) 
with ∂x p2 still unknown at this stage. In order to determine this term, the first equation of (31) is integrated over y ∈ (-1, 1), which leads to 1 -1 ∂x u 2 dy = 0 because of the no-slip conditions v 3 (x, ±1) = 0, and eventually

h 3 ∂x p2 = - 6 5 hh + h 2 + 5y m 2 . ( 35 
)
Finally, plugging the above expression into Eq. (34) leaves us with

u 2 (x, y) = 3 2h 1 -y 2 4h 2 -hh 10 1 -5y 2 + 2hy m -12h y m 3 y . (36)
The pressure p2 is obtained by integrating Eq. ( 35) with the boundary condition p2 (1) = 0, which gives

p2 (x) = 1 x 6 5h 3 h 2 + hh + 5y m 2
dx .

(37)

Reconstruction of the solution

By adding the contributions at each order (Eqs. ( 25), ( 29) and (36) for u; Eqs. ( 20), ( 27) and (30) for v; Eqs. ( 26), ( 29) and (32) along with (37) for p), we reconstruct an approximation of the solution (u, v, p) up to the second order in ε. In dimensionless form, this gives us

u = 3 2h (1 -y 2 ) 1 + ε 2 4h 2 -hh 10 (1 -5y 2 ) + 2hy m -12h y m 3 y + o(ε 2 ), ( 38 
) v = 3ε 2h 1 -y 2 (h y + y m ) + o(ε 2 ), ( 39 
) p = 1 x 3 h 3 1 + 2ε 2 5 h 2 + hh + 5y m 2 dx (40) + 3ε 2 2h 2 h 1 -3y 2 -2y m y + o(ε 2 ),
which, coming back to the dimensional parameters defined by Eq. ( 10), gives the form announced in Eqs. ( 6)-( 8).

Validation of the ELA model

To inspect the accuracy of the ELA model specified by Eqs. ( 6)-( 8), we consider two channel's profiles (P1) and (P2) where both y m and h vary. The geometries of the channels, of length L = 1, are defined by the following equations:

(P1) h + (x) = 0.2 cos(π(x -1/2)) 2 + 0.2, h -(x) = 1 3 cos(π(x -1/2)) 2 , ( 41 
) (P2) h + (x) = 0.15 cos(π(x -1/2)) 2 + 0.1 + 0.35 cos(π(x/2 -1/2)) 2 ), h -(x) = -0.2 cos(π(x -1/2)) 2 + 0.05 + 0.35 cos(π(x/2 -1/2)) 2 . ( 42 
)
These profiles are represented in Fig. For (P1) and (P2), we have h

+ (0) = h -(0) = 0 and h + (1) = h -(1) = 0.
The prescribed inlet velocity ( 4) is chosen such that the flux is Φ = 1 and the fluid viscosity is set at µ = 1. We use COMSOL to solve the direct problem (3) along with the boundary conditions (4).

We report in Figs. 3, In the reported cases, the profiles have the characteristics given in Table 1.

Profile max(2h)

h h y m y m (P1) 0.2 ∼ 0.2 ∼ 1 ∼ 1 ∼ 5 (P2) 0.4 ∼ 0.5 ∼ 3 ∼ 0.5 ∼ 2
The two channels have a reasonable small slenderness ratio max(2h) as well as moderate slopes/curvatures which do not exceed few unities. Besides they produce flows with similar maximum horizontal velocities and similar pressure drops. However, the improvement of ELA compared to CLA is much more impressive for (P1) than for (P2) and we shall see that this is attributable to more significant slopes y m of the centerline, a parameter which is not related to the slenderness ratio. Hence, even though (P1) has a smaller slenderness ratio, the deviation of the flow characteristics with respect to the CLA prediction is more significant, and interestingly, the asymptotic analysis appears to be more robust with respect to large centerline slopes than to large slenderness ratio.

To begin with, it is noticeable that CLA and ELA have the same good accuracy to capture the right variations of u(x, y) and this is expected since the correction δu of ELA appears at the second order. From Eq. ( 6), this correction near the centerline varies as δu ∼ (4h 2hh )/10 ∼ 0.01 in the reported cases. Accordingly, we find an error averaged on the whole channel of about 2% for (P1) and 4% for (P2). The effect on the vertical velocity v(x, y) is much more significative and again this is expected since the correction appears at the first order. But in this case, from Eq. ( 7), v is crucially dependent on y m , since v/u ∼ y m near the centerline. It results that the large slope of the mean line in (P1) close to unity produces vertical velocities up to half the horizontal one.

We now move on to the fields of pressure, which are of particular interest since the pressure drop due to expansions/constrictions are important in many practical situations. As for the vertical velocity, the gain in the ELA is more impressive for (P1) than for (P2) although the slenderness ratio of the former is half that of the latter: for (P1), the error between the prediction and the direct numerics is of about 5% for ELA while this error is of about 40% for CLA; for (P2) the error is of 1% for ELA versus 10% for CLA. To better understand the influence of the different parameters in the ELA, we define p CLA (x) = µΦ L x 3/(2h 3 )dx as the pressure predicted by the CLA; from Eq. ( 8), the ELA involves two corrections compared to the CLA p(x, y) = p CLA (x) + δ p(x) + δp(x, y),

with

δ p = µΦ L x 3 5h 3 h 2 + hh + 5y m 2 dx , δp = 3µΦ 4h 2 h (1 -3y 2 ) -2y m y .
The term δp tells us that the isolines of pressure are not vertical and its relative weight δp/p CLA ∼ hh /L is given by the slenderness ratio, hence here negligible. Conversely, the term δ p is an integral along x (as p CLA ) and as such it cumulates the effects of slopes and curvatures. Its weight contains a contribution in y m 2 /h 3 which becomes significant when large variations of the centerline coincide with small slenderness. This happens for (P1) but not for (P2) and the consequences are shown in Fig. 6 where we reported the pressure profiles p(x, h ± ) along the channel walls computed numerically, and the CLA and ELA predictions. For (P1) the actual pressure drop, p(0) ∼ 18.10 3 , is correctly predicted by ELA while largely underestimated by CLA.

In contrast the gain for (P2) in ELA is moderate compared to CLA. 

Conclusion

We have derived in this paper a second-order lubrication approximation for viscous flow at low Reynolds number in thin channels with arbitrary walls shape. Velocities and pressure profiles in the channel have been given

as fully explicit functions of the inlet flux and the walls geometry, up to the second derivative. The resulting ELA is in general better than the CLA and this has been exemplified by comparison with direct numerics. However, there are situations where the CLA fails in accurate predictions although the criterion of small slenderness ratio is met. These situations corresponds to channels containing constrictions coinciding with large variations of the centerline. This results in large vertical velocities and pressure drops largely underestimated by CLA and accurately reproduced by ELA.
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 61 , (ii) a horizontal velocity of the Poiseuille's type and a vertical 7 velocity negligible compared to the horizontal velocity.

8

 8 

Figure 2 :

 2 Figure 2: Profiles used for the comparisons with the full scale simulations: (left) channel's profile (P1), (right) channel's profile (P2).
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 34 Figure 3: Results for the profile (P1). Fields of the velocity components (u, v) and of the pressure p in full scale simulations, CLA and ELA.

Table 1 :Figure 5 :

 15 Figure 5: Variations of the horizontal velocity u(x, y m ) and vertical velocity v(x, y m ) with respect to x, calculated at the centerline y = y m . Red line shows the velocity field computed numerically, blue line shows the prediction in ELA from (8); grey line shows the horizontal velocity in CLA (we do not represent the vertical velocity as it is neglected in CLA).
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 6 Figure 6: Variations of the pressure with respect to x. Plain lines show the pressure profiles p(x, h ± ) computed numerically (blue at y = h + , red at y = h -), dotted lines show the prediction in ELA from (8); dashed grey lines show p(x, y) = p CLA (x) being independent of y in CLA.