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The childhood of turbulent spot in shear flows
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828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France

2ONERA/DAAA, 8 rue des Vertugadins, 92190 Meudon, France

We numerically investigate the temporal aspects of turbulent spot spreading in a plane Couette
flow for transitional Reynolds numbers between 300 and 450. We focus our study on the sprea-
ding along the streamwise direction and on the shape of turbulent spots. Studying the topology of
turbulent spots and the associated large-scale flows, we suggest a decomposition of the streamwise
growth rate. On one hand, the quadrupolar large-scale flow heads for the spot along the streamwise
direction and act against the growth. The associated growth rate is negative. On the other hand, we
also define a positive growth rate associated to inside large-scale flow which enables the convection
of the streaks. The sum of these two growth rates is compared to the spot streamwise growth rate
and shows good agreement. The resulting shape of the spot is then discussed. A scenario gathering
all these elements provides a better understanding of the growth dynamics and of the shape of a
turbulent spot in a plane Couette flow. This scenario should be relevant to other shear flows.

PACS numbers:

I. INTRODUCTION

Transition to turbulence in wall-bounded shear flows has been subject of a wide range of studies over the last century.
Turbulent spots, isolated regions of strong fluctuation within laminar flow are an essential feature of the transition.
Depending on their dynamics, the final state of the flow can be a relaminarization, a permanent coexistence of both
laminar and turbulent flows via stripe patterns or a homogeneously turbulent state. The existence of spots has been
early reported in boundary layers by Emmons [14] who observed that localised perturbations move into organised
spot. Long before, Reynolds [24] reported the apparition of intermittent flashes of irregular motion in his famous pipe
flow experiment. Studying these flashes lately called slugs, Lindgren [19] measured the speed of their leading and
trailing edges. Wygnanski et al. [28] observed sustained turbulent structure called puffs which can lead to slugs. Still
in the configuration of a cylindrical pipe, a threshold Reynolds number can be defined by comparing the rates for
puff decay and puff splitting (Avila et al [1]). The splitting process leads to the proliferation of turbulence while the
decay drives the flow to the laminar state. The role of nonlinear advection in the growth of turbulent spots was also
noted from a recent model of pipe and channel flows proposed by Barkley [2] and has been shown to play a crucial
role in the growth of turbulent spots by Couliou & Monchaux [6] even if it is still difficult to take them into account
in phenomenological models (Manneville [21]).

The present investigation focuses on the case of plane Couette flow (PCF), the flow which is sheared between two
moving walls. The Reynolds number, being the natural control parameter, is defined as Re = Uh/ν, where U and h
are typical velocity and length scales, and ν is the fluid kinematic viscosity. A practical property of the PCF is that in
a configuration of two counter-sliding plates, the flow has a zero advection speed enabling easier tracking of developing
structures. This flow presents also many shared properties with other 2D flows as Taylor-Couette flow (flow between
two rotating cylinders) and plane Poiseuille flow. The bidimensional extension of these flows leads to a more complex
dynamics regarding the growth of turbulence patches called spots.

In the case of the PCF, Lundbladh & Johansson [20] made a few observations in their numerical simulations
regarding the shape of the turbulent spot. The length L and the width l of the spot increase during the growth and
as a function of the Reynolds number. The aspect ratio L/l increases during a first transitional period between 0
and 30 h/U (with h the half gap between the two walls and U the velocity of a wall) and then decreases. The ratio
of the growth rate dL/dl decreases at short times and tends to 1 at long times. Regarding the spot shape, at short
times, the spot has an elliptical shape and at longer times, the spot gets closer to a circle. The average growth rate
of the spot in the spanwise direction is comparable to that found in the streamwise direction. Duguet et al. [13] have
performed numerical simulations in a domain of great extension (Lx = 800 h, Ly = 2 h, Lz = 365 h with Lx, Ly, Lz,
the dimensions of the domain in the steamwise, wall-normal and spanwise directions respectively). It corresponds to
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approximately twelve times the domain extension used by Lundbladh & Johansson [20]. Duguet et al. [13] observed at
short times a similar behaviour but at longer times they observe the emergence of an oblique stripe network before the
extremities of the spot have reached the spanwise boundaries of the computational domain. Experimentally, Tillmark
& Alfredsson [26, 27], Daviaud et al. [10] and Dauchot & Daviaud [8] observed the growth of triggered turbulent spots
but with a focus on the subcritical nature of the transition when Dauchot & Daviaud [9] performed time-averaged
growth rate measurements.

An early key element pointed out in the work of Lundbladh & Johansson [20] is the large-scale flow that develops
around the turbulent growing spot with a quadrupolar structure. It has been observed numerically and experimentally
in PCF [5, 12, 17] and is also present along the regular laminar/turbulent patterns [12]. This quadrupole has also
been observed in model flows [4, 17, 25] and in other shears flows as in plane Poiseuille [18]. Couliou & Monchaux
[6, 7] show the crucial role these large-scale flows have on the spot growth process along the spanwise direction. By
using both experiments and direct numerical simulations, they have shown that two mechanisms are involved when
turbulent spots grow along the spanwise direction : a formerly proposed local growth occurring at the spot spanwise
tips but also in comparable proportion a global growth induced by large-scale advection.

In the spanwise direction, the large-scale flow enables the advection of the spot front. Since its shape is a quadrupole,
its effect corresponds to expulsing flow at the spanwise edges of the spot and bring in flow at the streamwise edges, i.e
large-scale flows should be acting against the growth of the turbulent spot in the streamwise direction. This assessment
leads us to wonder which mechanism enables the propagation of the spot front in the streamwise direction.

In the present article, we focus on the spanwise growth and especially on the evolution of the spanwise spot front.
Understanding how such an interface evolves in time and in space is the key for predicting wether turbulence would
spread or not. To do so, we have run direct numerical simulations of growing spot at Re between 300 and 450. The
generation and post-processing of these numerical data is described in section II. The main results consisting of the
analysis of growth rates, front velocities and large-scale flow measurements are gathered in section III. Discussion of
these results is givenin III followed by a summary of our findings and perspectives to this work.

II. METHODS

The x, y and z directions are respectively the streamwise, wall-normal and spanwise directions and Ux, Uy and Uz

are the associated velocities. Velocities are made dimensionless using U , the normalised velocity of a wall, length by
using h and times using h/U . The plane y = 0 corresponds to the mid-plane.

A. Direct numerical simulations

Direct Numerical Simulations of the Navier Stokes equations are computed in plane Couette geometry with the
Channelflow code ([15, 16]) written by John F. Gibson. Pseudo-spectral methods are used for the spatial discretisation
with a Fourier decomposition in the (x, z) directions and Chebyshev polynomials in y direction. The boundary
conditions are periodic in the (x, z) directions and no slip conditions are imposed at the walls at y = ±1. The size of
the domain is (Lx = 180, Ly = 2, Lz = 80) with a numerical resolution of (768, 33, 384) dealiased modes in the (x,
y, z) directions. A time-step of 0.01 was used resulting in a CFL number less than 0.6. Four pairs of counter-rotating
vortices as the one used in [20] is introduced as an initial disturbance to trigger turbulent spots. Five realisations
of the DNS have been performed for each Re value and ensemble-averaged results are presented. Note that a slight
change in the perturbation amplitude (typically 0.1%) is introduced to achieve variability between realisations.

B. Topology

The fields of Ux/U are represented in figure 1 in a plane close to y = 1, a slightly off-center plane close to y = 0 and
in a plane close to y = −1. The laminar linear velocity profile have been subtracted. One can note the asymmetry of
the spot in the direction normal to the plane. For planes close to y = 1 where Ux ' 1 (figure 1 .a), the spot is solely
constituted of streaks with positive amplitude which are off-centered to the right of the spot (x > 0) while for planes
close to y = −1 where Ux ' −1 (figure 1 .c), only streaks with negative amplitude are visible and all of these streaks
are biased towards the left of the spot (x < 0). We also observe in planes close to y = 0 a symmetrical distribution
of positive and negative streaks with respect to the x = 0 axis : negative streaks are rather observed in the left half
(x < 0) while positive streaks prevail in the right half (x > 0).

A cut in the plane z = 0 as the one drawn in figure 1 allows to clarify this observation. Since the cut is realized in
a z = cste plane, a single pair of streaks is observed. On the right side of the spot (x > 0), the negative streaks are
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Figure 1: Top, from left to right : Ux velocity field at Re = 360 in the plane at y = 0.77, a slightly off-center plane at y = 0.098
and a plane at y = −0.63 at t = 150. Bottom : Ux velocity field at Re = 360 for z = 0 and t = 150

located in off-centered planes close to y = 1. Similarly, the positive streaks in off-centered planes close to y = −1 are
located in the left of the spot (x < 0).

C. Detection method

Keeping in mind the 3D topology of a turbulent spot discussed above, the study is focused on a mid-plane in which
both negative and positive streaks are captured. In order to mark the turbulent spot contour, Ux velocity fields are
plotted. Two thresholds, Th corresponding to an upper limit and Tb corresponding to a lower limit are defined. Pixels
whose value is above Th or below Tb correspond to positive streaks or negative streaks respectively. They are considered
as turbulent and are set to 1. Pixels whose Ux level is between Tb and Th correspond to laminar areas and are set to
zero. A dilation erosion process is used to remove potential turbulent pixels considered laminar (false positive). The
domain gathering pixels detected as turbulent is then closed to form a unique turbulent spot. Geometrical properties
of the turbulent spot as its area, perimeter and aspect ratio can thus be easily deduced.

III. RESULTS

A. The shape of a turbulent spot

Figure 2 displays different snapshots taken along the growth of a turbulent spot. In a first phase, the spot is
elliptic with the axis along the streamwise direction being longer than the axis along the spanwise direction. As the
growth progresses, both principal axes tend to have the same length and the spot takes the shape of a more or less
regular diamond whose sides form an angle with respect to the streamwise direction [13]. This angle is prefiguring
the organized pattern orientation. The second phase is illustrated in the last snapshot of figure 2. Specific studies of
this second phase are scarce. In very large domains, Duguet et al. [13] nevertheless present the typical evolution of
a diamond-shaped spot turning progressively into a turbulent labyrinthine pattern made of several adjacent stripes
with various orientations that are similar to the often described steady patterns. For a moderate size of the simulation
domain as in our domain (when the spanwise direction is 40 times the distance between the walls), the spot size
quickly becomes sizable with the domain spanwise extension and this second phase is nothing but a reorganization of
the turbulent area into an inclined pattern. In the following, we focus on the first phase.

To quantify the growth, the turbulent fraction Ft corresponding to the ratio of the turbulent area to the total area
of the domain is plotted in figure 3a. In the present paper, the turbulent area is exactly the area of the turbulent spot.
Its evolution is divided into two phases. The time interval 0-60 corresponds to a common phase for every Re where
the turbulent fraction increases from 0 to 0.004. Beyond t=60, the turbulent fraction still grows with time and the
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Figure 2: Temporal evolution of the turbulent spot at Re = 380. Successive snapshots of Ux respectively correspond to t = 35,
t = 108, t = 219 and t = 383 after the initial perturbation.

growth rates are higher for higher Re.
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Figure 3: Temporal evolution of the turbulent fraction Ft for several Re and time-averaged spanwise front velocity σz
sf and

time-averaged streamwise front velocity σx
sf as a function of Re.

We now focus on spot fronts and their velocities. The front of the spot is detected by a simple threshold on the
velocity norm on the line z = 0 for the spanwise front and on the line x = 0 for the streamwise front. The determined
front positions hardly depend on the chosen threshold. The average front position between several realizations at a
given Re is obtained by cubic spline interpolations with smoothing parameter λ. This cubic spline is then differentiated
to obtain the front velocity as a function of time. Several values of λ in a range between [0.5, 1] lead to slightly different
velocity signals. These different signals are then time and ensemble-averaged to obtain the front-averaged velocity at
a given Re. The corresponding standard deviation is used as an error bar.

The time-averaged streamwise front velocity σx
sf defined as the total of the front velocity from both left and right

front of the spot and the time-averaged spanwise front velocity σz
sf defined as the total of the top and bottom front

velocity are plotted in figure 3b. Regarding σx
sf , the contribution of the left and right front velocities are equal and

regarding σx
sf , the contribution of the top and bottom front velocities are also found equal (not shown). By comparing

σz
sf and σx

sf in figure 3, we observe almost equal time-averaged velocity along both directions, the difference being in
the range of their errorbars. This result is quite surprising because the front dynamics is not the same along the two
directions and we can also expect that the involved mechanisms along both directions are different. Over z the spot
growth is indeed linked to the streak nucleation while over x the spot expansion is rather linked to an elongation of
the streaks. This point will be discussed more in details in section IV. Few previous measurements enable to compare
these values with other studies. In a half size domain compared to the one used in this present work, Lundblach &
Johansson [20] measured the width of the spot for three Reynolds numbers (Re = 375 , Re = 750 and Re = 1500)
during 150 time units. For Re = 375, they found σx

sf ∼ 0.17 which is the same order of magnitude as in our study
where σx

sf varies from 0.1 to 0.25 for Reynolds number between 340 and 420.
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B. Front dynamics

In the spanwise direction, the expansion of the turbulent spot is understood as a succession of nucleations of new
velocity streaks as detailed in [6, 7, 11]. In the streamwise direction, a streak occupies the entire spot length as can be
seen in figure 1. The velocity distribution in the turbulent spot is plotted in figure 2 : we can see a distinct presence
of negative streaks in the left half (x < 0) and of positive streaks in the right half (x > 0), in the central panel,
large-scale flows directed within the spot both at its left and right sides can be clearly identified even without any
spatial filtering. In term of velocity, we indeed observe outside of the spot that for z ' 0, Ux is negative for positive
x and positive for negative x .
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Figure 4: Streamwise front velocity σx
sf (a) and spanwise front velocity σz

sf (b) as a function of time for several Re

The evolution of the streamwise front velocity σx
sf is plotted as a function of time in figure 4a. For all Reynolds

numbers, σx
sf decreases over time and all the more so as the Reynolds number is low. It is found that for short times

(between t=0 and t=75), σx
sf is roughly independent of the Reynolds number. From t =125, the decrease of σx

sf is
more pronounced for lower Re. For Re = 320, it gets negative which is a sign of a retreat of the spot rather than
an expansion. Regarding σz

sf , it presents a maximum visible in figure 4b that is reached at about t = 125 whenever
Re > 360 . Below this value, it monotonously decreases with time, the lower the Reynolds number, the stronger
the decreasing rate. The spreading rate ends up negative for Re = 320 because the spot vanishes. As a reminder,
despite very different spatio-temporal dynamics visible in figure 4 between σz

sf (peak velocity at mid-growth) and σx
sf

(monotonous decay in time )), we observe almost equal average speeds in figure 3b.
In a previous study [6], we have suggested a growth mechanism in the spanwise direction in which the spanwise

front velocity is split into two contributions :

σz
sf = σz

loc + σz
adv, (1)

with σz
loc a growth rate associated to a local streak nucleation mechanism and σz

adv a growth rate associated with
a streak nucleation mechanism governed by the advection of the turbulent spot by the large-scale flows. Along the
spanwise direction z, the quadrupolar large-scale flows pulling out flow of the turbulent spot have an advection role.
Thus, in terms of order of magnitude σz

adv can be compared to a measure of the large scale flow intensity as :

σz
adv ∼ max(Uz

LSF )(x=0,z>0). (2)

In a similar fashion, the following part is dedicated to large-scale flows and their potential effects on streamwise
growth.

C. Large scale flows

Large-scale flows develop around growing turbulent spots in shear flows. As reported in [5, 12, 17], we identify them
by studying the two-dimensional spatial power spectrum of either velocity component in the (x, z) plane where a scale
separation between two peaks is visible. One peak of energy is around the wavelength λ ' 4− 5 and is associated to
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turbulent streaks. The second peak is associated to large scale flows and situated around λ = 40. A cut-off at λc = 24
enables to extract the large-scale and small-scale structures with 4th order Butterworth low-pass and high-pass filters.
Figure 5 shows snapshots of Ux associated with large scales (left) and small scales (right).

Figure 5: Ux at Re = 360 in the plane y = 0 at t = 150 for large-scale (left) and small-scale (right).

The expected quadrupole is visible with the low-pass filter for both Ux or Uz velocity component (Uz is not shown).
Large-scale structures are also visible inside the turbulent spot itself on the Ux field. A left-right symmetry of this
inside large-scale flow is noticeable : for the left part of the spot (x < 0), a strong negative Ux velocity component
is prevailing while for the right part (x > 0), it is a strong positive Ux velocity component which is predominant.
Regarding the small scales (figure 5 right), the streaks associated with edge vortices are visible at the border of the
spot and the turbulent steaks are homogeneously observed in the entire turbulent spot.

Given the symmetries, we can restrict our study to only half the domain without any generality loss. We choose
to focus on x > 0 where one observes intense outer large-scale flows with a negative streamwise velocity. In the
same subdomain, within the turbulent spot, inner large-scale flows have a positive streamwise velocity. A local direct
estimation of the intensity of outer large scale flows is realised by extracting the minimum value of the large-scale
filtered streamwise velocity component min(Ux

LSF )|(z=0,x>0) together with Xmax, the position of this minimum large-
scale velocity for z ∈ [−20, 20]. A local direct estimation of the intensity of inner large scale flows is the maximum
large-scale velocity max(Ux

LSF )|(z=0,x>0) sought for the area x > Xmin in the same interval z ∈ [−20, 20]. Velocities
are averaged over all realisations done at the same Reynolds number and are smoothed by averaging in time over five
time steps. Velocities are plotted in figure 6. For the sake of clarity in the writing of min and max, the subscript z = 0
will be dropped.
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Figure 6: min(Ux
LSF )|x>0 as a function of time for several Re and max(Ux

LSF )|x>0 as a function of time for several Re

The evolution of min(Ux
LSF )|x>0 on the line z = 0 is shown in figure 6a. For all Reynolds numbers, min(Ux

LSF )|x>0

decreases with time from 0 to quickly reach a value of approximately −0.1 U. Then the overall trend for all Re is a
slower decrease ; min(Ux

LSF )|x>0 falls from −0.1 to −0.15 at t = 250. The evolution of max(Ux
LSF )|x>0 is shown in

figure 6b. For all Reynolds numbers, max(Ux
LSF )|x>0 is roughly constant around 0.2.
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IV. DISCUSSIONS

From the study of the topology of turbulent spot and the associated large-scale flow in section III, we suggest a
decomposition of the streamwise growth rate as the sum of two rates σx

inner and σx
outer which are sketched in figure 7.

x

z

z=0
x

outerx

inner

x
σ

σ

Figure 7: Sketch of the topology of a turbulent spot and of the associated large-scale flows.

On one hand, the quadrupolar large-scale flow steers inside the spot along the streamwise direction and slows down
its growth. The associated growth rate is negative. We call σx

outer the rate representing the quadrupolar large-scale
flow contribution which steers inside the spot at z = 0. In a first approximation, we can compare this rate to the
minimum value of Ux

LSF around the line at z = 0 outside the spot which is a local estimation of the large-scale filtered
velocity outside the spot :

σx
outer ∼

{
min(Ux

LSF )|x>0, for x > 0
max(Ux

LSF )|x<0, for x < 0
(3)

On the other hand, we define a positive growth rate σx
inner associated with the inside large-scale flow which enables

the convection and the elongation of the streaks. σx
inner is compared in a first approximation to the maximal value of

Ux
LSF around the line at z = 0 inside the spot, a local estimation of the large-scale filtered velocity inside the spot :

σx
inner ∼

{
max(Ux

LSF )|x>0, for x > 0
min(Ux

LSF )|x<0, for x < 0
(4)

The sum of these two growth rates, σx
inner + σx

outer is compared to the spot streamwise growth rate σx
sf . Using the

approximation formula from equations 3 and 4, we can directly compare max(Ux
LSF )|x>0 + min(Ux

LSF )|x>0 to σx
sf .

This is done in figure 8. Both quantities have a time evolution in two parts : an initial decrease of the rate until
t ∼ 100− 150 followed by a slowdown and even a plateau at later times and higher Reynolds numbers. The range of
positive values of σx

sf is slightly higher (0 to 0.22) than the one of σx
inner+σ

x
outer (0 to 0.18). Evolution and the values

of σx
inner + σx

outer show a reasonable agreement with those of σx
sf . This means that the decomposition we suggest,

solely based on large-scale contributions, captures a reasonable part of the mechanisms involved in the streamwise
growth, and all the more so when considering that maximum and minimum are very raw estimations of the large scale
flow intensity.

Figure 9 shows the ratio between min(Ux
LSF )|x>0 and max(Ux

LSF )|x>0 as an estimation of the competition between
the two growth rates σx

inner and σx
outer. The ratio increases until t ' 100− 150 and then plateaus at 0.6. This initial

growth is linked to the fact that the large scale flows slowly develop outside the spot along its growth while the
inner mechanism remains roughly constant all along the dynamics as seen in figure 6. The time evolution of the ratio
(increasing then saturating) is similar for all Re. The higher is Re, the quicker the plateau is reached. The ratio is
always lower than 1 which is consistent with the fact that the turbulent spot is growing along the x direction.

From this study on the expansion of the turbulent spot in the streamwise direction and from the recall we have
done regarding the expansion along the spanwise direction, we expand our study on the shape of the turbulent spot.
We define lx the length of the turbulent spot on the line z = 0 corresponding to the distance between the right and
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Figure 8: Evolution of the spot streamwise growth rate σx
sf and of max(Ux

LSF )|(x>0) +min(Ux
LSF )|(x>0)) as a function of time

for several Re.
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Figure 9: Time evolution of the ratio |min(Ux
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left front of the spot and lz as the distance between the top edge and bottom edge on the line x = 0. Figure 10
represents the time evolution of the ratio lx/lz for different Reynolds numbers. The temporal evolution of lx/lz can
be divided into three phases. The t = 0− 75 interval is a common phase for every Re where the ratio triplicates from
0.5 to 1.5. The range t = 75-T1 corresponds to a phase where lx exceeds lz but the ratio lx/lz decreases. T1 is noted
as the time when the ratio is equal to 1. T1 is within [150− 270] and is getting shorter as the Reynolds number gets
higher. Beyond T1, the ratio stabilizes to values around 1. At longer times beyond t = 350, lx/lz may become less
than 1 but this does not correspond to the first stage of the spot growth any more but rather to its reorganization.

The time evolution of the ratio lx/lz is obviously linked to the time evolution of the streamwise front velocity σx
sf

and spanwise front velocity σz
sf shown in figure 4 in section III. The time averaged ratio lx/lz is around 1 which is

consistent with the fact that the time-averaged spanwise front velocity σz
sf is equal to the time-averaged streamwise

front velocity σx
sf for all Re (figure 3). To conclude, the shape of the spot can be explained by focusing on the evolution

of the streamwise and spanwise spot fronts.
The impact of the domain size on the shape of the spot is now discussed. The ratio between the spanwise and

the streamwise rate is affected by the domain size and the ratio of spanwise and streamwise directions. In a previous
study [7], we have shown that the influence of the box size is negligible at the beginning of the growth, but becomes
significant at later times when the effect of the periodic boundary conditions on the spot front is no longer negligible.
In order to avoid any bias from this size effect, the spot growth dynamics is studied before the box size influences
the spot development. More specifically, the recording of the front position should be stopped when it reaches 36h
with our box size. We expect that the dynamics of shape and front are the same in larger domains for the range of
time studied here. After this first period, previous works as Duguet et al [13] have enlightened that the spot have not
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Figure 10: Temporal evolution of the ratio lx/lz for several Re.

anymore a diamond shape but turns into a network of intricated domains of inclined stripes with various orientations.
In larger domains, the large-scale flow will remain but will not be affected by domain boundaries because it decays
away from the spot. The ratio between each regimes (decrease/increase of σz

sf , etc) will not be anymore of the same
order of magnitude. So the equal time-averaged spanwise and streamwise growth rates should not be true anymore.

The origin of the inner large-scale flow is unknown. The mechanism associated with the displacement of the stream-
wise front is also unclear. In a boundary layer flow, Matsubara & Alfredsson [23] show from flow visualizations that
some elongated streaks appear and they suggest that a secondary instability is acting on the streaks. Brandt et al
[3] suggest a convective instability of the streaks along the streamwise direction. The streak perturbation response
is comprised of the sinuous mode of instability triggered by the spanwise wake-like profile. Streaks behave as flow
amplifiers. The convective instability presents the ingredients to explain the elongation of streaks along the stream-
wise direction in a turbulent spot. The inner large-scale structure could be the signature of this instability. A deeper
analysis as a more accurate estimation of the different contribution of the spanwise growth could help denying or
confirming this hypothesis. Nevertheless, if the inner contribution comes from the streak instability described above,
it should remain roughly constant in time, which is indeed the case as seen in figure 6.

Intense large-scale flows are observed in a laminar-turbulent coexistence with a stripe pattern in plane Couette flow
by Duguet & Schlatter [12] and Manneville [22]. An interesting perspective would be to also establish the exact role
of these large-scale structures in organizing and maintaining this pattern. This work provides a scenario that gives
a better understanding of the growth dynamics and the shape of a turbulent spot in plane Couette flow and should
possibly be extended to equilibrium states as the laminar turbulent stripes or be applied to other shear flows.
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