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Abstract. In the context of turbulent flows laden with inertial particles, the
accurate estimation of preferential concentration is particularly relevant. We
have recently proposed to use Voronoı̈ diagrams to estimate concentration fields
from two-dimensional imaging techniques implemented around wind tunnel
experiments. Due to various experimental biases, the relevance of such an
analysis becomes questionable. In this paper, we show the robustness of the
Voronoı̈ analysis with respect to three more important identified biases possibly
present in such experiments.
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1. Context and motivations

In the increasing number of studies on particle-laden turbulent flows, three aspects are usually
pointed out in the case of inertial particles: the preferential concentration or clustering,
the possible increase in collision rate and the enhancement of the particle settling velocity
since all of them are of prime importance regarding the various practical applications
(pollutant dispersion, rain formation, optimization of chemical reactors and so on). Preferential
concentration plays a crucial role since it is clearly involved in two other aspects: the
collision kernel is expressed as the product of the particles radial relative velocity and the
particle radial distribution function, the latter containing information related to the preferential
concentration [9, 17]. Regarding the settling velocity enhancement, which has been reported
both numerically and experimentally [1, 13, 15], the commonly invoked mechanism is based
on the fact that particles tend to preferentially explore the downward side of turbulent eddies.
Nevertheless, Aliseda et al [1] have shown that collective effects should be involved to explain
the further increase in settling velocity measured in their experiment when the seeding density
is increased. They found that the fall velocity conditional on the local concentration linearly
increases with the latter, suggesting the key role played by preferential concentration in this
issue.

Properly simulating particle-laden flows requires an accurate model for the particle
dynamics equation that is lacking so far: only the point particle limit is usually considered [5, 6],
and most of the simulations make further simplifications and often do not consider the back-
reaction of the particles on the fluid phase. Thus, experimental investigations are required to
assess the preferential concentration problem and its consequences on the settling velocity and
collision rate enhancement. We study in the present the possible biases arising from classical
experiments regarding the quantification of preferential concentration.

The relevant parameters in this context are the particles diameter or their Stokes number
defined as the ratio of the particle viscous relaxation time to the dissipation time scale of
the carrier flow (St = τp/τη), the average seeding density and the Reynolds number. A first
bias arises from the nature of the particles used: in air experiment, particles are usually water
droplets generated from commercial or dedicated injectors that produce polydispersed particle
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populations leading to seeding consisting of a mixture of various Stokes number particles so
that average Stokes numbers and corresponding uncertainties have to be defined.

Acquisitions of the concentration field require imaging techniques. If three-dimensional
(3D) imaging is developing fast, it is still limited to the cases when too few particles
(thousands) are present in the measurement volume to allow proper study of concentration
issues; consequently, most of the work devoted to preferential concentration relies on 2D images
obtained from cameras aiming at a particular region of the flow illuminated by a laser sheet
whose thickness L th is of the order of 1 mm. In this case, experimentalists are studying a 3D
phenomenon through projections into a 2D space and one may wonder how this projection
affects the results and conclusions of their work.

Another bias arising from these imaging techniques is linked to the identification of the
particles in the images. Typical water droplet experiments involve a mixture of particles whose
diameters are in the range of 2–200 µm [1, 7, 10, 11, 14]. On a typical image, rough detection
of particles is performed through thresholding of the grey level, a more precise position being
obtained from sub-pixel accuracy techniques that are relevant when particles span several pixels
in the images. The use of thresholds implies that many particles may not be detected and
therefore the particle sets are artificially sub-sampled.

Whenever it is possible to clearly measure the coordinates of the particles, various
methods can be implemented to estimate and/or accurately access the concentration field or its
global properties: box counting methods, clustering index, correlation dimension, Minkowski
functional, Voronoı̈ diagrams and so on. In a recent review, we have tried to present the
advantages and drawbacks of these various techniques in the field of particle-laden turbulent
flows [8]. Here, we would like to focus particularly on the technical issues raised by the use of
Voronoı̈ diagrams when studying concentration fields of particles in turbulent flows. We have
introduced the use of this tool in the field in a recent paper to analyse experimental data obtained
in a wind tunnel [7]. In the present, we will use various 3D numerical simulations to question
the influence of the three biases introduced above. Section 2 presents the Voronoı̈ analysis, the
former experimental results and the numerical simulations used here. Section 3 is dedicated to
the study of the various biases we consider. We finally discuss our results and draw possible
conclusions in section 4.

2. The data, post-processing and former results

As we aim to address the possible biases arising in experiments using 2D imaging methods,
we present the experimental setup and summarize the main results presented in [7] that is
representative of this family of experiments. We then describe the two numerical data sets we
have employed to assess the importance of these biases. All of the analysis being carried out
using Voronoı̈ diagrams, we first recall the basics of this tool.

2.1. Post-processing and definitions

As explained in [7] and further justified in [8], the use of Voronoı̈ diagrams is particularly
relevant for studying preferential concentration of inertial particles in turbulent flows. Given
a set of particles, the corresponding Voronoı̈ diagram is the unique decomposition of the nD
space into independent cells associated with each particle. One Voronoı̈ cell is defined as the
ensemble of points that are closer to a particle than to any other. The use of Voronoı̈ diagrams
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is very classical to study granular systems and has also been used to identify galaxy clusters.
Voronoı̈ diagrams computation is very efficient with the typical number of particles per set
usually encountered (up to several hundred thousands). From their definition, it appears that
the volume/area of a the Voronoı̈ cell is the inverse of the local concentration of particles;
therefore the investigation of the Voronoı̈ volumes/areas field is strictly equivalent to that of
the local concentration field. In the following, we will deal with volume regardless of the space
dimension. As the mean value of the Voronoı̈ volumes is nothing but the average concentration,
we always normalize these volumes by their mean value to define normalized Voronoı̈ volumes
that will be referred to as volumes and denoted by V throughout this paper.

In simulations as well as in experiments, several 2D or 3D particle fields are obtained
at various instants. We present statistics obtained from ensemble averaging over several time
samples. The probability density function (PDF) and standard deviation of the normalized
Voronoı̈ volumes can be calculated for experimental and numerical data sets and compared
to those expected for uniformly distributed particles (see [4] for a presentation of those
expectations). Voronoı̈ volumes PDF may be used to identify clusters of particles as follows.
Voronoı̈ PDFs for a typical experiment/simulation and for a uniform random process (URP)
intersect twice: for low and high values of the normalized Voronoı̈ volume, corresponding
respectively to high and low values of the local concentration, the PDF associated with inertial
particles is above that of URP, while the opposite is observed for intermediate volume values.
This is consistent with the intuitive image of preferential concentration: the inertial particles
concentration field is more intermittent than the URP, with more probable preferred regions
where the concentration is higher than the uniform case and subsequently also more probable
depleted regions where the concentration is lower than in the uniform case. We consider the first
intersection point Vc as an intrinsic definition of particle clusters: for a given data set, Voronoı̈
cells whose volume is smaller than Vc are considered to belong to a cluster. It appears that cluster
cells tend to be connected in groups of various sizes and shapes that we identify as clusters
whenever they belong to the same connected component. We then analyse the geometrical
structure of the identified clusters. More details are available in [7].

2.2. The original experiment

Here we present our former experimental setup and results that will be referred to as LEGI data. Q1

2.2.1. Experimental setup. Experiments are conducted in a large wind tunnel with a 0.75 m ×

0.75 m square cross-section where an almost ideal isotropic turbulence is generated behind
a grid whose mesh size is 7.5 cm. We can adjust the mean velocity from 3 to 15 m s−1 (the
turbulence level remaining relatively low, of the order of 3% at the measurement location, and
the anisotropy level between the transverse and longitudinal fluctuating velocities is smaller than
10%) and thus the Taylor micro scale Reynolds number Rλ. Inertial particles are water droplets
generated by four injectors placed in the convergent part of the wind tunnel, 1 m upstream of the
grid to ensure a homogeneous seeding of the flow. According to the injection process, we are
able to tune the average Stokes number and the average particle concentration C0. We always
consider regimes of relatively low particles volume loading (volume fraction in our experiments
is in the range 2.10−6 < φv < 3.10−5) so that no turbulence modulation by two-way coupling is
expected to occur. Acquisitions are performed using a Phantom V12 high-speed camera (Vison
Research, USA) operated at 10 kHz and acquiring 12-bit images at a resolution of 1280 pixels
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×488 pixels corresponding to a 125 mm (along x)×45 mm (along y) visualization window on
the axis of the wind tunnel (covering slightly less than an integral scale in the vertical y-direction
and almost two integral scales in the stream-wise x-direction), located 2.95 m downstream of the
grid. The camera is mounted with a 105 mm macro Nikon lens opening at f/D = 2.8. An 8 W
pulsed copper laser synchronized with the camera is used to generate a 2 mm (i.e. 3η–4η) thick
light sheet illuminating the field of view in the stream-wise direction. Particles are identified
on the recorded images as local maxima with intensity higher than a prescribed threshold. Sub-
pixel accuracy detection is obtained by locating the particles at the centre of mass of the pixels
surrounding the local maxima. More detailed descriptions of the experimental and acquisition
setups are available in [7].

2.2.2. Experimental results. Here, we briefly recall the main results obtained experimentally
and presented in [7]. By systematically varying the triplet of parameters (St, Rλ, C0), we
have shown that particle Voronoı̈ volume distributions are always reasonably log-normal, so
that preferential concentration can be quantitatively measured by a single scalar (the standard
deviation of these distributions σV). By plotting σV against the Stokes number, the maximum of
heterogeneity of the concentration field for particles with Stokes numbers around unity has been
successfully recovered. We have characterized clusters (and voids) geometries and their inner
concentration: the cluster areas/volumes (Ac) are algebraically distributed and their structure is
fractal (their perimeter Pc and their area Ac are not linearly related); in particular, clusters do
not appear to have any characteristic typical scale. The analysis of the particles normalized
concentration inside the clusters (C/C0) revealed two new, so far unpredicted results: (i)
the average particle concentration inside clusters depends on the global particle loading in a
non-trivial way and (ii) after compensating for this particle loading dependence, the average
concentration inside clusters exhibits a non-monotonic dependence on Stokes number, with a
maximum around unity values. Figure 1 gathers all these results.

2.3. Numerical simulations

Our goal in this paper is to use 3D direct numerical simulation (DNS) data to produce, as much
as possible, sets of data that exhibit biases similar to those naturally present in experiments and
to analyse them as experimental data to estimate the consequences of the considered biases for
the measured results. We have benefited from two sets of numerical data produced by similar Q2

methods. The first set is available online at http://mp0806.cineca.it/icfd.php and has been used
and presented in [3], and the second set provided by Goto has been used in [16]. They will
be referred to as CINECA and GOTO data, respectively. Both of them consist of 3D DNS of
isotropic homogeneous turbulence produced in periodic cubic boxes of size (2π)3. They employ
the simplest model for small heavy particles [5, 6]:

d

dt
vp(t) =

1

τp
(u(xp(t), t) − vp(t)), (1)

where vp(t) and xp(t) are the particle velocity and position at time t and u(x, t) is
the surrounding fluid velocity field at position x. The latter corresponds to a statistically
homogeneous isotropic stationary turbulence field obtained a priori for an incompressible fluid
and is used as a frozen forcing to solve equation (1) for various types of particles defined through
the Stokes drag coefficient τp = 2ρpa2/9µ, where ρp and a are the particle density and radius,
respectively, and µ is the fluid viscosity.

New Journal of Physics 14 (2012) 000000 (http://www.njp.org/)

http://mp0806.cineca.it/icfd.php
http://www.njp.org/


6

C
0
(ppi)

Figure 1. (a) Centred and normalized PDF of the logarithm of Voronoı̈ area
for 40 experiments performed at LEGI; the black dashed line represents a
Gaussian distribution. (b) Standard deviation of Voronoı̈ areas as a function of
the average Stokes number; the Reynolds number is constant along lines, each
point is estimated as the averaged standard deviation from experiments with
the same Stokes number (but possibly different average concentrations); error
bars represent the dispersion between such experiments. (c) PDFs of clusters
area; the inset shows the evolution of the fitted power law exponent with Stokes
number for the 40 experiments performed at LEGI; vertical dash-dotted lines
indicate η2 (left) and L2 (right). (d) Geometrical characterization of clusters for
the same 40 experiments. (e) PDF of normalized–reduced concentration C/C0

within clusters. (f) Evolution of the means of PDFs in panel (e) with the Stokes
number after compensating for the seeding concentration dependence displayed
in the inset.
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Table 1. Parameters involved in the DNSs (dimensionless) and experiments.
ε: the energy dissipation rate; λ: the Taylor micro scale; Rλ: the associated
Reynolds number; L and η the integral and Kolmogorov scales; kmaxη the largest
wavenumber in the simulation in units of η; L th: the 2D slices thickness; N0: the
original number of particles per instant/snapshot; and 1p: the average distance
between neighbouring particles.

LEGI CINECA GOTO

Grid points 1280 × 488 5123 5123

ε 0.085 m2 s−3 0.877 0.262
Rλ 114 180 190
L 61.4 mm 4.6 1.87
λ ' 5 mm 0.24 0.15
η 0.45 mm 0.01 0.005 55
kmaxη NA 3.35 1.34
St 0.1–6 0–4 0–10
L th 2η–6η 2η–6η 2η–6η

N0 300–6000 128 × 103 16 × 106

1p 2η–8η 12η 4η

The fluid velocity field u(x, t) is obtained by solving the Navier–Stokes equations:

∂

∂t
u + (u · ∇)u = −

1

ρf
∇ p + ν∇

2u + f, (2)

∇ · u = 0, (3)

where ν and ρf are the fluid kinematic viscosity and density, respectively, p(x, t) is the fluid
pressure field and f is an external forcing implemented by fixing the amplitudes of Fourier
modes in the low-wavenumber region. The numerical grids used set the associated Taylor micro
scale Reynolds numbers Rλ. The relevant parameters defining the simulations are provided in
table 1. The number of particles in the simulations and the considered Stokes numbers vary
from one simulation to another; they are also recalled in table 1.

3. The study of bias

3.1. Two-/three-dimensional bias

As mentioned in the introduction, most of the current concentration measurements carried out
in particle-laden turbulent flows consist of 2D imaging of the particular region of the flow
illuminated by a laser sheet whose thickness ranges from 0.5 to 2 mm. The consequence of such
a technique is that particles living in a 3D space are projected onto a 2D slice. Although this
may have little implication regarding particle image velocimetry since in this case the relevant
parameter is the particle velocity that should not change much along the sheet thickness in most
of the applications, it turns out to be an issue when one deals with the particle concentration,
since it may artificially increase the concentration locally (consider, for example a case when
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Figure 2. PDFs of normalized Voronoı̈ areas for 2D slices obtained from GOTO
data (top) and CINECA data (bottom). Left: V = A/A. Right: the centred and
normalized PDFs of the logarithm of the normalized Voronoı̈ volume.

particles would be organized in structures or clusters whose typical relative distance would be
smaller than the laser thickness). In order to estimate the resulting bias, from the original DNS
boxes of size (2π)3, we have defined several slices whose surface along the first two coordinates
is (2π)2, whose extension along the third coordinate is varied from L th = 2η to L th = 6η and
which are centred at various positions between 0 and 2π . For each slice, we keep only the
two first coordinates and calculate the associated Voronoı̈ tessellations. This exactly mimics
experimental 2D imaging of a 3D flow with usual laser sheets.

Figures 2 and 3 present the resulting normalized Voronoı̈ area distributions and the
dependence of the Voronoı̈ area standard deviation with the Stokes number for various slice
thicknesses for GOTO and CINECA data. As to the experimental data, the PDFs of the Voronoı̈
areas are wide, covering more than four decades. The ones obtained from GOTO are close
to log-normal (as in the experimental data), while the ones obtained from CINECA are not.
The shape of the ones obtained from GOTO changes when L th is increased, which is not the
case for the ones obtained by CINECA. Nevertheless, all of them are well described by their
standard deviation. When the slice thickness is increased, the standard deviation dependence
on the Stokes number is qualitatively preserved over the available range of Stokes numbers.
Nevertheless, the exact values of the standard deviation show a systematic increase with slice
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Figure 3. Standard deviation of the normalized Voronoı̈ area distributions as a
function of the Stokes number for three different slice thicknesses. Left: GOTO
data; right: CINECA data. Top: 2D data; bottom: 3D data. The dash-dotted
lines correspond to the value expected for uniform random distributions of
particles.

thickness. We report a maximal increase of 25% when the slice thickness is increased by 150%
for both sets of numerical data. Surprisingly, the standard deviations obtained from GOTO data
are twice as large as the ones obtained from CINECA data that are closer to the experimental
one. The discrepancies between GOTO and CINECA data on the standard deviation values, on
the PDFs shapes and on their shape change with L th will be discussed when addressing sub-
sampling issues in section 3.2.

A very interesting feature is that for both simulations, 2D and 3D post-processing lead
to very similar quantitative results, which legitimates the experimental use of 2D slices to
investigate a 3D phenomenon.

3.2. Sub-sampling bias

Another bias that may come from imaging techniques is an artificial sub-sampling of the data
sets. As in any detection problem, two kind of errors are expected: wrong detections and
missed detections (false positive and false negative in receiver operating characteristic curve
vocabulary). The former overestimates the number of particles while the latter underestimates
it. Usually, the signal processing chain implemented in such a case is designed so that there is
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no wrong detection and so that the number of particles found varies very slowly with the chosen
threshold whenever this is possible. As a consequence, there are necessarily several if not many
missed detections and experimental data sets are usually sub-sampled. Q3

Sources of missed particles are numerous. One source is particles that remain in the shadow
of other and another is due to the use of thresholds for particles detection that implies that some
particles have to be assimilated to the noisy background. We believe that the latter is the main
source of missed detection and this for several reasons: (i) smaller particles appear less luminous
than bigger ones, (ii) as the laser sheet intensity is decreasing toward its edges, particles in the
centre of the sheet appear more luminous than the others, (iii) due to the average seeding and
to the laser sheet thickness, the resulting concentration on 2D images is not very high and the
number of shadowed particles might be very small compared to the number of missed particles
due to (i) and (ii).

To test the impact of this unavoidable sub-sampling, we have created extra data sets from
data sets obtained with a given threshold, by keeping fewer and fewer particles from the original
data set. Particles were removed by randomly picking them from the original data set with a
uniform distribution. The same procedure has been applied to 3D DNS data. From an original
data set consisting of N0 particles, we produce new data sets with only αN0 particles, α ∈ [0, 1]
being the ratio of the kept particles.

Results are presented in figure 4. The top left figure shows the changes in the normalized
Voronoı̈ area PDF obtained for one experiment at St = 0.25 taken from LEGI data when the
number of particles is artificially reduced down to 1% of the original number and the top right
figure shows the associated standard deviation σV as a function of the ratio of the particles kept.
It is seen that the PDFs are not much affected for ratios down to 40% of the original number.
This result is confirmed with the standard deviation that shows a change by less than 2% when
the number of particles is decreased by more than a factor 2. Note that when only 1% of the
particles are kept, the resulting standard deviation corresponds to that of a uniform distribution
of particles. The bottom left and right figures in figure 4, respectively, present the dependence
of the Voronoı̈ volumes standard deviation on the sub-sampling ratio and the Stokes number
for all GOTO data associated with 2D slices of thickness 5.7η. As to the experimental data,
the effect of sub-sampling is a monotonic decrease of the estimated Voronoı̈ standard deviation.
Whatever the value of the Stokes number, when a few per cent of the original particles are
kept, the standard deviation is getting very close to the value expected for a URP. For small and
intermediate values of the sub-sampling (say above 40%) the qualitative dependence upon the
Stokes number is preserved while the absolute values are decreased by at most 25%, which is
larger that what has been observed from the experimental data sets. It is worth noting that the
plateau exhibited for sub-sampling values ranging from 40% to 100% in the experimental data
is no longer present in GOTO data. When the sub-sampling is larger (values below 40%), the
qualitative dependence of σV on the Stokes number is affected and does not present maximum
anymore. The corresponding curves look similar to those obtained from CINECA data that
were computed from much smaller particle samples (see table 1). Tagawa [12] found consistent
values from another set of numerical data. The shift observed on the curve σV = f (St) when
half of the particles are removed has to be linked to results presented in 3.1: we noted that
CINECA and GOTO data lead to different values of σV and to different shapes for the V PDFs.
The only difference between both simulations is in the number of particles, which is 125 times
larger in GOTO data. As a consequence, the use of Voronoı̈ diagrams that do not involve any
coarse graining leads to different scales of analysis. GOTO data allow probing at dissipative
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L th = 5.7η from GOTO data.

scales, while CINECA data are fully in the inertial range; as a consequence, both data sets lead
to different results.

All the results presented in section 2.2.2 have been recovered from the sub-sampled
experimental data sets. We illustrate this in figure 5, which presents the PDFs of the identified
cluster areas for various sub-sampling ratios. PDFs are compensated for by A2

c to evidence that
the algebraic behaviour with a −2 exponent is always roughly preserved even if more than
50% of the particles have to be kept to observe the scaling over more than one decade. Direct
visualizations of the non-compensated PDFs reveal that the departure from the −2 scaling law
appears mostly in the tails, which shrink when the number of particles kept is decreased (see
the inset).

3.3. Mixing Stokes numbers

Figure 6 (left) presents the distribution of the particles diameters obtained in LEGI experiment
for four values of air pressure varying from 2 to 5 bars at a fixed water flow rate (1.2 l min−1

for each injector) and a fixed wind velocity (V0 = 4.5 m s−1). Each of them is widely distributed
over more than one decade and the estimation of a Stokes number implies to use an average or a
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Figure 6. Left: particles diameter PDF evolution with air pressure (varying from
2 to 5 bars) at a fixed water flow rate (1.2 l min−1 for each injector) and a fixed
wind velocity (V0 = 4.5 m s−1); note that PDFs are calculated from particles
volume (and not particles number).

most probable Stokes number defined from the average or the mode of these PDFs (we actually
used the mode in [7]). In both cases, because of the high polydispersity, the standard deviation
σSt of Stokes number (based on measured diameters distribution), which could be interpreted as
an error bar for the Stokes number estimation, is large (σSt/St easily exceeds 50%). The same
happens in any wind tunnel experiment seeded with liquid droplets [1, 10] and one may wonder
how this polydispersity impacts the dependence on Stokes number of the various quantities
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measured in experiments. To tackle this issue, we have built a polydisperse data set from GOTO
data projected on 2D slices.

In Goto’s work, each Stokes number data set was computed using the same fluid DNS
(see section 2.3). As a result, gathering particle fields of various Stokes number makes sense
and properly mimics polydispersity. For each experimental condition, we have estimated a
particle diameter distribution similar to those shown in figure 6 (left). Using the definition of the
Stokes number used in this paper, these PDFs can be expressed in terms of the Stokes number
rather than in the particle diameter. In Goto’s work, eight sets of particles associated with eight
values of the Stokes number have been simulated. To mimic one particular experiment, we
pick randomly a certain number of particles from each of these eight data sets. The relative
proportion taken from each of them is given by the presented experimental particle diameter
PDF. Figure 6 (right) presents σV as a function of St for single Stokes data (see figure 3) and
for mixed data built as described above. In spite of the short range of Stokes numbers covered
by the polydispersed data, we can see that quantitative values are changed less than 15%. The
qualitative behaviours of these two curves are close, even though the one associated with single
Stokes number data presents a maximum while the other does not. Nevertheless, this maximum
relies only on the point at St = 10, and in the range where both curves are present, the two
behaviours are similar.

4. Discussion and conclusions

2D/3D biases studied in section 3.1 and summarized in figure 3 have been shown to affect
less the obtained results. Qualitative results are always recovered when considering slices of
thickness L th ' 2η − 6η. Quantitatively, the estimated values of σV are not much affected in this
range of slice thickness. This is encouraging regarding the reliability of the experimental results
obtained from 2D acquisitions performed in particle-laden turbulent flows.

The study of sub-sampling experimental and numerical data shows that none of the so far
obtained results are affected qualitatively or quantitatively when half of the detected particles are
removed from the original data. This demonstrates the robustness of the Voronoı̈ analysis with
respect to the almost unavoidable missed detections occurring when processing experimental
data. On the other hand, the impact of sub-sampling seems slightly more important for GOTO
data than for LEGI data and we noted several discrepancies between GOTO and CINECA data.
We may wonder about the reasons for these important differences. Considering the values
reported in table 1, it is seen that the ratio between λ, the Taylor micro-scale, and η, the
Kolmogorov scale, is larger for GOTO data. As a consequence, when sub-sampling the data
from the experiment, we actually probe scales fully included within the inertial range, whereas
when sub-sampling in GOTO data we probe scales ranging from the dissipative to the deep
inertial range. A similar reasoning can be applied to the global seeding (N0) differences between Q4

GOTO and CINECA data. Yoshimoto and Goto [16] have shown that preferential concentration
is self-similar within the inertial range, while Bec et al [2] insisted on the crucial differences
between the mechanisms involved to achieve preferential concentration in the dissipative and
the inertial range. The differences observed here between the numerical and the experimental
data on the one hand and between GOTO and CINECA data on the other hand could thus be
explained from these considerations about the involved scales and the global seeding of the
flow. This is also consistent with the self-similarity observed in our experimental results [7].
Similarly, differences observed between GOTO and CINECA data can also be understood from
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this scale argument and help us formulate the obvious warning that one should be very careful
about the scales involved in an experiment or in a simulation according to the particle seeding
density: changing the seeding density (or the number of particles used for Voronoı̈ calculations)
has an impact on the scales that can be probed.

Regarding the polydispersity problem, we have also shown that the qualitative behaviour
of σV as a function of St is preserved and that the associated absolute values are weekly affected
by polydispersity. This shows that the maximum enhancement of preferential concentration
observed around St ' 1–2 is a very robust effect that is even recovered when various types of
particles are mixed together.

Even though the present study does not address all possible biases arising from imaging
measurement of concentration in particle-laden flows, we have considered the more relevant
ones in the context of Voronoı̈ analysis. A similar same work could be undertaken for the other
classical preferential concentration estimators such as pair correlation or box counting methods
for example. Q5
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