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Abstract
Recent works in the boundary element method (BEM) community have been devoted to the

derivation of fast techniques to perform thematrix-vector product needed in the iterative solver.

Fast BEMs are now verymature. However, it has been shown that the number of iterations can

significantly hinder the overall efficiency of fast BEMs. The derivation of robust precondi-

tioners is now inevitable to increase the size of the problems that can be considered. Analytical

preconditioners offer a very interesting strategy by improving the spectral properties of the

boundary integral equations ahead of discretization. The main contribution of this paper is to

propose new analytical preconditioners to treat Neumann exterior scattering problems in 2D

and 3D elasticity. These preconditioners are local approximations of the adjoint Neumann-to-

Dirichlet map.We propose three approximations with different orders. The resulting boundary

integral equations are preconditioned Combined Field Integral Equations (CFIEs). An ana-

lytical spectral study confirms the expected behavior of the preconditioners, i.e., a better

eigenvalue clustering especially in the elliptic part contrary to the standard CFIE of the first-

kind.We provide various 2D numerical illustrations of the efficiency of the method for smooth

andnon smoothgeometries. Inparticular, the numberof iterations is shown tobe independent of

the density of discretization points per wavelength which is not the case for the standard CFIE.

In addition, it is less sensitive to the frequency.

Keywords Scattering � Time-harmonic elastic waves � Boundary element method �
Analytical preconditioner � Approximate local Neumann-to-Dirichlet map � Cavity

Mathematics subject classification 65N38 � 65F08 � 45B05 � 47G30

1 Introduction

The development of numerical methods for solving highly oscillatory elastic scattering

problems is of great interest in medical or industrial applications (for example elastrog-

raphy imaging, seismology, geophysical exploration or non-destructive testing). This paper
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considers the solution of scattering problems of time-harmonic elastic waves by a two- or

three-dimensional bounded obstacle with a Neumann boundary condition. Various

numerical approaches exist to deal with exterior boundary-value problems [60]. We

mention spectral methods [24, 44, 50], Finite Element Methods [9, 41] or finite difference

methods [39, 57]. For the class of volume methods, the unbounded computational domain

must be truncated using an artificial boundary at a finite distance on which a boundary

condition is imposed. Many possibilities are proposed in the literature: nonreflecting

boundary conditions [37, 38] such as Absorbing Boundary Conditions (ABCs) [18, 29, 34]

or perfectly matched layers (PMLs) [8, 26, 40]. The method of boundary integral equations

(BIEs) is another classical tool for solving scattering problems of time-harmonic waves in

unbounded, homogeneous and isotropic media (see e.g. [10, 42, 48, 49]). The main

advantage is to formulate the exterior boundary value-problem as an integral equation on

the boundary of the scatterer. Only the surface of the obstacle is thus needed to be meshed

in contrast to volume methods. And the dimensionality of the problem is reduced by one.

However, the discretization matrix of a boundary integral operator is dense. Further-

more, in order to capture the oscillatory phenomenon, one has to fix typically about ten

discretization points per wavelength per dimension. The solution of these large and fully-

populated complex linear systems is handled by iterative solvers, namely GMRES [61].

The standard Boundary Element Method (BEM) results in high computational costs in

terms of computational time (OðN2Þ per iteration) and memory requirements (OðN2Þ),
where N denotes the number of degrees of freedom (DOFs) of the BEM model. A number

of algorithms have been introduced to evaluate matrix-vector products in a fast way, when

the matrix is obtained by the discretization of an integral operator. The Fast Multipole

accelerated Boundary Element Method (FM-BEM) is one of the efficient methods. The

method has been introduced by Rokhlin [56] and extended to various domains included 3D

elastodynamics [19, 20]. A different kind of compression can be obtained by applying the

adaptive cross approximation (ACA) algorithm and hierarchical matrices [7].

In addition, the spectral properties of the most stable integral equation formulations, the

Combined Field Integral Equations (CFIEs), are usually not well-suited for Krylov-subspace

iterative solvers such as GMRES. The cavity problem is particularly challenging. For such a

boundary condition, the standard CFIE is a boundary integral equation of the first kind. It

involves the Neumann boundary trace of the double-layer potential which is a pseudodif-

ferential operator of order 1. Consequently, the operator discretized in the CFIE has an

unbounded sequence of eigenvalues, and the condition number of the matrix behaves like

Oð1=hÞ in the standard basis, where h is the mesh size. We will see that this drawback of the

CFIE is exacerbated at high frequencies. In this paper, we focus on the construction of new

and well-conditioned BIEs which are more robust than the standard CFIE.

Specifically, two families of preconditioners exist. We can cite algebraic precondi-

tioning approaches such as incomplete LU, SParse Approximate Inverse [16, 17], multi-

grid methods [15], nested GMRES algorithm [23, 45] which have been applied to elec-

tromagnetic or elastodynamic fast BEMs. However, since algebraic preconditioners retain

only a small contribution of the system matrix, they do not contain enough information on

the underlying continuous operator. This approach is effective but shows only moderate

efficiency for high frequency problems. Analytical preconditioners offer a very interesting

alternative. They act ahead from the discretization. This preconditioning technique based

on boundary integral operators of opposite orders, also known as Calderón precondition-

ing, has been introduced by Steinbach and Wendland [58] in electromagnetism. Since then,

several works have been devoted to the derivation of Fredholm boundary integral
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equations of the second kind for both acoustic and electromagnetic scattering problems by

closed surfaces (e.g. [1, 4, 5, 11–13, 25, 31, 35, 36, 51, 52, 55, 59]) or open surfaces (e.g.

[3, 14, 27, 28]). Among them, approximations of the Dirichlet-to-Neumann map (re-

spectively the Neumann-to-Dirichlet map) naturally define robust analytical precondi-

tioners when considering Dirichlet (respectively Neumann) boundary value-problems.

They are introduced as regularizing operators in the integral representation of the scattered

field and improve the spectral properties of the resulting boundary integral equations. A

pseudo inverse of the principal classical symbol of the single layer boundary integral

operator—or equivalently the principal classical symbol of the Neumann trace of the

double layer boundary integral operator—is used to approach the Dirichlet-to-Neumann

map and its adjoint operator [5, 6, 30] in the framework of the On-Surface Radiation

Condition (OSRC) methods (e.g. [2, 43, 47]). In acoustics, the resulting preconditioner is

expressed analytically by a simple square-root of the form ijðIþ DC=j2Þ1=2 where j is the

wavenumber and DC the Laplace-Beltrami operator. Using the same techniques of pseu-

dodifferential calculus, recent works have proposed analytical preconditioners for Dirichlet

elastic BEMs [32]. Some difficulties inherent to elasticity have to be overcome. For the

elasticity case, the double layer boundary integral operator and its adjoint are not compact

even for sufficiently smooth boundaries. This implies, according to Calderón’s identities,

that regularizing the standard BIEs via a pseudo inverse of the single layer boundary

integral operator is not sufficient to obtain well-conditioned boundary integral equations.

The principal part of the double layer boundary integral operator has also to be taken into

account in the preconditioner to regularize the single layer boundary integral operator. It is

not an easy task to obtain the expressions of the principal parts of each elementary

boundary integral operator. To this end, a modified potential theory is applied and the

tangential Günter derivative plays an important role. The approximations of the Dirichlet-

to-Neumann map are expressed in terms of surface differential operators, square-root

operators and their inverses. These preconditioners can easily be combined with fast

methods such as FMM [31], and yield a very fast convergence of the GMRES solver and in

particular with a number of iterations independent of the frequency and the mesh density.

In this paper, we construct analytical preconditioners for the iterative solution of cavity

problems. To the best of our knowledge, this is the first contribution in this sense in

elastodynamics. Contrary to the acoustic and electromagnetic cases, the definition of the

Neumann-to-Dirichlet preconditioner as the inverse of the Dirichlet-to-Neumann precon-

ditioner is not sufficient to cluster all the eigenvalues around the unit number in the

complex plane. The approximations of different orders of the adjoint Neumann-to-

Dirichlet map, that we propose to apply as regularizing operators, are derived using

strategies developed in [32]. However, we cannot use the modified potential theory and the

help of the tangential Günter derivative to overcome the non-compactness of the double-

layer boundary integral operator.

The paper is organized as follows: in Sect. 2, we introduce the problem setting. We

present the Combined Field Integral Equation (CFIE) formulations that are numerically

investigated in this paper. In Sect. 3, we describe the different approximate adjoint Neu-

mann-to-Dirichlet maps and the corresponding CFIEs in the two- and three-dimensional

cases. Section 4 is devoted to analytical investigations of the spectral properties of the

standard and preconditioned operators in the particular case of the elastic sphere. Fur-

thermore, we study the effect of both the number of spherical harmonics and the frequency

increase on the condition number. In Sect. 5, we provide some elements of the dis-

cretization and implementation. We also give various numerical illustrations of the

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2021) 2:22 Page 3 of 26 22



efficiency of the method for several 2D geometries. We address numerical investigation of

the eigenvalues of the classical and preconditioned CFIEs. Finally, we draw concluding

remarks, and we discuss possible research lines in Sect. 6.

2 The Navier exterior problem and standard boundary integral
equations

2.1 The Navier exterior problem

We consider an elastic cavity represented by a bounded domain X� in Rd , d ¼ 2; 3, with a

closed boundary C :¼ oX� of class C2 at least. Let Xþ denote the exterior domain RdnX�

and n the outer unit normal vector to the boundary C. The Lamé parameters l and k and the
density q are positive constants. The propagation of time-harmonic waves in an isotropic

and homogeneous elastic medium is governed by the Navier equation [49, Eq. (12.5) page

55]

lDuþ ðkþ lÞ$divuþ qx2u ¼ 0; ð1aÞ

where x[ 0 denotes the angular frequency. The displacement field u is decomposed into a

longitudinal field up (compressional part) with vanishing curl and a transverse divergence-

free field us, both solutions to the Helmholtz equation with respective wavenumbers j2p ¼
qx2ðkþ 2lÞ�1

and j2s ¼ qx2l�1. The Neumann trace, defined by tjC :¼ Tu, is given by

the traction operator

T ¼ 2l
o

on
þ kndivþ l n� curl:

The two-dimensional traction is obtained by setting u ¼ ðu1; u2; 0Þ and n ¼ ðn1; n2; 0Þ in
the above definition.

The elastic cavity problem is formulated as follows : Given an incident displacement

wave uinc which is assumed to solve the Navier equation in the absence of any scatterer,

find the scattered field u solution to the Navier equation (1a) in Xþ which satisfies the

Neumann boundary condition

tjC ¼ �tincjC on C; ð1bÞ

where we have set tincjC ¼ Tuinc. In addition, the behavior of the scattered displacement field

u at infinity is described by the Kupradze radiation conditions [49, Eqs (2.6)-(2.9) page

126]

lim
r!1

rðd�1Þ=2 oup
or

� ijpup

� �
¼ 0; lim

r!1
rðd�1Þ=2 ous

or
� ijsus

� �
¼ 0; r ¼ jxj; ð1cÞ

uniformly in all directions.

We denote by Hs
locðXþÞ and HsðCÞ the standard (local in the case of the exterior

domain) complex valued, Hilbert-Sobolev spaces of order s 2 R defined on Xþ and C
respectively (with the convention H0 ¼ L2). Spaces of vector functions will be denoted by

boldface letters, thus Hs ¼ ðHsÞd . We set D�u :¼ lDuþ ðkþ lÞ$divu. The radiating

solution to (1a)–(1b)–(1c) belongs to the space
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H1
þðD�Þ :¼ H1

locðXþ;D�Þ :¼ u 2 H1
locðXþÞ : D�u 2 L2

locðXþÞ
n o

:

For existence and uniqueness results, we refer to Kupradze [48, 49].

2.2 Potential theory and integral representation

The first main difficulty arising in the numerical solution to the exterior boundary value-

problem (1a)–(1b)–(1c) is related to the unbounded computational domain Xþ. Methods

based on the discretization of boundary integral equations are one possibility to overcome

this issue. For any positive real number j, let

Gðj; x� yÞ ¼

i

4
H

ð1Þ
0 ðjjx� yjÞ; if d ¼ 2;

eijjx�y�

4pjx� yj ; if d ¼ 3;

8>><
>>:

be the fundamental solution of the Helmholtz equation Dvþ j2v ¼ 0. The fundamental

solution of the Navier equation is written

Uðx; yÞ ¼ 1

l
Gðjs; jx� yjÞ � IRd þ 1

j2s
$x$xT

�
Gðjs; jx� yjÞ � Gðjp; jx� yjÞ

�� �
: ð2Þ

The single- and double-layer potential operators are defined by

Su ¼
Z
C
Uð� ; yÞuðyÞdsðyÞ and Dw ¼

Z
C

TyUð� ; yÞ
� 	T

wðyÞdsðyÞ; ð3Þ

where Ty ¼ TðnðyÞ; oyÞ and TyUðx; yÞ is the tensor obtained by applying the traction

operator Ty to each column of Uðx; yÞ. For a solution u of the Navier equation (1a) in Xþ,
that satisfies the Kupradze radiation conditions, one can derive the Somigliana integral

representation formula: for x 2 Xþ

uðxÞ ¼ DujCðxÞ � StjCðxÞ: ð4Þ

The Cauchy data ðujC; tjCÞ become the new unknowns of the problem. The displacement

field u in Xþ is uniquely determined from the knowledge of these two surface fields.

Given vector densities u and w, the boundary integral operators S, D, D
0
and N are

defined, for x 2 C, by

SuðxÞ ¼
Z
C
Uðx; yÞuðyÞ dsðyÞ;

DwðxÞ ¼
Z
C
½TyUðx; yÞ�TwðyÞ dsðyÞ;

D
0
uðxÞ ¼

Z
C
Tx Uðx; yÞuðyÞf g dsðyÞ;

NwðxÞ ¼
Z
C
Tx ½TyUðx; yÞ�TwðyÞ
n o

dsðyÞ:

By applying the exterior Dirichlet and Neumann traces to S and D we have [32]
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ðSuÞjC ¼ Su;
�
TSu

�
jC ¼



� I

2
þ D

0
�
u;

ðDwÞjC ¼ I

2
þ D

� �
w; and

�
TDw

�
jC ¼ Nw;

ð5Þ

where I is the identity operator. The operator S is a pseudo-differential operator of order

�1, i.e., it is bounded from H�1
2ðCÞ to H

1
2ðCÞ and compact from H�1

2ðCÞ to itself. The

operator D and its adjoint D
0
are of order 0, i.e., they have a strongly singular kernel and

are bounded from H
1
2ðCÞ and H�1

2ðCÞ to themselves, respectively. The operator N is of

order 1, i.e., it has a hypersingular kernel and is bounded from H
1
2ðCÞ to H�1

2ðCÞ. The
Calderón projectors for the time-harmonic Navier equation are

P� ¼
� I

2
þ D � S

N � I

2
� D0

0
B@

1
CA:

We have Pþ � P� ¼ P� � Pþ ¼ 0 and thus the relations

SD0 ¼ DS ; D0N ¼ ND ;

SN ¼ D2 � I

4
; NS ¼ D02 � I

4
:

ð6Þ

2.3 Standard boundary integral equations

There exists various possible boundary integral equations to obtain the Cauchy data

ðujC; tjCÞ. We focus on combined field boundary integral equations because they have the

property of unique solvability. The Neumann trace tjC is known through the boundary

condition (1b).

We consider a direct method based on the following integral representation formula

u ¼ D
�
ujC þ uincjC

�
:

Taking the exterior Dirichlet and Neumann traces of the right hand side, we obtain on C


 I

2
þ D

��
ujC þ uincjC

�
¼ ujC ,


 I

2
� D

��
ujC þ uincjC

�
¼ uincjC and

N
�
ujC þ uincjC

�
¼ tjC ¼ �tincjC :

Combining the two previous equations, we construct the standard CFIE: find the physical

unknown w ¼ ujC þ uincjC 2 H
1
2ðCÞ solution to


 I

2
� D� igN

�
w ¼ uincjC þ igtincjC ; on C; ð7Þ

with g a coupling parameter. The integral Eq. (7) is well-posed for any real positive

frequency x and any non-zero real parameter g [48–50]. However, it involves the boundary
integral operator N which is a pseudodifferential operator of order 1. Thus, this boundary

integral equation is of the first-kind and admits a countable set of eigenvalues that tends to

infinity. We will see that this standard CFIE is not well-suited for iterative solvers,
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particularly at high frequencies (see Sects. 4 and 5 ). This motivates the research of new

and well-conditioned CFIEs.

3 Analytical preconditioners and regularized CFIE

3.1 Principle of analytical preconditioners

Analytical preconditioning techniques consist in first constructing local approximations of

the exact exterior Neumann-to-Dirichlet operator. Then, they are used to get new CFIEs

with interesting spectral properties. The exact exterior Neumann-to-Dirichlet operator

(called NtD) is defined by

Vex : tjC 2 H�1
2ðCÞ7!VextjC :¼ ujC 2 H

1
2ðCÞ ð8Þ

and the Somigliana integral representation formula (4) of the scattered field writes

uðxÞ ¼ DujCðxÞ � StjCðxÞ ¼ DVextjCðxÞ � StjCðxÞ; x 2 Xþ: ð9Þ

Taking the exterior Neumann trace of the representation (9) we obtain

tjCðxÞ ¼


NVex þ I

2
� D0

�
tjCðxÞ; x 2 C;

and hence the exact NtD operator Vex satisfies on C

I

2
� D0 þ NVex ¼ I:

In order to avoid the use of non-physical quantities, we prefer to consider the L2-adjoint
form of the above-written boundary integral equation

I

2
� Dþ Vex0N ¼ I; ð10Þ

that is related to the CFIE (7). It then appears that the adjoint NtD Vex0 is an ideal analytical

preconditioner for the CFIE. The use of Vex0 (instead of the constant g) to regularize the

operator N gives directly the solution to the scattering problem. Furthermore, assume that

x is not an eigenfrequency of the Navier equation (1a) in X� with a Neumann homoge-

neous boundary condition, we deduce from (10) that the adjoint NtD map is expressed in

terms of elementary boundary integral operators on C by

Vex0 ¼

 I

2
þ D

�
N�1: ð11Þ

The Calderón formula SN ¼ D2 � I

4
(see (6)) leads to another integral representation

Vex0 ¼ �

 I

2
� D

��1

S: ð12Þ

However, it is numerically too expensive to apply one of these representations of the

operator Vex0 as a preconditioner for the CFIE. Instead, an approximation V0 of Vex0 is

introduced to construct a preconditioned CFIE : Find the total field w ¼ ujC þ uincjC 2 H
1
2ðCÞ

solution to
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 I

2
� Dþ V0N

�
w ¼ uincjC � V0tincjC ; on C: ð13Þ

The spectral properties of (13) depend on the choice of the approximate adjoint NtD map

V0. The idea is to consider only the principal part of the exact adjoint operator Vex0 . It reads

V0 ¼ �

 I

2
� PðDÞ

��1

PðSÞ ð14Þ

where the operators P(S) and P(D) are respectively the principal parts of the boundary

integral operators S and D.

3.2 Three-dimensional case

In this subsection, we give the expressions of different approximations of the adjoint NtD

map and their corresponding preconditioned CFIEs. First, we need to introduce the

expressions of the principal parts P(S) and P(D) of the operators S and D using tools

proposed in [32] (see Lemmas 3.2 and 3.3 respectively and their proofs in [32]). The

operator P(S) is decomposed into two terms: PðSÞ ¼ S1 þ S2 with

S1 ¼
i

2qx2

�
n
�
DC þ j2pI

�1
2n � In þ

�
DC þ j2s I

��1
2



j2s It þ $CdivCIs

��

S2 ¼ � i

2qx2



nDC

�
DC þ j2s I

��1
2 n � In þ $C

�
DC þ j2pI

��1
2divCIs

� ð15Þ

where In ¼ n	 n and Is ¼ I� In. We refer to [54, pages 68–75] for the definition of the

surface differential operators: the tangential gradient $C, the surface divergence divC and

the scalar Laplace-Beltrami operator DC. The square-root z1=2 of a complex number z
stands for the classical complex square-root with branch-cut along the negative real axis.

The operator P(D) is also decomposed into two terms: PðDÞ ¼ D1 þ D2 with

D1 ¼
i

2



n
�
DC þ j2pI

��1
2divCIs � $C

�
DC þ j2s I

��1
2 n � In

�

D2 ¼
il
qx2

�
� n
�
DC þ j2s I

�1
2divCIs þ nDC

�
DC þ j2pI

��1
2divCIs

þ $C
�
DC þ j2pI

�1
2
�
n � In

�
� $C

�
DC þ j2s I

��1
2DC

�
n � In

��
:

ð16Þ

From (12)–(15), (16), we derive several approximations of the adjoint NtD map.

Low-order approximation. The low-order expression of the adjoint NtD map Vex0 comes

from major approximations. First, we keep in (14) only the contribution of P(S) (i.e.,

V0 
 �2PðSÞ). Then, we replace in (15) the surface differential operators by their first

eigenvalues, equal to zero. Using the relations between the wavenumbers and the Lamé

parameters (see Sect. 2.1), we obtain the following adjoint NtD approximation

V0 :¼ V0
LO ¼ �i


 1

ðkþ 2lÞjp
In þ

1

ljs
It

�
: ð17Þ

Importantly, it results from these simplifications that the operator (17) is only coming from

S1 (15). This low-order approximation is the equivalent in elasticity of the zeroth-order
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approximation 1=ðijÞ of the acoustic NtD map (where j is the wavenumber). The asso-

ciated preconditioned integral equation is given by


 I

2
� Dþ V0

LON
�
w ¼ uincjC � V0

LOt
inc
jC ; on C; ð18Þ

and is called LO-preconditioned CFIE (LO P-CFIE) in the remaining of this paper. This

new boundary integral equation is the counterpart in elasticity of the usual CFIE with the

optimal coupling parameter of Kress [46] in acoustics. The main advantage of this pre-

conditioner is to be very easy to implement. By construction, the approximation (17)

provides a good clustering of the first eigenvalues (associated with propagating modes)

only. We will show that we need high-order approximations to regularize the operator N of

order 1 and then to cluster eigenvalues associated to evanescent modes (see Sects. 4 and 5).

High-order approximation. Similarly to previous works [22, 32] for the Dirichlet

boundary conditions, we propose to consider the following two high-order approximations

of the adjoint NtD map

V0
HOð1Þ ¼ � 2PðSÞ ð19Þ

V0
HOð2Þ ¼ �


 I

2
� PðDÞ

��1

PðSÞ: ð20Þ

Due to numerical considerations, these approximations are preferred to (11) that involves

the principal part of the operator N�1. In the approximation (19), the contribution of the

double-layer boundary integral operator D is not taking into account and thus avoids an

operator inversion. It corresponds to the NtD choice usually done in acoustics [4–6] and

electromagnetics [30, 33]. However, the operator D is not compact in elasticity, even for

smooth surfaces. Thus, we also consider an alternative that takes into account the con-

tribution of its principal part in (20). We will observe in the sequel how it impacts the

spectral behavior of the preconditioned CFIE (13). We get the corresponding two P-CFIEs:

• the High-Order preconditioned CFIE with one term (HO(1) P-CFIE): integral Eq. (13)

and the analytical preconditioner V0 :¼ V0
HOð1Þ (19) without the contribution P(D) as-

sociated with the double-layer boundary integral operator.

• the High-Order preconditioned CFIE with two terms (HO(2) P-CFIE): integral Eq. (13)

and the analytical preconditioner V0 :¼ V0
HOð2Þ (20) with the principal part P(D).

The preconditioner V0 contains square-root operators of the form ðDC þ j2cIÞ
1=2

with c ¼
s; p and their inverses. An artificial singularity of the square-root operator appears in the

transition zone from the propagating modes to the evanescent ones. The presence of this

singularity yields a wrong representation of the grazing modes. To model the behavior in

the transition zone, we use a regularization [6] by adding a small local damping parameter

ec [ 0 to the wavenumber jc. We set jc;e :¼ jc þ iec and we consider square-root oper-

ators ðDC þ j2c;eIÞ
1=2

and their inverses in the preconditioner V0. We denote by PeðSÞ and
PeðDÞ the corresponding principal parts. The addition of a local damping is important to

obtain the well-posed character of the corresponding preconditioned CFIEs.

The main subject of this work concerns the implementation and study of three possible

approximations of V0. They are discussed in the next sections. For existence and

uniqueness results, we refer to [32] for details but the main result is given in the following

proposition.
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Proposition 1 Consider C a smooth surface, the P-CFIEs (19) and (20) are uniquely

solvable in H1=2ðCÞ for any positive real wavenumber and any damping parameter e 6¼ 0.

The proof relies on two simple ingredients [32]: the symbolic calculus and the Fredholm

alternative. Indeed, the operator V0 has the required regularizing effect on the operator N
and the operators in the P-CFIEs (19) and (20) are Fredholm operators of index zero. The

associated interior Robin problem is the same as for the Dirichlet problem. Then injectivity

follows from the positive imaginary part of V0ð Þ�1
(see [32, proof of theorem 3.8]). We

conclude with Riesz theory. The case of Lipschitz boundaries would require more

investigation which is out of the scope of this work.

3.3 Two-dimensional case

The main difference between 2D and 3D for the proposed preconditioned CFIEs lies in the

expressions of the principal parts P(S) and P(D). We denote by s the anticlockwise directed
curvilinear abscissa along C. We introduce the curvilinear derivative os. The Laplace-

Beltrami operator over C is defined by DC :¼ o2s . Furthermore, we use the relations $Cu ¼
sosu and divCu ¼ osðs � uÞ. We deduce that in 2D we have PðSÞ ¼ S1 þ S2 with

S1 ¼
i

2qx2

�
n
�
DC þ j2p;eI

�1
2n � In þ s

�
DC þ j2s;eI

�1
2s � Is

�

S2 ¼ � i

2qx2



n
�
DC þ j2s;eI

��1
2DCðn � InÞ þ s

�
DC þ j2p;eI

��1
2DCðs � IsÞ

� ð21Þ

and PðDÞ ¼ D1 þ D2 with

D1 ¼
i

2



nos
�
DC þ j2p;eI

��1
2s � Is � sos

�
DC þ j2s;eI

��1
2 n � In

�

D2 ¼
il
qx2

�
� nos

�
DC þ j2s;eI

�1
2s � Is þ nos

�
DC þ j2p;eI

��1
2DCðs � IsÞ

þ sos
�
DC þ j2p;eI

�1
2
�
n � In

�
� sos

�
DC þ j2s;eI

��1
2DC

�
n � In

��
:

ð22Þ

4 Spectral study for the spherical case

Once the three possible preconditioned CFIEs presented, we perform an analytical

investigation of the eigenvalue clustering of these CFIE operators for the 3D spherical

case. We also compare the stability of their condition numbers with respect to the mesh

refinement and frequency increase. We use some results obtained in [32, Section 4 and

Appendix B] for the three-dimensional Dirichlet boundary condition case.

4.1 Asymptotic analysis

Let S2 be the unit sphere in R3 with outward unit normal vector denoted by x̂. We

introduce the scalar spherical harmonics Y‘j of order ‘ 2 N and degree j ¼ �‘; . . .; ‘. The

concatenation of the tangential vector spherical harmonics defined for ‘ 2 N� by
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Y
ð1Þ
‘j ¼ ð‘ð‘þ 1ÞÞ�

1
2rS2Y‘j ; Y

ð2Þ
‘j ¼ ð‘ð‘þ 1ÞÞ�

1
2rS2Y‘j � x̂

with the radial spherical harmonics defined for ‘ 2 N by Y
ð3Þ
‘j ¼ x̂Y‘j, forms an

orthonormal basis function of H
1
2ðS2Þ. In the case of an elastic sphere of radius R, the

boundary integral operators D and N can be expanded in this basis function both such that

CY
ð3Þ
0;0 ¼ C

ð3;3Þ
0 Y

ð3Þ
0;0 and for ‘� 1

C

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA ¼

C
ð1;1Þ
‘ 0 C

ð1;3Þ
‘

0 C
ð2;2Þ
‘ 0

C
ð3;1Þ
‘ 0 C

ð3;3Þ
‘

0
BB@

1
CCA

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA

where C ¼ D or N. In the high frequency-regime, we distinguish three zones of modes: the

hyperbolic zone for ‘ � jpR (propagating modes), the elliptic zone when ‘ 
 jsR
(evanescent modes), and the transition zone of physical surface modes between ‘ 
 jpR
and ‘ 
 jsR. First, let us consider the hyperbolic zone. We obtain the following asymptotic

behavior.

Proposition 2 When jpR ! 1 and jsR ! 1 we have

• for the operator D:

D
ð1;1Þ
‘ ¼ 1

2
� sin2ðjsR� ð‘þ 1Þp

2
Þ þ i

2
sin
�
2ðjsR� ð‘þ 1Þp

2
Þ
�
þO 1

jsR

� �
; ‘� 1;

D
ð2;2Þ
‘ ¼ 1

2
� cos2ðjsR� ð‘þ 1Þp

2
Þ � i

2
sin
�
2ðjsR� ð‘þ 1Þp

2
Þ
�
þO 1

jsR

� �
; ‘� 1;

D
ð3;3Þ
‘ ¼ 1

2
� sin2ðjpR� ð‘þ 1Þp

2
Þ þ i

2
sin
�
2ðjpR� ð‘þ 1Þp

2
Þ
�
þO 1

jpR

� �
; ‘� 0;

D
ð1;3Þ
‘ ¼O 1

jsR

� �
; D

ð3;1Þ
‘ ¼ O 1

jsR

� �
; ‘� 1;

• and for the operator N:

N
ð1;1Þ
‘ ¼ ljs

i
� cos2ðjsR� ð‘þ 1Þp

2
Þ � i

2
sin
�
2ðjsR� ð‘þ 1Þp

2
Þ
�� �

þO 1

jsR

� �
; ‘� 1;

N
ð2;2Þ
‘ ¼ ljs

i
� sin2ðjsR� ð‘þ 1Þp

2
Þ þ i

2
sin
�
2ðjsR� ð‘þ 1Þp

2
Þ
�� �

þO 1

jsR

� �
; ‘� 1;

N
ð3;3Þ
‘ ¼ iðkþ 2lÞjp cos2ðjpR� ð‘þ 1Þp

2
Þþ i

2
sin
�
2ðjpR� ð‘þ 1Þp

2
Þ
�� �

þO 1

jpR

� �
; ‘� 0;

N
ð1;3Þ
‘ ¼O 1

jsR

� �
; N

ð3;1Þ
‘ ¼ O 1

jsR

� �
; ‘� 1:
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From these results and the integral representation (11), we retrieve the low-order

approximation (17) of the NtD operator

V0
LO ¼

1

iljs
0 0

0
1

iljs
0

0 0
1

iðkþ 2lÞjp

0
BBBBBBB@

1
CCCCCCCA

ð23Þ

so that in the hyperbolic zone (when jsR ! 1) we get

I

2
� Dþ V0

LON ¼ IþO 1

jsR

� �
:

The high-order P-CFIE operators share also this good property. Let us observe now the

behaviour of the different operators in the elliptic zone. The following asymptotic results

hold.

Proposition 3 When ‘ ! 1, we have

• for the operator D:

D
ð1;1Þ
‘ ¼ � l

kþ 2l
1

2ð2‘þ 1Þ þ O 1

‘3

� �
;

D
ð2;2Þ
‘ ¼ � 3

2ð2‘þ 1Þ þ O
1

‘3

� �
;

D
ð3;3Þ
‘ ¼ � 3l

kþ 2l
1

2ð2‘þ 1Þ þ O 1

‘3

� �
;

D
ð1;3Þ
‘ ¼D

ð3;1Þ
‘ ¼ l

2ðkþ 2lÞ þ O 1

‘2

� �
;

• and for the operator N:

N
ð1;1Þ
‘ ¼ �2lðkþ lÞ

kþ 2l
‘þ 1

2

2R
þO 1

‘

� �
;

N
ð2;2Þ
‘ ¼ � l

‘þ 1
2

2R
þO 1

‘

� �
;

N
ð3;3Þ
‘ ¼ �2lðkþ lÞ

kþ 2l
‘þ 1

2

2R
þO 1

‘

� �
;

N
ð1;3Þ
‘ ¼N

ð3;1Þ
‘ ¼ lð3kþ lÞ

2Rðkþ 2lÞ þ O 1

‘2

� �
:

The asymptotic behavior for large modes of the boundary integral operator N are in

accordance with the fact that the standard CFIE operator is of the first kind. The application

of the low-order approximation V0
LO (23) is not sufficient to regularize the operator N in

the elliptic part. It does not provide an eigenvalue clustering in this zone (see Fig. 1). High-

order approximations are needed to efficiently regularize the operator N. We have
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V0
HOð2Þ ¼ �


 I

2
� PeðDÞ

��1

PeðSÞ

where

PeðSÞ

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA ¼

s
ð1;1Þ
‘;e 0 0

0 s
ð2;2Þ
‘;e 0

0 0 s
ð3;3Þ
‘;e

0
BBB@

1
CCCA

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA;

with asymptotics when ‘ ! 1

s
ð1;1Þ
‘;e ¼ i

2qx2

"

j2s;e �

‘ð‘þ 1Þ
R2

�1
2 þ ‘ð‘þ 1Þ

R2



j2p;e �

‘ð‘þ 1Þ
R2

��1
2

#
¼

ðj2s;e þ j2p;eÞR
4qx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p þ oð‘�1Þ;

s
ð2;2Þ
‘;e ¼ i

2qx2
j2s;e



j2s;e �

‘ð‘þ 1Þ
R2

��1
2 ¼

j2s;eR

2qx2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p þ oð‘�1Þ;

s
ð3;3Þ
‘;e ¼ i

2qx2

"

j2p �

‘ð‘þ 1Þ
R2

�1
2 þ ‘ð‘þ 1Þ

R2



j2s;e �

‘ð‘þ 1Þ
R2

��1
2

#
¼

ðj2s;e þ j2p;eÞR
4qx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p þ oð‘�1Þ;

and

PeðDÞ

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA ¼

0 0 d
ð1;3Þ
‘;e

0 0 0

d
ð3;1Þ
‘;e 0 0

0
B@

1
CA

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA;

with asymptotics when ‘ ! 1
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Fig. 1 Unit sphere. Distribution of the eigenvalues of the standard and three P-CFIEs (g ¼ 1, js ¼ x ¼ 50
and nks ¼ 12). a Complete distribution and b Closer view on the clustering
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d
ð1;3Þ
‘;e ¼ i

j2s;e



‘ð‘þ 1Þ

R2

�1=2"

j2s;e �

‘ð‘þ 1Þ
R2

�1
2 þ ‘ð‘þ 1Þ

R2



j2p;e �

‘ð‘þ 1Þ
R2

��1
2

#

� i

2



‘ð‘þ 1Þ

R2

�1=2

j2p;e �

‘ð‘þ 1Þ
R2

��1
2 ¼ j2p;e

2j2s;e
þ oð1Þ;

d
ð3;1Þ
‘;e ¼ i

j2s;e



‘ð‘þ 1Þ

R2

�1=2"

j2p;e �

‘ð‘þ 1Þ
R2

�1
2 þ ‘ð‘þ 1Þ

R2



j2s;e �

‘ð‘þ 1Þ
R2

��1
2

#

� i

2



‘ð‘þ 1Þ

R2

�1=2

j2s;e �

‘ð‘þ 1Þ
R2

��1
2 ¼ j2p;e

2j2s;e
þ oð1Þ:

Thus, we obtain the following behaviour of the high-order approximate NtD map when

‘ ! 1

V0
HOð2Þ

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCA ¼ � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘þ 1Þ
p

1

2qx2

j4s;e
j2s;e � j2p;e

0
1

2qx2

j2s;ej
2
p;e

j2s;e � j2p;e

0
j2s;e
qx2

0

1

2qx2

j2s;ej
2
p;e

j2s;e � j2p;e
0

1

2qx2

j4s;e
j2s;e � j2p;e

0
BBBBBBBBB@

1
CCCCCCCCCA

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBB@

1
CCCAþ oð‘�1Þ

and of the corresponding HO(2) P-CFIE operator

I

2
� Dþ V0

HOð2ÞN

� � Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBBB@

1
CCCCA

¼

1

2
þ

j4s;eðj2s � j2pÞ
2j4s ðj2s;e � j2p;eÞ

l
2ðkþ2lÞ

j2s;ej
2
p;eðj2s � j2pÞ

j2sj
2
pðj2s;e � j2p;eÞ

� 1

 !

0
1

2
þ

j2s;e
2j2s

0

l
2ðkþ2lÞ

j2s;ej
2
p;eðj2s � j2pÞ

j2sj
2
pðj2s;e � j2p;eÞ

� 1

 !
0

1

2
þ

j4s;eðj2s � j2pÞ
2j4s ðj2s;e � j2p;eÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Y
ð1Þ
‘;j

Y
ð2Þ
‘;j

Y
ð3Þ
‘;j

0
BBBB@

1
CCCCAþ oð‘�1Þ:

This result shows that the eigenvalues of the HO(2)-CFIE operator are well-clustered

around the unit in the elliptic zone. This is also the case for the HO(1)-CFIE operator.

4.2 Illustration of the spectral properties for the unit sphere

We now consider a finite dimensional approximation. We keep only the modes ‘ such that

‘�mmax with mmax ¼ ½ðnksjsRÞ=2� ([x] denotes the integer part of a real number x). In
practice, the number of modes mmax to retain must be large enough to capture not only the

hyperbolic and transition parts of the spectrum but also the elliptic part (mmax � js), while
avoiding the divergence of the spherical Bessel and Hankel functions. The truncation of the

series is related to the density nks of discretization points per S-wavelength (ks ¼ 2p=js).
Keeping more evanescent modes corresponds to the use of a higher density of dis-

cretization points in a BEM approximation.
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In this section, the physical parameters (q ¼ l ¼ 1, k ¼ 3) are fixed such that the

wavenumbers satisfy js ¼
ffiffiffi
5

p
jp. In Fig. 1, we report the eigenvalue distribution of the

standard and the proposed P-CFIEs. We observe that the three analytical preconditioners

successfully improve the spectral properties of the standard CFIE with an efficient clus-

tering of the eigenvalues. The best results are given by the HO P-CFIEs, particularly in the

elliptic zone. As expected, the corresponding condition numbers are independent on the

number of modes, i.e., on the mesh density (see Fig. 2), on the contrary to the standard

CFIE of the first-kind. Furthermore, the LO and HO P-CFIEs allow to reduce the

dependence of the condition number with respect to the frequency. This dependence is

linked to the eigenvalues associated with grazing modes. We have also performed this

analytical study for the unit disk in 2D and obtain similar conclusions (see Fig. 3).
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Fig. 2 Unit sphere. Study of the condition number of the three P-CFIEs. a Condition number with respect to
the maximal number of modes mmax (js ¼ 4p). b Condition number with respect to the frequency x
(nks ¼ 12)
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Fig. 3 Unit disk. Study of the condition number of the P-CFIEs. a Condition number with respect to the
maximal number of modes mmax (js ¼ 4p). b Condition number with respect to the frequency (nks ¼ 12)
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5 Numerical efficiency of analytical preconditioners

5.1 Discretization and implementation

To discretize the surface C of the scatterer, we consider a triangulation with NE surface

triangles and NI vertices. The polyedric interpolated surface is denoted by Ch. The dis-

cretization is performed by means of classical P1 boundary finite elements. We set Xh ¼
P1ðChÞ and Xh ¼ Xd

h , d ¼ 2; 3, with dimXh ¼ M :¼ dNI . The application of the HO(2)-

preconditioner (20), namely

V0
HOð2Þ ¼ �


 I

2
� PeðDÞ

��1

PeðSÞ;

is decomposed into the following two steps:

Step 1: Knowing v 2 H�1
2ðCÞ, compute the intermediate variable q 2 H

1
2ðCÞ such that

q ¼ �PeðSÞv: ð24Þ

Step 2: Knowing q 2 H
1
2ðCÞ, solve the boundary differential equation: find u 2 H

1
2ðCÞ

solution to


 I

2
� PeðDÞ

�
u ¼ q: ð25Þ

The application of the HO(1)-preconditioner (19) reduces to the evaluation of u ¼
�2PeðSÞv without the need of the inversion step (Step 2). We refer to [21] for the

derivation of the corresponding variational formulation. The efficiency of the HO-pre-

conditioners relies on a robust local representation of the square-root operators ð1þ zÞ1=2,
z 2 C, and their inverses. To this end, we apply complex Padé approximants with a rotating

branch-cut technique, i.e., with a rotation of angle h of the usual branch-cut fz 2 R; z\1g
of the square-root z 7!

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
(see [22, 53]). For z 2 C, we have

ð1þ zÞ1=2 
 eih=2RNp
ðe�ihð1þ zÞ � 1Þ ¼ F0 �

XNp

‘¼1

A‘

B‘ð1þ B‘zÞ

where RNp
denotes the standard real-valued Padé approximation and is given by

RNp
ðzÞ ¼ 1þ

XNp

‘¼1

2
2Npþ1

sin2ð‘p=ð2Np þ 1ÞÞz
1þ cos2ð‘p=ð2Np þ 1ÞÞz :

The complex constants are then expressed by

A‘ ¼
e�ih=2 2

2Npþ1
sin2ð‘p=ð2Lþ 1ÞÞ

½1þ cos2ð‘p=ð2Np þ 1ÞÞðe�ih � 1Þ�2
; B‘ ¼

e�ih cos2ð‘p=ð2Np þ 1ÞÞ
½1þ cos2ð‘p=ð2Np þ 1ÞÞðe�ih � 1Þ�
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F0 ¼ eih=2RNp
ðe�ih � 1Þ þ

XNp

‘¼1

A‘

B‘
:

The efficiency of these Padé complex approximants for the local representation of ð1þ
zÞ1=2 has been shown numerically in many previous works (e.g., [4, 21, 31]). By choosing a

branch cut in the negative half-space, all the modes are modeled correctly and in particular

the evanescent ones. In practice, to evaluate the square-root of an operator, we have to

solve Np uncoupled sparse linear systems. This step is thus very cheap. We refer to [22]

which gives a similar approach for the approximation of the inverse of
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
, z 2 C. The

discrete wavenumbers are then expressed by jc;eh ¼ js þ ieh with eh ¼ 0:39j1=3c ðH2
hÞ

1=3
.

The quantity Hh is a piecewise constant interpolation of the mean curvature H over Ch on

each triangle of the triangulation. The numerical evaluation of Hh comes from the relation

HhðxÞ ¼
1

2
divCh

nhðxÞ ¼
1

2

Xd
k¼1

XNI

j¼1

ðnhðajÞ � ekÞðek � rCh
ujðxÞÞ; x 2 Ch;

where aj, 1� j�NI , are the vertices of the mesh and the functions uj, 1� j�NI , the P1

basis functions on Ch.

We solve the dense non-symmetric linear systems, corresponding to the BEM dis-

cretization of the preconditioned or standard CFIEs, with GMRES [61]. We do not use a

restarted version in order to have a precise idea of the impact of the preconditioning

technique on the convergence. ½A� 2 CM�M denotes the matrix associated with the linear

discretization of a given integral operator A. At each iteration of the solver, the solution of

the preconditioned CFIE (13) requires the evaluation of the vector Y 2 CM

Y ¼ ½I�
2
� ½D� þ ½V0�½N�

� �
X;

for any vector X 2 CM given by GMRES. From a computational point of view, the pre-

conditioners (19) and (20) involve only sparse matrices. Importantly, for the precondi-

tioner (20), Step 2 needs the inversion of


I=2� PeðDÞÞ

�
. In practice, due to the use of

Padé approximations, the matrix associated with this operator is never explicitly assembled

and the sparse system is solved with an inner GMRES solver.

To check the efficiency of the proposed analytical preconditioners, we consider three

geometries with increasing difficulties. The first geometry is a unit disk used to validate our

code. The second one is a unit square with corner singularities. Finally, we construct a C-

shape modeling a crack with a finite thickness (see Fig. 4). It is parametrised by C ¼
fð1:5 sin ð3tþ4Þp

8
� 1; 0:8 sin ð3tþ4Þp

4
Þ : �1� t� 1g [ fð1:45 sin ð3tþ4Þp

8
� 1; 0:7 sin ð3tþ4Þp

4
Þ :

�1� t� 1g. For all the examples, we fix the mechanical parameters to q ¼ l ¼ 1 and

k ¼ 2 such that js ¼ x and jp ¼ x=2. The obstacles are meshed with a density of nks
points per S-wavelength.

5.2 Spectral analysis

In order to analyse the convergence properties of GMRES to solve the preconditioned and

standard CFIEs, we observe first the eigenvalue behavior of the involved integral operators.

The spectral study has been done analytically for the unit disk in Sect. 4. For the unit
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square and the C-shape, an analytical expression of the eigenvalues is not available. We

compute them numerically to check if these good spectral properties are also observed. The

circular frequency is set to x ¼ 2p, the discretization to nks ¼ 20 and the Padé parameter

to Np ¼ 60. We report on Figs. 5 and 6 the eigenvalue distribution for the standard and

preconditioned CFIEs when the scatterers are the unit square and the C-shape respectively.

For these scatterers, the high-order local approximations of the NtD map have the

remarkable property of clustering the eigenvalues associated with the evanescent modes.

This is not the case for the non-preconditioned CFIE. The best spectral behavior is pro-

vided by the HO(2)-preconditioner and is favorable for an iterative solution.

5.3 Numerical efficiency in the context of an iterative solver

We now compare the convergence of the iterative solver GMRES for the different CFIEs.

The scatterers are illuminated by incident plane waves of the form

uincðxÞ ¼ 1

l
eijsx�dðd � pÞ � d þ 1

kþ 2l
eijpx�dðd � pÞd ; where d 2 D2 and p 2 R2 ð26Þ

where D2 is the unit disk in R2. When p ¼ �d, the incident plane wave oscillates along the

direction of propagation (pressure wave or P-wave). When the polarization p is orthogonal

to the propagation vector d, the incident plane wave oscillates in a direction orthogonal to

the direction of propagation (shear wave or S-wave). We consider the scattering of incident

plane P-waves with p ¼ d ¼ ð1; 0ÞT , or S-waves with p ¼ ð1; 0ÞT and d ¼ ð0; 1ÞT . For all
the tests, the tolerances of the inner and outer GMRES solvers are set to 10�5 and 10�3

respectively. The mechanical parameters are defined such that the wavenumbers satisfy

js ¼ 2jp and x ¼ js (i.e. q ¼ 1, l ¼ 1 and k ¼ 2) and the number of Padé terms is set to

Np ¼ 60. For the standard CFIE (7), we set the coupling parameter g to 1. But importantly,

any constant leads to a similar number of iterations. The conditioning, and hence the

number of GMRES iterations, are not very sensitive to this value.

Unit disk. As a usual validation test, we first consider the unit disk. Figure 7 represents

the analytical and numerical far fields for nks ¼ 40 and x ¼ 2p and illustrates the accuracy

of the code (for incident plane S-waves). The number of GMRES iterations with respect to

the frequency x are reported in Table 1 (resp. Table 2) for P-waves (resp. S-waves) for the

Fig. 4 C-shape: definition of the
geometry
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four CFIEs. In the case of the HO(2) P-CFIE, inner iterations are indicated in parentheses.

The use of the different analytical preconditioners efficiently speeds up the convergence of

the solver, particularly at high frequencies. The HO(2) P-CFIE provides the best results.

Nevertheless, the two other P-CFIEs also offer a very good alternative to the standard CFIE

and have the advantage to be very simple to implement. The dependence of the conver-

gence with respect to the frequency is linked to eigenvalues corresponding with grazing

modes and probably surface modes (Rayleigh waves). In Table 3, we study the number of

GMRES iterations with respect to the density of points nks for incident S-waves. As

predicted by the spectral analysis, the convergence is independent on the mesh refinement

for the HO P-CFIEs. The LO P-CFIE is also robust with a slight increase of the number of

iterations. This is not the case of the standard CFIE which is of the first-kind.

Unit square. We now consider the case of a unit square. The number of GMRES

iterations with respect to the frequency x is reported in Table 4 (resp. Table 5) for P-waves

(resp. S-waves) for the different CFIEs. In Table 6, we study the number of GMRES

iterations with respect to the density of points nks for incident S-waves. For this more
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Fig. 5 Unit square. Distribution of the eigenvalues of the standard and different P-CFIEs (g ¼ 1, x ¼ 2p
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Table 1 Unit disk: diffraction of incident P-waves. Number of GMRES iterations for a fixed density of
points nks ¼ 20

x # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 20 6 8 5 (22)

4p 32 9 11 4 (30)

6p 50 12 11 4 (32)

8p 72 13 12 3 (33)

16p 120 11 8 3 (40)

20p 170 10 8 3 (45)

Table 2 Unit disk: diffraction of incident S-waves. Number of GMRES iterations for a fixed density of
points nks ¼ 20

x # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 26 13 11 8 (24)

4p 46 19 19 8 (32)

6p 65 27 25 9 (39)

8p 91 36 31 10 (45)

16p 186 66 51 14 (68)

Fig. 7 Unit disk. Validation of the code by comparing the analytical and numerical modulus of the far-field

for an incident plane S-wave (nks ¼ 40 and x ¼ 2p). The L2-error for this example is 5:87 10�3
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difficult geometry, the number of iterations without any preconditioner substantially

increases with both the frequency and the mesh refinement. The three preconditioners are

efficient. Here again, the dependence on the frequency after preconditioning is reduced,

and the independence of the convergence according to a mesh refinement is still observed

with the HO P-CFIEs.

C-shape. It is known that the dependence on the frequency is more pronounced for the

case of a trapping obstacle than for the case of a disk or square. It is interesting to study the

efficiency of analytical preconditioners for such scattering objects. The number of GMRES

iterations with respect to the frequency x is reported in Table 7 (resp. Table 8) for P-waves

(resp. S-waves) for the four CFIEs. The number of iterations without any preconditioner

drastically increases with the frequency. The three preconditioners are seen to be very

Table 4 Unit square. Diffraction of incident P-waves. Number of GMRES iterations for a fixed density of
points nks ¼ 20

x # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 57 19 11 10 (25)

4p 103 25 15 11 (35)

6p 134 30 21 13 (42)

8p 177 36 28 15 (52)

16p 287 55 49 20 (80)

Table 5 Unit square. Diffraction of incident S-waves. Number of GMRES iterations for a fixed density of
points nks ¼ 20

x # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 63 21 12 10 (25)

4p 120 26 18 12 (35)

6p 171 32 23 15 (43)

8p 226 38 29 17 (52)

16p 421 70 53 24 (80)

Table 3 Unit disk. Diffraction of incident S-waves. Number of GMRES iterations for a fixed frequency
x ¼ 4p

nks # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

5 31 14 19 9 (30)

10 37 16 17 6 (33)

20 46 19 19 8 (32)

30 57 22 19 8 (32)
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efficient (with at least the number of iterations divided by three). The dependence on the

frequency after preconditioning is reduced. Importantly, for this geometry HO(1) P-CFIE

is the most robust approach particularly at high frequencies. For example, where multi-

plying the frequency by 8, the number of iterations is only multiplied by a factor 2. The

relative loss of performance of the HO(2) P-CFIE approach for this geometry can be

explained by the inversion of the operator

 I

2
� PeðDÞ

�
in (25), where PeðDÞ is the

principal part of the non-compact operator D. For Dirichlet problems, we proposed to

consider a modified potential theory (using the tangential Günter derivative) in which the

corresponding double-layer boundary integral operator is a compact operator [31, 32]. This

technique is not possible for Neumann problems. The inversion in (25) requires a higher

Table 6 Unit square. Diffraction of incident S-waves. Number of GMRES iterations for a fixed frequency
x ¼ 16p

nks # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

20 421 70 53 24 (80)

30 449 86 55 23 (80)

40 475 99 55 24 (80)

Table 7 C-shape: diffraction of incident P-wave. Number of GMRES iterations for a fixed density of points
nks ¼ 20

x # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 66 27 25 23 (40)

4p 106 34 31 45 (54)

6p 176 47 45 52 (73)

8p 207 44 41 71 (84)

16p 332 61 52 99 (141)

Table 8 C-shape: Diffraction of incident S-wave. Number of GMRES iterations for a fixed density of points
nks ¼ 20

x N # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE

2p 81 65 26 25 24 (40)

4p 165 122 35 31 45 (54)

6p 250 180 47 46 55 (72)

8p 331 205 51 41 71 (83)

16p 666 328 69 56 104 (140)

20p 829 395 76 61 114 (173)
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Padé order to get a good approximation of the adjoint NtD and to make the HO(2) P-CFIE

competitive. The HO(1) P-CFIE is a very interesting compromise for such configurations.

All these numerical examples show the efficiency of the three proposed P-CFIEs. To

determine which preconditioner should be used in practice, it is not only important to

consider the number of iterations to achieve convergence but also the computational time

added to evaluate the preconditioner. Obviously, the LO P-CFIE does not add any cost. On

the other hand, the HO P-CFIEs require the inversion of some sparse linear systems. These

systems are embarrassingly parallel so that, with very little implementation effort, the

additional computational cost is small. However, the HO(1) P-CFIE is simpler and has

been shown to be very efficient including for complex geometries. For Neumann scattering

problems, it is currently the most efficient approach from the authors’ point of view. In

order to improve the numerical approximation of the inversion of

 I

2
� PeðDÞ

�
in (25) and

hence the robustness of the HO(2) P-CFIE for any scatterer, a perspective is to propose

another method for the local representation of the square-root operator and its inverse than

the use of complex Padé approximants.

6 Conclusion and future work

In this paper, we have presented a first conclusive study of the efficiency of analytical

preconditioners for the numerical solution of high-oscillatory Neumann elastic exterior

problems. We have proposed three preconditioners corresponding to approximations with

various orders of the exact adjoint Neumann-to-Dirichlet (NtD) map. The theory based on

the calculus of the principal pseudo-differential symbol of the NtD map is described in

two- and three-dimensions.

A spectral analytical study for the spherical case has shown that the high-order pre-

conditioned CFIEs are not of the first-kind whereas non-preconditioned CFIEs are. Con-

sequently, their condition numbers are not sensitive to the mesh refinement and the

convergence of GMRES is independent of the mesh size too. Numerical simulations on

various 2D geometries have attested that the convergence of GMRES is also greatly

improved with respect to the frequency with the use of high-order and local approxima-

tions of the NtD. A slight dependence on the frequency is observed. Nevertheless, the

proposed preconditioned CFIEs offer a very competitive alternative to the standard one.

Ongoing work concerns a more extensive analysis to understand the influence in the

preconditioner of some physical aspects inherent to a cavity problem, e.g., surface Ray-

leigh waves.
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