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Dynamics and sound radiation of a dielectric elastomer membrane

Emil Garnella, Corinne Roubya, Olivier Doaréa

aIMSIA, ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, 91120 Palaiseau.

Abstract

This paper investigates sound radiation by an inflated dielectric elastomer membrane. The constitutive equations of
the coupled electromechanical system are derived from general mechanical equilibrium equations, from Maxwell’s
equations, and from thermodynamic considerations. A finite deformation model featuring a hyperelastic constitutive
law is written for the case of a thin membrane. The static finite deformation obtained when the membrane is inflated
and when a voltage is applied is computed. The linear dynamics around this equilibrium are studied on the modal
basis: the mode shapes and eigenfrequencies are computed, as well as the modal forces created by the voltage applied
on the electrodes. The radiated acoustic pressure is estimated using a modified Rayleigh integral to take into account
curvature effects. All numerical calculations are validated against measurements. The model is shown to be able to
predict the linear vibrations, as well as the radiated pressure. The effect of the volume of the cavity on which the
membrane is inflated is taken into account in the model. This model can therefore be used to optimize the design of
dielectric loudspeakers, in terms of spectral balance for example.
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1. Introduction

Dielectric elastomer membranes are made of a soft elastomer material sandwiched between two compliant elec-
trodes. When a high voltage is applied to the electrodes, the attraction of the opposite charges causes the contraction
of the elastomer in the thickness direction. As this material is almost incompressible this will result in an increase
in the membrane area. This principle allows electromechanical conversion, that is at the core of many applications.
Dielectric elastomers have raised a large interest since year 2000 when Pelrine et al. showed that strains greater than
100% caused by electric actuation could be achieved [1]. A wide range of applications has next been considered:
micro-pumps [2], artificial muscles [3], tactile displays [4], energy harvesting [5], etc. Research works investigating
their use as sound reproduction devices followed [6, 7, 8]. This article is focused on the latter application.

The most common configuration for the use of dielectric elastomer as loudspeakers builds on the change in area
described above: if the thin membrane is inflated over a finite volume, a change in area induced by the imposed
electric field will create a displacement normal to the membrane (see Fig. 2). This configuration has been suggested
and studied by Heydt et al. [6], who presented the first acoustic radiation experimental results. A very simple model
was presented by the same research group to predict qualitatively the radiated acoustic pressure [7]. The authors found
that the primary resonance of the inflated membrane is strongly influenced by the volume on which the membrane
is inflated. Moreover, the inflation pressure was shown to influence the directivity [9]. More detailed experimental
studies of the dynamics of an inflated dielectric membrane were carried out by Fox and Goulbourne [8, 10]. They
studied the low frequency range (below 200 Hz), and analysed the influence of the major design parameters on the
first resonance frequencies. They showed that the dynamics of the structure do not comply with classical dynamics
with Rayleigh real modes, i.e. different points of the membrane reach their maximum displacement at different times.
Additionally, the casing volume was found to have a strong influence on the eigenmodes and eigenfrequencies of the
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membrane. In the same context, the experimental work of Hosoya et al. [11] allowed to characterise the directivity of
a membrane inflated to a hemisphere. This system was found to be omnidirectionnal up to high frequencies (16 kHz).

The aforementioned researches were mainly focused on experiments. Let us now review the different modeling
works found in the literature. A non-linear model for the static inflation has been derived by Fox and Goulbourne [10].
In the context of the transition between multiple static equilibrium positions of an inflated membrane, a time domain
model was proposed by Mockensturm and Goulbourne [12]. The first complete theoretical study of the dynamics of
an inflated membrane was carried out by Zhu et al. [13, 14]. The linear modes around a non-linear static equilibrium
were computed, and the frequencies were compared to those found by Fox and Goulbourne [10]. However this model
does not include the effect of the casing volume: the inflation pressure was assumed to be fixed. Consequently, these
results cannot be directly compared to Fox and Goulbourne’s experimental observations.

More recently Li et al. [15] studied both experimentally and numerically the mode shapes and resonance fre-
quencies of a dielectric elastomer resonator made of a stretched membrane with added passive patches. However
their configuration is not designed for sound reproduction (no inflation pressure), as they were not interested in sound
radiation.

Other authors investigated the effect of viscosity on the dynamics of dielectric elastomer membranes (eg. [16, 17,
18, 19]). Those studies are carried out in the time domain, to describe accurately the displacement caused by a given
applied voltage. Consequently, these approaches are limited to the low frequency behavior and can be time consuming
if transfer functions are to be computed.

In the present article, we consider a dielectric elastomer loudspeaker as described by other authors: a dielectric
elastomer membrane is inflated over a closed cavity so that the application of a variable voltage to the electrodes
radiates acoustic pressure. Schematics of the studied system are given in section 3 in Fig. 2. Our objective is to
develop a model taking into account all key phenomena and capable of predicting the radiated pressure.

The problem is highly non-linear [13], which is undesirable for a faithful sound reproduction. Nevertheless, if
the excitation signal is cleverly chosen (see [7, 20]), the dynamics will be dominated by linear terms. We therefore
choose to linearize the dynamics of the system. Even in this simplified framework, important properties can be
studied: spectral balance, directivity, efficiency.... Moreover, in order to run optimization routines, the model should
allow fast computations of transfer functions between the excitation voltage and the radiated acoustic pressure. Thus,
a model in the frequency domain is here derived.

This article is organised as follows. In section 2 the constitutive equations of a dielectric elastomer membrane
are derived. Readers not interested in these details should jump to section 3 where the problem’s equations are
developed. The numerical method used to solve these equations is presented in section 4. The different steps are the
computation of the linear modes around a non-linear static equilibrium, the derivation of the modal forces created
by the electromechanical loading, and the computation of the transfer functions between the excitation voltage and
the dynamics or the acoustics. The results are compared to experiments in section 5, and the influence of the major
parameters is discussed in the last section 6.

2. Constitutive equations of the dielectric elastomer membrane

2.1. General 3D case

The first step is to derive the constitutive equations of a dielectric elastomer. This is carried out in a general 3D
framework, and will be simplified to membrane kinematics afterwards. We summarize here the derivation of the
constitutive relations using the Coleman-Noll method [21], which is a general framework for writing multi-physics
constitutive equations [22, 23, 24], starting from balance equations and thermodynamic principles.

We consider a dielectric body partially covered by electrodes on its surface. In the absence of any electric charge or
mechanical load, the body occupies a reference configuration, where each material particle is identified by its position
X. Under electrical and mechanical loading, the body is transformed to a deformed configuration: the material point
initially in X moves to the position X. The deformation gradient tensor is defined by F = ∂X/∂X. In the deformed
configuration, body forces F and surface forces ts are applied to the body, as well as electric surface charges σs. It is
assumed that there is no electric body charge. The problem is sketched in Fig. 1. The mass density is denoted by ρ,
the Cauchy stress tensor by σ, and the electric displacement by d = ε0e + p, where ε0 is the vacuum permittivity, e the
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Reference configuration Deformed configuration

Figure 1: Description of a material sample and definition of external loads

electric field and p the electric polarization density, all in the deformed configuration. The Lagrangian time derivative
d/dt is written (˙), and the notation ∇ = ∂/∂X is introduced.

If the resistivity of the electrodes is low enough, the time scale for electrodynamic effects is much shorter than
that for mechanics. It is therefore assumed that Maxwell’s equations for electrostatics hold. The local electrostatic
equations (Gauss and Faraday), linear momentum balance and mass conservation are thus:

∇ · d = 0 , ∇ × e = 0 , ρẌ = ∇ · σ + ρF , ρ̇ + ρ∇ · ẋ = 0 . (1)

The related jump conditions on the boundaries are:

n · ~d� = σs , n × ~e� = 0 , n · ~σ� + ts = 0 , (2)

where n denotes the normal to the surface and ~a� = a(x+) − a(x−), x+ and x− being points just outside and inside of
the surface respectively.

In the following, we search for a constitutive relation compatible with the local balance equations (1) and (2).
Thermodynamic principles will restrict the expression of the constitutive relation: the global energy balance and
entropy imbalance need to be satisfied. They read, for any arbitrary region Ω ⊂ R3 of boundary ∂Ω:

d
dt

(∫
Ω

ρεdΩ

)
=

∫
Ω

F · ẊρdΩ −

∫
∂Ω

(σ · n) · ẊdA +

∫
Ω

ρϑdΩ +

∫
∂Ω

−q · ndA −
∫
∂Ω

e × (Ẋ × d) · ndA , (3)

d
dt

(∫
Ω

ρηdΩ

)
≥

∫
Ω

ρϑθ−1
T dΩ +

∫
∂Ω

−q · nθ−1
T dA , (4)

where ε is the total energy per unit mass, q the heat flux, ϑ the volumic heat source, η the entropy, and θT the
temperature. The two first terms on the right hand side of Eq. (3) are the mechanical power, the two next ones the
thermal power, and the last one the electrostatic power.

Using Eq. (1) in Eqs. (3) and (4), applying the divergence theorem and using vector identities yields the local
energy balance and entropy imbalance:

ρε̇ = ρ(Ẋ · Ẍ + ϑ) + [σ − d ⊗ e + (e · d)I] : Ḟ + e · ḋ − ∇ · q , (5)

ρη̇ ≥ ρϑθ−1
T − ∇ ·

(
qθT

−1
)
. (6)

Replacing the heat source ϑ in Eq. (6) using Eq. (5) yields:

−ρε̇ + ρ(θT η̇ + Ẋ · Ẍ) + [σ − d ⊗ e + (e · d)I] : Ḟ + e · (ε0ė + ṗ) − θT
−1q · (∇θT ) ≥ 0 . (7)

This equation shows that variations of the internal energy ε are related to variations of Ẋ, F , e, p and η. Therefore, ε
must be a function of those five variables only, or of five independent combinations of them. Computing the derivatives
of ε and inserting into the entropy imbalance Eq. (7) yields:

ρ

[(
θT −

∂ε

∂η

)
η̇ + Ẍ ·

(
Ẋ −

∂ε

∂Ẋ

)]
+

−ρ (
∂ε

∂F
· FT

)T

+ σ − d ⊗ e + (e · d)I
 : Ḟ

+

(
ε0e − ρ

∂ε

∂e

)
· ė +

(
e − ρ

∂ε

∂p

)
· ṗ − θT

−1q · (∇θT ) ≥ 0 . (8)
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As Ẋ, F, e, p and η are independent variables that can take arbitrary values, the internal energy ε must satisfy the
following equations:

∂ε

∂η
= θT ,

∂ε

∂Ẋ
= Ẋ , ρ

(
∂ε

∂F
· FT

)T

= σ − d ⊗ e + (e · d)I , ρ
∂ε

∂e
= ε0e , ρ

∂ε

∂p
= e , (9)

and the heat flux q is restricted by the condition θT
−1q · (∇θT ) ≤ 0. For a given expression of ε in terms of Ẋ, F, e, p

and η, Eqs. (9) specify the constitutive relations of the coupled system. These equations can be simplified, by defining
the free energy ψ:

ψ = ε −
1
2

Ẋ · Ẋ − ηθT −
ε0

2ρ
e · e −

1
ρ

e · p . (10)

Computing the derivatives of ψ in terms of the derivatives of ε, and using Eqs. (9) allows to show that ψ is a function
of F , e, and θT only. Finally the expression of ε in terms of ψ can be substituted into Eq. (7), yielding:

ρ

(
−

(
∂ψ

∂e
+

p
ρ

)
· ė −

(
∂ψ

∂θT
+ η

)
θ̇T

)
+

−ρ (
∂ψ

∂F
· FT

)T

+ σ − d ⊗ e +
ε0

2
(e · e)I

 : Ḟ − θT
−1q · (∇θT ) ≥ 0 . (11)

And again for the energy imbalance Eq. (11) to hold for any arbitrary evolution, the following equations need to be
satisfied:

∂ψ

∂e
= −

p
ρ
,

∂ψ

∂θT
= −η , σ = ρ

(
∂ψ

∂F
.FT

)T

+ d ⊗ e −
ε0

2
(e · e)I . (12)

We now assume that the transformation is isotherm, which removes the dependence on θT of the free energy. The
principle of material frame invariance [22] implies that the free energy should depend only on the Cauchy-Green
tensor C = FT · F and on the electric field in reference configuration e = FT · e , that is to say ψ(F, e) = φ(C, e).
Equating variations of ψ and φ yields :

σ = 2ρF ·
∂φ

∂C
· FT + ε0e ⊗ e −

ε0

2
(e · e)I , p = −ρF ·

∂φ

∂e
. (13)

Equations Eqs. (13) are the two constitutive equations giving the material behavior, which is fully described by
the specification of the free energy function φ. The first resembles the classical mechanical equation relating the
Cauchy stress tensor to the free energy, but with added terms that depend on electrostatics. Following the method of
Edminston and Steigmann [23], a realistic free energy function is now searched for. In this step, we aim at reproducing
behaviors that have been observed experimentally. Typical dielectric elastomers have been shown to be linear for the
electrostatics (the material polarization p is proportional to the electric field e, meaning that the permittivity ε does
not depend on the deformation). This class of materials is called ideal dielectric elastomers by Suo [25]. Also, when
no electric field is applied, the material should behave as a standard hyperelastic material. Therefore, a free energy
function that satisfies the two following conditions is searched for:

p = ε0χee , (14)

σ = ρ

(
2F ·

∂φ0

∂C
· FT

)T

when e = 0 , (15)

where φ0 is a purely mechanical free energy. We suggest the following form of the free energy, which fulfills the two
conditions:

φ(C, e,Π) = φ0(C) −
ε0χeJ
2ρ0

e · C−1 · e . (16)

For this specific form of the free energy, Eq. (13) implies that the total stress is the sum of a purely mechanical stress
σ0 and a Maxwell stress:

σ = σ0 + σMaxwell , with σ0 = 2ρ0F ·
∂φ0

∂C
· FT , and σMaxwell = ε

(
e ⊗ e −

1
2

e · eI
)
, (17)
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where ε = ε0(1 + χe). Equations (17) are a well known set of equations that are used by most people working with
dielectric elastomers. However, they have here been thoroughly derived starting from general equilibrium equations,
making clear the assumptions that have been made to obtain these equations. The distinction between the mechanical
and the Maxwell stress appears to have no importance, as all equilibrium equations depend on the total stress σ.

2.2. Reduction of the constitutive equations to the case of a membrane

In the previous section the constitutive laws of the dielectric elastomer have been established, in the general 3D
case. In the case of a membrane they can be significantly simplified.

Concerning the electrostatics, the classical approximation for a thin dielectric between electrodes is made: the
electric field is assumed to be normal to the membrane, and null outside of the dielectric. Fringe effects are neglected.
This leads to:

e = en , with e =
U
h
, (18)

where n is the normal to the membrane, h the thickness of the membrane, and U the electric potential difference
between the electrodes. The electric field e does not vary in the thickness direction.

A specific form of the mechanical free energy now needs to be chosen. In the following the elastomer is assumed
to behave according to the Gent material law [26] (this assumption will be validated in the experimental section 5.2.2),
and a Lagrange multiplier Π is used to impose the incompressibility constraint J = 1:

φ0 = −
µJm

2
ln

(
1 −

I1 − 3
Jm

)
+

Π

ρ0
(J − 1) , (19)

where I1 = tr C is the first invariant of the Cauchy-Green tensor, µ is the shear modulus, and Jm is a parameter
describing the stiffening of the material at large strains. In the principal basis, the deformation gradient and the right
Cauchy-Green deformation tensor read:

F = λ1u1 ⊗ u1 + λ2u2 ⊗ u2 + λnn ⊗ n , (20)

C = FT F = λ2
1u1 ⊗ u1 + λ2

2u2 ⊗ u2 + λ2
nn ⊗ n , (21)

where λ1 and λ2 are the two main planar stretches and λn the normal stretch. Putting Eqs. (18)-(21) into Eq. (17)
provides the expression of σ in the principal basis (σ = σ1u1 ⊗ u1 + σ2u2 ⊗ u2 + σnn ⊗ n):

σ1 =
µJm

Jm − I1 + 3
λ2

1 −
εe2

2
+ Π , σ2 =

µJm

Jm − I1 + 3
λ2

2 −
εe2

2
+ Π , σn =

µJm

Jm − I1 + 3
λ2

n +
εe2

2
+ Π . (22)

The mechanical equilibrium equations are exactly the same as classical purely mechanical equations. The coupling
with electrostatics appears only in the constitutive relation defining the stress. Therefore, classical membrane equa-
tions can be used, in which plane stress is assumed: σ ·n = σn = 0 [27]. This provides the expression for the Lagrange
multiplier Π. Finally, the constitutive equations for the principal planar strains of a dielectric elastomer membrane are
obtained:

σ1 =
µJm

Jm − I1 + 3

(
λ2

1 − λ
2
n

)
− εe2 , (23)

σ2 =
µJm

Jm − I1 + 3

(
λ2

2 − λ
2
n

)
− εe2 , (24)

where e = U/h, and I1 = λ2
1 +λ2

2 +λ2
n. The stretches are linked by the incompressibility relation λ1λ2λn = 1. Here one

may notice that due to incompressibility the electromechanical coupling results in an increased stress in the planar
directions that is twice the commonly called Maxwell pressure Pmaxwell = εe2/2. This is due to the coupling between
the normal and planar deformations of the membrane.
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Dielectric material
Conductive grease electrodes(a) (b)

Figure 2: Schematics of the studied system. (a) Reference configuration, where the membrane is flat. In the example shown, Γ(R) = 1 for R < RE
and Γ(R) = 0 for R > RE . (b) Deformed configuration, where the membrane is stretched and inflated.

3. Formulation of the coupled electromechanical problem

3.1. Description of the studied system

We now return to the problem of the dynamics of a dielectric elastomer membrane in an inflated configuration, as
sketched in Fig. 2. Only axisymmetric deformations are studied in the present work. The thickness of the membrane
as well as the electrodes can be of any axisymetrical shape. The function Γ(R) describes the electrode location: it
equals unity when electrodes are present at radius R in the reference configuration (Fig. 2(a)), and zero otherwise. The
membrane is pre-stretched from the radius A to a radius a and inflated with the pressure P. A voltage U is then applied
between the electrodes. The material points of the membrane identified by the radius R in the reference configuration
move to the radius r(R, t) and the altitude z(R, t) in the deformed configuration at time t (Fig. 2(b)). The corresponding
radial and orthoradial stretches are denoted by λ1 and λ2 respectively. The principal stretches as well as the angle of
incline θ, defined in Fig. 2(b), can be expressed in terms of the variables r and z:

λ1 =

√(
∂r
∂R

)2

+

(
∂z
∂R

)2

, λ2 =
r
R
, λn =

1
λ1λ2

=
h
H
, cos θ =

1
λ1

∂r
∂R

, sin θ =
1
λ1

∂z
∂R

, (25)

where H and h are the inhomogeneous thickness of the membrane in reference and deformed configuration respec-
tively.

3.2. Equilibrium equations of the membrane

The dynamic equilibrium equations are derived from the classical membrane equations, commonly written along
the normal and the tangential directions [28]. Given the axisymmetry of the problem, they are here projected along
the radial and the vertical directions:

ρ(1 + Γρratio)
rh

cos θ
∂2r
∂t2 = −

σ2h
cos θ

− Pr
sin θ
cos θ

+
∂

∂r
(σ1rh cos θ) , (26)

ρ(1 + Γρratio)
rh

cos θ
∂2z
∂t2 = Pr +

∂

∂r
(σ1rh sin θ) , (27)

where ρratio is the ratio of the electrode over the membrane mass per unit area. The dependence in radius R and time
t of r, z, θ, h has been omitted for clarity. These equations are the same as those derived by Zhu et al. [14], and are
similar to those used by Mockensturm and Goulbourne [12], except that they neglect tangential inertia. If all inertia
is neglected Eqs. (26) and (27) are equivalent to the well-known hyperelastic membrane equations derived by Atkins
[27]. Note that the electrostatic coupling appears only in behavior equations, and not in equilibrium equations.

All the equations of the problem are now transformed into a non-dimensional form, by introducing non-dimensional
variables, denoted with an over-bar (¯):

R = AR̄ , a = Aā , r = Ar̄ , z = Az̄ , H = H0H̄ , σ1 = µλ1 s̄1 , σ2 = µλ2 s̄2 , t =

√
ρ

µ
At̄ , (28)
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where s̄1 and s̄2 are the nominal non-dimensional stresses, and H0 = H(0) is the thickness at the center. Using
the geometrical relations Eqs. (25) and the definition of the non-dimensional parameters Eqs. (28) we obtain from
Eqs. (23)-(27) the non dimensional equilibrium equations and constitutive relations:(

H̄R̄s̄1r̄′

λ1

)′
− βr̄z̄′ − s̄2H̄ = H̄R̄

(
1 +

Γ

H̄
ρratio

)
¨̄r , (29)(

H̄R̄s̄1z̄′

λ1

)′
+ βr̄r̄′ = H̄R̄

(
1 +

Γ

H̄
ρratio

)
¨̄z , (30)

s̄1 =
Jm

Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2

)
− α

Γ

H̄2
λ1λ

2
2 , (31)

s̄2 =
Jm

Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3

)
− α

Γ

H̄2
λ2

1λ2 . (32)

where β = AP/µH0, and α = εU2/µH2
0 . The prime (′) stands for the space derivative ∂/∂R̄, and the dot (˙) is the time

derivative ∂/∂t̄. The electric field is non-zero only where the electrodes are located, as indicated by the factor Γ in
Eqs. (31) and (32).

The last equations needed to close the problem are the boundary conditions. At the center the radial displacement
is zero and the membrane slope is zero. The membrane is clamped at the outer edge at R = A. This reads:

r̄(R̄ = 0) = 0 , r̄(R̄ = 1) = ā , z̄′(R̄ = 0) = 0 , z̄(R̄ = 1) = 0 . (33)

The first stage of the considered problem consists in pre-stretching and inflating the membrane with the pressure
Ppres (βpres in non-dimensional form). During this step the amount or air in the cavity varies. In the second stage, the
cavity is closed, and the volume under the membrane is then called V̄ini. The pressure inside the cavity changes with
the membrane deformation, which adds a stiffness term to equilibrium equations. The transformation is assumed to
be quick compared to heat exchange times, therefore the gas evolution inside the volume can be considered adiabatic.
The ideal gas law implies that PVγ is constant, where γ = 1.4 is the heat capacity ratio, and V the total volume of the
cavity (including the volume under the membrane). This equation in non-dimensional form reads:

(βatm + β)
(
V̄s + 2π

∫
r̄z̄r̄′dR̄

)γ
=

(
βatm + βpres

) (
V̄s + V̄ini

)γ
, (34)

where βatm = APatm/µH0, Patm is the atmospheric pressure, V̄s = Vs/A3, and Vs is the volume of the cavity when the
membrane is not inflated. As a consequence, β is in the second stage a variable and not a fixed parameter, and one
more equilibrium equation has to be solved (Eq. (34)).

3.3. Dynamic excitation by the electrodes

The Maxwell stress, which is responsible for the electromechanical activation, is proportional to the squared
voltage (see Eqs. (17) and (18)). This will be the major source of non-linearities. However, shaping the input signal
can help reducing distortion, as shown by Heydt et al. [7], and Kaal and Herold [20]. The following voltage is
therefore applied to the electrode connections:

Uapp(t) =

√
Uc

2 + Ws(t) , with Uc
2 > |Ws| , (35)

where Uc is a DC voltage, and Ws(t) an alternating component (in V2) which corresponds to the audio signal that is
played on the loudspeakers.

Moreover, the conductive grease used for the electrodes has a finite resistivity. As a consequence, at higher
frequencies the effective voltage on the electrodes will no longer be uniform, and the average on the electrodes surface
will be smaller than the voltage applied to their connections. The most simple way to account for this phenomenon
is to build a lumped model of the membrane and its electrodes: its forms an RC circuit (see Fig. 3). The circuit is a
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Figure 3: Simple electrical model of the dielectric elastomer membrane. Re stands for the resistance of the electrodes, C is the capacity of the
membrane plus electrodes capacitor, Uapp the voltage applied to the electrodes connections, and U the effective voltage on the electrodes.

low-pass filter, whose transfer function in the frequency domain reads as:

Û
Ûapp

=
1

1 + i ω
ωcut

, (36)

where ωcut = 1/ReC. In this section hats denote Fourier transforms (Û = F (U)).
The first order effect of this filter on the voltage Uapp applied to the electrodes is now estimated. For small

amplitudes of Ws compared to Uc
2, the applied voltage can be linearized as:

Uapp(t) =

√
Uc

2 + Ws(t) ≈ Uc +
Ws(t)
2Uc

. (37)

Filtering Uapp by the RC circuit Eq. (36) yields:

U(t) ≈ Uc +
1

2Uc
W(t) , with W(t) = F −1

 Ŵs(ω)
1 + i ω

ωcut

 , (38)

where F −1 is the inverse Fourier transform. Finally, by squaring and keeping the first order term:

U2(t) ≈ U2
c + W(t) . (39)

At low frequencies, 1 + iω/ωcut ≈ 1, meaning that the electrical circuit has no effect, so U(t) = Uapp(t). The
expression Eq. (39) is therefore exact at low frequencies, even for large values of Ws. Above the cutting frequency,
the voltage is no longer uniform on the electrodes, while the model still assumes a uniform distribution. The correction
of Ws by the RC circuit should therefore only be seen as a qualitative way to account for the decrease of the excitation
amplitude above ωcut.

Finally, using Eq. (39) in the constitutive relations Eqs. (31) and (32) yields:

s̄1 =
Jm

Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2

)
− αc

Γ

H̄2
λ1λ

2
2 −

εW
µH2

0

Γ

H̄2
λ1λ

2
2 , (40)

s̄2 =
Jm

Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3

)
− αc

Γ

H̄2
λ2

1λ2 −
εW
µH2

0

Γ

H̄2
λ2

1λ2 , (41)

where αc = εU2
c/µH2

0 . In both equations, the first term is the mechanical stress, the second is the stress created by the
static voltage, and the third is the dynamical stress due to the alternating component of the excitation voltage. This
last term is proportional to Ws, meaning the excitation force depends linearly on the audio signal.

3.4. Summary of equations
To conclude this section, the complete set of equations comprises:

• the equilibrium equations (29), (30),

• the ideal gas law (34), used only when the cavity is closed,

• the boundary conditions (33),

• the constitutive relations (40) and (41).

The following section is devoted to the numerical solving of the system of equations described above, and to the
calculation of the acoustic radiation.
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4. Numerical solving

The resolution using finite elements is performed in two main stages: first the static equilibrium reached by the
membrane when a given pressure and static voltage are applied is computed, and then the linear dynamics around this
equilibrium are analyzed.

4.1. Solving for the static deformation
The equilibrium equations need to be transformed into a weak form in order to be implemented in the finite

element software FreeFem++. We define the test functions v and w which satisfy v(1) = 0 and w(0) = w(1) = 0,
and a test scalar B. By multiplying the equilibrium equations (40), (41) and (34) by the test functions v, w, and B,
integrating by parts and using the boundary conditions (33), a residual is defined:

<([r̄, z̄, β], [v,w,B]) =

∫ 1

0
v′

H̄(R̄)R̄s̄1z̄′

λ1
dR̄ −

∫ 1

0
βr̄r̄′vdR̄ +

∫ 1

0
w′

H̄(R̄)R̄s̄1r̄′

λ1
dR̄ +

∫ 1

0
βr̄z̄′wdR̄ +

∫ 1

0
H̄(R̄)s̄2wdR̄

+ (βatm + β)B
(
V̄s + 2π

∫ 1

0
r̄z̄r̄′dR̄

)γ
− (βatm + βpres)B(V̄s + V̄ini)γ . (42)

The static equilibrium equation then simply reads:

<([r̄, z̄, β], [v,w,B]) = 0 ,∀[v,w,B] . (43)

This equation is solved using Newton-Raphson’s method. First an initial guess of the solution is made in the form
of a spherical cap. Then the residual<([r̄, z̄, β], [v,w,B]) is linearized to provide the gradient for Newton-Raphson’s
method. Introducing the variables r̄ = r̄0 + xr, z̄ = z̄0 + xz and β = β0 + xβ, the linearized weak form reads:

<([r̄0, z̄0, β0], [v,w,B]) +
〈
<′([r̄0, z̄0, β0], [v,w,B]) , [xr, xz, xβ]

〉
= 0 . (44)

The explicit linearized form of Eq. (44) is provided in Appendix A. The linear equation (44) is solved at each step of
Newton-Raphson’s method to find the increment x̄ = [xr, xz, xβ]. The initial guess is then updated: x̄0 = [r̄0, z̄0,B0] =

x̄0 + x̄. This is repeated until x̄ is sufficiently small (‖x̄‖2< 1e−8).
FreeFem++ software [29] is used to assemble the stiffness matrix and the force vector, and to solve the non-linear

inflation problem. 200 P2 elements along the radius are used. The resolution is performed in two steps:

1. The static deformation created by the pre-stretch and the inflation pressure with no applied voltage is computed.
In this step the pressure is prescribed: β = βpres is an external parameter. The equation PVγ = cst of Eq. (34) is
removed from the weak form.

2. The static deformation created by the applied voltage is computed. The amount of gas in the volume is now
fixed, and the inflation pressure may vary. The pressure β becomes a variable that has to be solved for. The
same Newton-Raphson’s method is used.

The complete static problem now depends on seven non-dimensional parameters: βpres, αc, Jm, ρratio, βatm, ā and V̄s.
At the end of this iterative solving, <([r̄0, z̄0, β0], [v,w,B]) = 0. Thus, [r̄0, z̄0, β0] is the static solution. Usually,
approximately 20 Newton-Raphson iterations are needed for the first step, and 10 for the second.

4.2. Modal analysis
In order to compute the modes of the membrane around the static equilibrium, small harmonic perturbations

around this equilibrium are introduced:

r̄ = r̄0 + xreiω̄t̄ , z̄ = z̄0 + xzeiω̄t̄ , β = β0 + xβeiω̄t̄ , λ1 = λ10 + xλ1 eiω̄t̄ , λ2 = λ20 + xλ2 eiω̄t̄ . (45)

The right hand side of the weak form Eq. (43) is modified to take into account inertia:

<([r̄, z̄, β], [v,w,B]) = ω̄2
∫ 1

0

(
1 +

Γ

H̄
ρratio

)
H̄R̄(vxz + wxr)dR̄ , ∀[v,w,B] . (46)
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The residual< is linearized around the static solution [r̄0, z̄0, β0]. As this is a static equilibrium<([r̄0, z̄0, β̄0], [v,w,B]) =

0 for all test functions. Therefore the governing equation for linear vibrations is:〈
<′([r̄0, z̄0, β0], [v,w,B]) , [xr, xz, xβ]

〉
− ω̄2Φ([xr, xz], [v,w]) = Ψ([r̄0, z̄0, β0],Ws) , ∀[v,w,B] , (47)

where the first left-hand term is a bi-linear form in [v,w,B] and [xr, xz, xβ] depending on the static solution that defines
the stiffness matrix, Φ is a bi-linear form in [xr, xz] and [v,w] that defines the mass matrix, and Ψ([r̄0, z̄0, β0],Ws) is
the force vector. Finally Eq. (47) can be written in the following matrix form, after discretization by finite elements: Krz Kc12

Kc21 Kβ



[
xr

xz

]
xβ

 − ω̄2

Mrz 0

0 0



[
xr

xz

]
xβ

 =

Frz

0

 (48)

⇔ (−ω̄2
M +K)x̄ = F (49)

where Krz and Mrz are the membrane stiffness and mass matrices, Kc12 and Kc21 are the stiffness coupling terms
between the membrane and the cavity stiffness, and Kβ is the cavity stiffness. The weak form as expressed in Eq. (47) is
not symmetric. Therefore the mass and stiffness matrices are not symmetric either. The standard modal orthogonality
relations don’t hold, but computing left- and right-modes allows to define bi-orthogonality relations [30]. Setting
the right hand side to zero (no applied alternating voltage) defines the right eigenvalue problem. The left eigenvalue
problem is obtained by transposing the system. The right mode shapes are denoted ψR

n , the left mode shapes ψL
n , and

the eigenfrequencies ω̄n. The equations defining the modes are:

KψR
n − ω̄

2
nMψR

n = 0 , (50)

ψL
nK − ω̄

2
nψ

L
nM = 0 . (51)

Equations (50) and (51) are solved on FreeFem++ and 40 modes are computed. The eigenfrequencies and the mode
shapes are found to be real.

4.3. Synthesis of calculated transfer functions

To compute the response of the membrane to the excitation by the electrodes, the dynamics are projected on
the modal basis. The modal forces need to be evaluated, and then bi-orthogonality relations will provide the modal
amplitudes. The kinematics can be expressed on the modal basis:

x̄ =

Nmodes∑
n=1

cnψ
R
n . (52)

Inserting Eq. (52) into Eq. (49), and pre-multiplying by the p-th left mode yields:

Nmodes∑
n=1

cn

(
ψL

pKψ
R
n − ω

2ψL
pMψR

n

)
= ψL

pF . (53)

As all eigenvalues are of order one, bi-orthogonality relations between the right and left modeshapes hold, and the
modal amplitudes of the forced response reads:

cp =
Fp

µp(ω̄2
p − ω̄

2)
, (54)

where the modal force Fp is:

Fp = ψL
pF = −

εWs

µH2
0

1
1 + i ω̄

ω̄cut

F̄p , (55)
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with

F̄p =

∫ 1

R̄=0

(
R̄
Γ

H̄
λ2

20

(
(ψL

p,z)
′z̄′0 + (ψL

p,r)
′r̄′0

)
+
Γ

H̄
λ2

10λ20ψ
L
p,r

)
dR̄ , (56)

where ψL
p,r and ψL

p,z denote the r and z components of the left mode shape p. The modal mass µp is:

µp = ψL
pMψR

p = −

∫ 1

R̄=0
R̄ (1 + Γρratio)

(
ψL

p,rψ
R
p,r + ψL

p,zψ
R
p,z

)
dR̄ . (57)

The transfer function between the excitation signal Ws and the membrane non-dimensional displacement X̄ can finally
be expressed as:

H(ω̄, R̄) =
x̄

Ws
= −

ε

µH2
0

1
1 + i ω̄

ω̄cut

Nmodes∑
n=1

F̄nψ
R
n

µn(ω̄2
n − ω̄

2)
. (58)

4.4. Damping model
The chosen material model is hyperelastic and loss-free. However, the losses will have a large influence on the

dynamical behavior of the system, and have to be accounted for. The loss factor of most modes will be measured
experimentally, but as some modes could not be measured, a loss factor estimation is required in the model. We chose
to use a Rayleigh damping model [31], fitted on the experimental modal damping ratios (see section 5.4.1 for the
experimental data).

In case of Rayleigh damping, the damping matrix is proportional to the mass and stiffness matrices: C = arM +

brK . This is very convenient since the undamped modes also diagonalize the damped system [31]. The only change
is that the eigenfrequencies become complex numbers. As a consequence, the numerical modal analysis can be
performed without any damping, and the eigenfrequencies are modified afterwards. The damping ratio for a Rayleigh-
damped system reads [31]:

ξn =
ar

2ωn
+

brωn

2
. (59)

This description of the damping is likely to be a huge simplification of the various real damping phenomena. For
example, Fox et Goulbourne [8] found that their system had complex mode shapes, indicating that the damping
phenomena are richer than the simple Rayleigh damping considered here. However they studied VHB membranes,
which are likely to be much more heavily damped than the silicone membranes used in the present study. The transfer
function Eq. (58) with the damping included finally reads:

H(ω̄, R̄) = −
ε

µH2
0

1
1 + i ω̄

ω̄cut

Nmodes∑
n=1

F̄nψ
R
n

µn(ω̄2
n + 2iξnω̄ω̄n − ω̄2)

. (60)

4.5. Radiated acoustic pressure
This section presents the computation of the sound radiation of the membrane, whose velocity is considered to

be known. The definition of the dimensional variables used in this section is given in Fig. 4. The radiated acoustic
pressure can be computed using a Rayleigh integral. This formula describes exactly the radiation of a flat vibrating
surface in an infinite baffle. In practice it works for a baffle large compared to the acoustic wavelength (λ � b). The
radiated pressure is expressed as:

P(rp, ω) = −ρOω
2
∫

S
x(r, ω)

e−ik|rp−r0 |

2π|rp − r0|
dS . (61)

This expression has been modified by Quægebeur et al. to take into account the effect of the curvature of the source
[32]. This is valid for small curvatures (tmax � a). They formulated the Rayleigh integral in the time domain, but it
can easily be adapted to the frequency domain:

P(rp, ω) = −ρOω
2
∫

S
G(rp, r0, ω) X(r0, ω) · n dS , (62)

11



Figure 4: Definition of the variables used for the Rayleigh integral, and modified Rayleigh integral for sound radiation by inflated membranes using
image sources.

with

G(rp, r0, ω) =
e−ik|rp−r0 |

4π|rp − r0|
+

e−ik|rp−r̃0 |

4π|rp − r̃0|
, (63)

where r̃0 is the symmetric of the source with respect to the baffle.
Quægebeur et al. compared their computations for rigid shells to exact results calculated by Suzuki and Tichy

[33], and found good agreement over almost the whole frequency range. For a spherical cap with tmax ≈ 0.75a, there
was a difference up to 5 dB around ka = 1 due to diffraction effects that are not taken into account in this model. At
lower and higher frequencies (ka < 0.5 and ka > 3), the modified Rayleigh integral predicts the radiated pressure
within 1 dB.

The transfer function between the excitation voltage Ws and the radiated pressure can finally be computed as:

Hp(ω̄) =
P

Ws
=
ρ0ε

ρH2
0

1(
1 + i ω̄

ω̄cut

) Nmodes∑
n=1

ω̄2F̄nRn(ω̄)
µn(ω̄2

n + 2iξnω̄ω̄n − ω̄2)
, (64)

where Rn is a modal radiation term:

Rn(ω̄) =

∫ 1

0

(
−ψR

n,r z̄
′
0 + ψR

n,zr̄
′
0

)
r̄0

e−ik̄Ā|r̄p−r̄0 |

2|r̄p − r̄0|
+

e−ik̄Ā|r̄p− ¯̃r0 |

2|r̄p − ¯̃r0|

 dR̄ , (65)

with k̄ = Ak, r̄0 = r0/A, r̄p = rp/A, and ¯̃r0 = r̃0/A.

5. Experimental validation of the coupled electromechanical model

In this section the numerical model is validated by different experiments: static, dynamic and acoustic measure-
ments.

5.1. Experimental setup
The experimental setup for the validation of the numerical results for the static deformation is shown in Fig. 5.

The membrane is put on a circular frame, without any pre-stretch. The back volume is pressurized to a pressure P,
which is measured by a Furness control manometer. A DC voltage is applied to the electrodes using a TREK 609E-6
high voltage amplifier. The new pressure in the back cavity is recorded. The laser displacement sensor is moved over
the membrane using a Newport linear stage, to measure the deflection in z direction on one diameter. The membrane
is inflated at four different pressures (P = 500, 1000, 1500 and 2000 Pa). For each case, four different voltages are
applied (Uc = 0, 1000, 2000 and 3000 V).

The experimental setup and signal processing flow chart for dynamical measurements are shown in Fig. 6. The
applied voltage is now built of a DC and an alternating component, in a manner to suppress the first harmonic of the
non-linear force (see section 3.3). The alternating signal Ws(t) is a white noise filtered to the frequency band of interest
[50–1000 Hz]. The z component of the membrane velocity is measured using a laser scanning vibrometer (Polytec
PSV-500), on a mesh of 450 points evenly distributed over the membrane. The transfer function between the white
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Figure 5: Setup for static measurements. (a) Schematic of the setup. (b) Block diagram.
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Figure 6: Setup for dynamic measurements. (a) Schematic of the setup. (b) Block diagram.

noise Ws and the velocity is computed by averaging over 6 measurements for each point. The frequency resolution
is 0.78 Hz. This step results in a transfer function Hv = vz/Ws for each point of the mesh, where vz is the membrane
velocity along z. The transfer functions can be fed into a modal analysis program to extract the eigenfrequencies, the
mode shapes, and the modal damping ratios. To obtain the following results, the Least-Square Complex Exponential
method (LSCE) has been used [34].

To perform the acoustical measurements, the prototype is placed in a circular baffle of radius b = 0.7 m, and
put into an anechoic chamber specified down to 120 Hz. A microphone is located on axis at a distance of 1 m. The
experimental transfer function between the acoustic pressure P and Ws is obtained using the Welch method for spectral
averaging.

5.2. Parameters identification
5.2.1. Membrane thickness

The silicone membrane is spin-coated, and its thickness is measured using a laser displacement sensor (Keyence
LK-G37), and also using a microscope. The thickness profile is plotted in Fig. 7. It appears that due to the spin-
coating process the membrane thickness is not uniform. To allow the use of the measured thickness in the finite

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Figure 7: Measured thickness of the membrane as a function of the non-dimensional radius. The fitting parameters are H0 = 268 µm, a1 = 0.23,
and a2 = −0.59.
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element simulation, the thickness should be defined as an analytical function of the radius. A simple 3-parameter
function H(R̄) = H0(a1R̄2 + a2R̄ + 1) is thus fitted on the measurements, and also plotted in Fig. 7.

5.2.2. Constitutive parameters
The parameters of the Gent constitutive material law µ and Jm have been measured by a bi-axial inflation test

following the method proposed by Rosset et al. [35]. We used the NuSil CF19-2186 silicone, and the parameters we
found are close (within 7%) to those found by other researchers [35, 36] (see Table 1). The differences may be due to
the fabrication process, like for example the amount of solvent used to decrease the viscosity before spin-coating the
membrane, or the curing temperature. The value of the electrical permittivity of the silicone is taken from [37].

5.2.3. Electrode resistivity and membrane capacitance
The electrodes are made of carbon grease, and are painted on the membrane by hand. The impedance of the

prototype is measured using the voltage and current monitor outputs of the TREK amplifier, and plotted in Fig. 8
together with the fitted theoretical impedance of the model sketched in Fig. 3.
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Figure 8: Electrical behavior of the dielectric elastomer membrane. (a) Impedance amplitude. (b) Impedance phase. The RC model is plotted with
R = 2.5 × 105 Ω, C = 502 pF for P = 500 Pa, and R = 3.2 × 105 Ω, C = 590 pF for P = 1000 Pa.

Figure 8 shows that the electrical model correctly captures the electrical behavior of the membrane. However
at high frequencies, above 2000 Hz, the phase is no longer correctly predicted. The impedance becomes indeed
very small and comparable to that of the TREK amplifier, so the measured impedance starts being dominated by the
amplifier impedance. The electrical cutting frequency is found to be fcut = 1/2πReC = 1381 Hz, for the parameters
given in Tab. 1.

5.2.4. List of all parameters
The parameters used for all experiments presented in this article are listed in Table 1. All these parameters have

been measured by independent experiments, or found in the literature. The shear modulus µ is the only parameter
that is adjusted, so that the computed static deformation fits the measured one (see Fig. 9(a)). After this adjustment,
the shear modulus differs from the one measured by the bi-axial inflation test by 13%. This uncertainty comes from
the difficulty to measure precisely µ with the bi-axial inflation test, especially when the membrane thickness if not
uniform.

5.3. Results

5.4. Static deformation

The membrane deformation for four different prescribed pressures and no applied voltage is plotted in Fig. 9(a).
The displacement of the membrane caused by the applied voltage is plotted in Fig. 9(b) for one value of the prescribed
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Dim. Value Non-dim. Value Dim. Value Non-dim. Value Dim. Value Non-dim. Value
H0 268 µm - - Vs 1.04 L V̄s 16.4 Relec 2.85 cm Relec/A 0.71
µ 2.3 × 105 Pa - - P 500 Pa β 0.324 ρ 1042 kg m−3 - -
Jm 44 Jm 44 Uc 2000 V α 0.0060 ρelec 0.11 kg m−2 ρratio 0.39
A 4 cm - - Ws 500 V2 - - εr 2.8 - -
a 4 cm ā 1 Patm 1.013 hPa βatm 65.7 fcut 1266 Hz - -
- - a1 0.23 - - a2 -0.59

Table 1: List of all experimental dimensional parameters (Dim.) and non-dimensional parameters (Non-dim.). These parameters are used in all
experiments and numerical results presented in the present paper, except when it is specified that it is not the case.
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Figure 9: Solid lines: numerical results, markers: measurements. The pressure in the legend is the inflation pressure when no voltage is applied
(Uc = 0). (a) Membrane deformation when no voltage is applied. (b) Displacement along z of the membrane when a voltage is applied, the pressure
is fixed at 500 Pa. (c) Deflection of the center point when a voltage is applied. The displacement is relative to the position of the center point when
no voltage is applied (Uc = 0). (d) Variation of the static pressure when a voltage is applied.
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Figure 10: Comparison of the measured and computed eigenmodes. The dots are the measured modes, and the line the computed ones. The dashed
lines are the computed modes with V̄s = ∞. f f i is the frequency of the ith computed mode, and fmi the frequency of the ith measured mode. The
x-axis is the non-dimensional radius, and the y-axis is the scaled mode shape amplitude. The mode shapes were measured on a mesh covering the
full membrane. All points of the mesh are plotted here, which allows to check whether the modes are really axisymmetric.

pressure. The displacement of the apex of the membrane for the four inflation pressures is plotted in Fig. 9(c). The
measured and computed equilibrium pressures after the voltage is applied are given in Fig. 9(d).

Figure 9 shows that the model accurately describes the finite deformation of the membrane when both a static
pressure and a voltage are applied. The coupling with the cavity stiffness (that enforces an adiabatic evolution inside
the cavity) is able to predict the pressure drop created by the voltage. The present model where a Gent material law
is used allows to compute the deformation for large pressures. The model using a Neo-Hookean behavior studied by
Zhu et al. in [14] is limited to small pressures (β . 0.5). Indeed without the stiffening at large strains modeled by the
parameter Jm in Gent’s law, the membrane exhibits snap-through instability. This instability has not been observed
experimentally here, and is not observed numerically either when Gent’s law is used.

Figure 9(b) shows that the membrane displacement is not perfectly axisymmetric, and this might explain some of
the differences observed in other experiments. The negative displacement in Fig. 9(b) at radius r > 30 mm occurs in
the area of the membrane which not covered by the electrode. As the voltage is applied only where electrodes are
present, the stress distribution changes compared to the unactivated case. This may result in different displacements
in the different areas.

5.4.1. Modal analysis
The mode shapes of the membrane with the parameters given in Table 1 are measured using the method presented

in section 5.1, and computed using the numerical method presented in section 4.2. The computed modes, which are
real are scaled so that the maximum amplitude is 1. The measured modes are complex, so a little more attention has
to be paid to their scaling, which is done as follows. The point with maximum amplitude is used as a phase reference:
the phase of the whole mode is adjusted so that the phase of this point is zero. The real part of this phase-adjusted
mode is scaled to a maximum amplitude of 1, and plotted. The computed modes 4, 8 and 9 have not been measured,
so they are not plotted in Fig. 10. Most likely the modal force of these modes was too small to create a significant
modal displacement.

Figure 10 shows an overall good agreement between the measured and the computed mode shapes. Contrary to
Fox and Goulourne [10], our measured modes are almost real. Silicone was used in the present experiments, whereas
Fox and Goulbourne used VHB which is known to have a higher loss factor [38].
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Figure 11: a) Measured and computed eigenfrequencies. b) Measured modal loss factors and Rayleigh fit. The damping matrix reads C =

arM + brK with ar = 6.51 s and br = 5.4 × 10−5 s−1.

The mode shapes computed with an infinite value of V̄s are also shown, which corresponds to neglecting the
stiffness added by the cavity. The results highlight that taking this effect into account is of primary importance, in
particular at low frequencies where the volume displaced by the modes is large.

The eigenfrequencies fit well, as seen in Fig. 11(a), and a fitted Rayleigh damping seems to be a fair approximation
of the measured damping ratios (Fig. 11(b)).

5.5. Frequency response functions
The experimental and numerical results are now compared in terms of frequency response functions. These results

are presented here in order to assess the validity of the model and clarify its limits, before analysing and discussing
the influence of different parameters on the radiated pressure in section 6.
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Figure 12: Computed and measured transfer function between the z component of the velocity and the excitation voltage Ws. (a) Average on 3
points around radius R̄ = 0.3. (b) Average on 14 points around radius R̄ = 0.6.

First, the transfer functions between the excitation signal Ws and the velocity in the z direction of the membrane
are plotted at two different radius in Fig. 12. At low frequencies, below 400 Hz, the dynamics of the membrane are
well captured by the model. The amplitude of the resonances is reasonably well predicted, even if it is overestimated
for some modes, like the peak at 600 Hz. This is most likely due to imperfections of the prototype. One possible
problem is that the electrode thickness is not uniform. If the electrode is too thin at some locations, the resistivity will
become very large, and the charges will not have the time to dispatch evenly on the membrane. The uniform voltage
assumption that is made in the model is no longer valid in that case.
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Figure 13: Computed and measured transfer functions between the radiated pressure and the excitation signal Ws. (a) Amplitude. (b) Phase in
degrees.
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Figure 14: Computed and measured transfer functions between the radiated pressure and the excitation signal Ws. (a) Back cavity volume V̄s =

16.4. (b) Back cavity volume V̄s = 11.3.

The next comparison is performed on the acoustic pressure radiated by the loudspeakers. For the set of parameters
given in Table 1, the numerical and experimental transfer functions between the acoustic pressure on axis at 1 m and
the excitation signal Ws are plotted in Fig. 13. Figure 13(a) shows that the model accurately predicts the radiated
acoustic pressure at low frequencies, below 500 Hz. There are though small errors on modal frequencies, and some
errors on the peak levels (up to 7 dB for the mode around 200 Hz). At higher frequencies there are larger differences,
for the reasons explained above. The phase shown in Fig. 13(b) is also correctly predicted.

6. Discussion

The objective of this section is to analyse and discuss the influence of some parameters on the behavior of the
loudspeaker. Most analyses and comparisons will be performed on the acoustical transfer functions, because acoustics
is what matters the most for a use as a loudspeaker, and also because the calculation giving the radiated pressure
involves all modeling steps.

6.1. Influence of the back cavity volume

The back cavity volume induces an added stiffness that is exerted on each dynamical mode of the membrane.
Neglecting the stiffness resulting from the cavity is equivalent to assuming an infinite volume Vs. For the set of
parameters given in Table 1, the numerical transfer function between the radiated pressure and Ws are plotted for
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Pressure (Pa) 500 1000 1500 2000
fcut (Hz) 1266 832 518 217

Table 2: Electrical cutting frequency of the membrane for different inflation pressures.

V̄s = 16.4 in Fig. 14(a) and for V̄s = 11.3 in Fig. 14(b). Additionally in Fig. 14(a), the acoustic pressure that would
be obtained if the cavity stiffness were neglected is also plotted. The lower frequency part of the transfer function
is strongly changed and does not fit anymore with the experimental data, highlighting the importance of taking this
stiffness into account.

When the volume of the cavity is reduced (Fig. 14(b)), two effects can be observed: the level of the low frequency
peaks is reduced, and the eigenfrequencies of most of the modes increase. This result is due to the added stiffness,
which is more important for the first modes, as seen in Fig. 10. These effects are also predicted by the model. The
eigenfrequencies are plotted as function of the cavity volume in Fig. 15, where the increase of most frequencies when
the cavity volume is reduced is clearly visible. For most of the modes the increase in frequency is correctly predicted
by the model, but not for the modes around 500 Hz. These modes are those that radiate the most efficiently, as seen in
Fig. 14. It is thus expected that the coupling between these modes and the acoustical radiation is stronger compared
with other modes. Extending the model to take into account the strong coupling between the membrane dynamics and
acoustics might therefore be of large interest.

6.2. Influence of the inflation pressure
Keeping this time the back cavity volume constant, the inflation pressure is now varied. The radiated pressure is

plotted for four different values of the inflation pressure in Fig. 16. This figure shows that the model better predicts the
acoustic radiation for small inflation pressures. It should be noted that the same discrepancy is observed on velocity
transfer function even though it is not presented here. An important parameter for the analysis of the plots in Fig. 16
is the electrical cutting frequency (see section 3.3), which is given in Table 2 for the four inflation pressures.

The electrical cutting frequency decreases sharply for large inflation pressures. This effect results from the combi-
nation of a capacity increase due to the area increase and of the thinning of the membrane, and of a resistivity increase
due to the thinning of the electrodes. As discussed earlier, once the forcing reaches fcut, the voltage is not uniform
over the membrane. This effect is not accounted for in the model. Consequently, the modal forces of the modes above
fcut will not be correctly predicted, thus explaining the differences seen in Fig. 16. The present model (section 3.3)
hence just accounts for the global trend which is a decrease of the modal forces above fcut. Considering the electrody-
namical loading of the dielectric elastomer membrane appears to be important to capture the high frequency behavior,
and deserves further studies.

What is more, the larger the inflation pressure the thinner the membrane. As a consequence the fluid loading
becomes relatively more important for large pressures and the fact that it has not been taken into account might also
explain the observed discrepancies for larger inflation pressures. Deriving a fully coupled fluid/structure model could
improve these results.

7. Conclusion

The field of dielectric loudspeakers remains little explored. In order to advance in understanding the key mech-
anisms of this type of transducers, we have presented a complete study of a typical system, from the modeling of
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Figure 16: Computed and measured transfer functions between the radiated pressure and the excitation signal Ws. Each figure corresponds to a
given inflation pressure. (a) 500 Pa. (b) 1000 Pa. (c) 1500 Pa. (d) 2000 Pa.
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the electromechanical continuous medium, to the calculation of acoustic frequency response functions. A system-
atic comparison with experiments validated the modeling and highlighted its potential limitations. In particular, key
features like the back cavity effect have been included and shown to be of primary importance on the radiated pressure.

The two key phenomena that should be taken into account to extend the range of application are the strong coupling
with acoustics, because of the very lightweight membrane we consider; and the electrodynamical loading (due to the
resistivity of the electrodes, the voltage is no longer uniform over the membrane at high frequencies). Predicting the
dynamic voltage distribution would allow for the computation of accurate modal forces even at high frequencies.

It is hoped that this model will help to perform an efficient optimization of dielectric elastomer loudspeakers. This
approach allowing to explore numerically all sets of key parameters is novel, and should help improving significantly
the performance of this type of loudspeakers.
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Appendix A. Linearized weak form for finite element solving

The expression of the linearized residual is given here. It is used both in the Newton-Raphson algorithm to
compute the non-linear static deformation, and for the calculation of the eigenmodes and eigenvalues. The bars over
non-dimensional variables are omitted in this appendix.

<([r0 + xr, z0 + xr, β + xβ], [v,w,B]) =

−

∫
β0r0r′0vdR +

∫
β0r0z′0wdR +

∫
v′

Rs10

λ10
z′0dR +

∫
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Rs10

λ10
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∫
s20wdR
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(
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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∫
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+ (βatm + β0)2πγ
∫

(r0z0x′r + r0xzr′0 + xrz0r′0)dRB
(
Vs + 2π

∫
r0z0r′0dR

)γ−1

+ xβB
(
Vs + 2π

∫
r0z0r′0dR
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(A.1)

where s10, s20, λ10, λ20 are evaluated for r0, z0 and β0, and variables with a tilde −̃ are the linearized terms (e.g.
s1 = s10 + s̃1 + O([x2

r , x
2
z , x

2
β]), s̃1 being linear in [xr, xz, xβ]).
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