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Non-intrusive reduced order modelling for the dynamics of geometrically
nonlinear flat structures using three-dimensional finite elements

Alessandra Vizzaccaro · Arthur Givois · Pierluigi
Longobardi · Yichang Shen · Jean-François Deü · Löıc
Salles · Cyril Touzé · Olivier Thomas

Abstract Non-intrusive methods have been used since two decades to derive reduced-order models for geomet-
rically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP),
relying on the static application of prescribed displacements in a finite-element context. We show that a particu-
larly slow convergence of the modal expansion is observed when applying the method with 3D elements, because
of nonlinear couplings occurring with very high frequency modes involving 3D thickness deformations. Focusing
on the case of flat structures, we first show by computing all the modes of the structure that a converged solution
can be exhibited by using either static condensation or normal form theory. We then show that static modal
derivatives provide the same solution with fewer calculations. Finally, we propose a modified STEP, where the
prescribed displacements are imposed solely on specific degrees of freedom of the structure, and show that this
adjustment also provides efficiently a converged solution.

Keywords Reduced order modeling · Geometric nonlinearities · Three-dimensional effect · Thickness modes ·
Modified STiffness Evaluation Procedure · Nonlinear modes · Modal derivatives

1 Introduction

Geometrically nonlinear effects appear generally in thin structures such as beams, plates and shells, when the
amplitude of the vibration is of the order of the thickness [26,37]. The von Kármán family of models for beams,
plates and shells allows one to derive explicit partial differential equations (PDE) [18,1,37,39,8], showing clearly
that a coupling between bending and longitudinal motions causes a nonlinear restoring force of polynomial type
in the equations of motion. This geometric nonlinearity is then at the root of complex behaviours, that also need
dedicated computational strategies in order to derive quantitative predictions. On the phenomenological point of
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view, structural nonlinearities give rise to numerous nonlinear phenomena that have been analysed in a number
of studies: frequency dependence on amplitude [25,20,14], hardening/softening behaviour [46,45], hysteresis and
jump phenomena [24,36], mode coupling through internal resonances [24,39,9], bifurcations and loss of stability
[44,10], chaotic and turbulent vibrations [5,3]. On the computational point of view, nonlinear couplings break the
invariance property of the linear eigenmodes. Consequently, deriving reduced-order models (ROM) is no longer a
straightforward problem and care has to be taken in order to find out a ROM that is capable of describing the
dynamics of the whole system without losing accuracy.

When the structure under study is discretized with the finite element (FE) method, the problem of deriving
accurate ROM is more stringent since the user cannot rely on a PDE in order to unfold an ad hoc mathematical
method for building the ROM. Moreover, because of the intrinsic nature of the geometrical nonlinearities, all
degrees of freedom of the FE model are nonlinearly coupled and substructuring techniques are not suitable, on the
contrary to localized nonlinearities occurring frequently in contact and friction problems [17,52]. Consequently,
for geometric nonlinearity, the computation of the nonlinear coupling coefficients is as important as finding out
a correct reduced basis, and sometimes the two problems are interwoven. Moreover, a number of recent studies
highlighted the importance of using so-called indirect or non-intrusive methods, where the idea is to use the
standard operations that any FE code is used to perform in order to build the ROM, hence avoiding the need
to enter in the code and write new lines computing the needed quantities. On the other hand, direct methods
also exist, for which there is a need to implement the computations at the level of the element [32,47]. The STEP
(STiffness Evaluation Procedure) is a non-intrusive method and has been first introduced by Muravyov and Rizzi in
2003 [23]. In its first version as described in [23], it allows computation of the nonlinear coupling coefficients of the
discretized problem in the modal basis from a series of static computations with prescribed modal displacements.
It has then been used in a number of contexts [21,19,22,28,8], and is generally connected to the modal basis.
However one has to understand that per se, STEP is just an evaluation technique, a computational non-intrusive
method, that can be used with other inputs than those from the modal basis.

The STEP, although being largely applied in numerous cases, is known to suffer from a number of problems,
making it not as so simple as its formulation could let one think. A first one lies in the amplitude of the prescribed
displacement one has to impose in order to excite sufficiently the nonlinearity. As shown in [8], there is a clear range
of amplitude for which the method works properly, between a minimal value where nonlinearity is not sufficiently
excited and a maximum value for which other nonlinear effects are appearing. Another problem is connected to
the use of the modal basis with a STEP computation, and must be interpreted as a drawback of using the modal
basis for nonlinear computation, but is not directly linked with the STEP calculation. The problem is that of the
slow convergence linked to the loss of invariance of eigenspaces, and the numerous couplings between low frequency
bending modes and high frequency longitudinal modes, as underlined in a number of papers, see e.g. [22,8] and
references therein. Consequently, numerous methods have been proposed in order to overcome this limitation: dual
modes [16], POD modes [29], discrete empirical interpolation [41], modal derivatives [12,51], quadratic manifold
[13,30], just to name a few.

Incidentally, the majority of papers where the STEP has been applied to thin structures, report results obtained
with structures discretized with beam, plate or shell finite elements, as being mostly interested in slender structures.
A few examples with block elements can be found in the literature, see e.g. [27,50], where dual modes have
been used in order to achieve convergence. Using 3D finite elements can be interesting in practice, sometimes
mandatory. In engineering applications, structures are often defined with a 3D geometrical model, for which a 3D
FE discretization is straightforward. In other cases, some particular physical effects (piezoelectricity for instance)
are sometimes implemented in existing FE codes only with 3D elements. Preliminary studies of the authors reveal a
number of difficulties when blindly applying the STEP with modal basis to 3D finite elements, with more stringent
inaccuracies and problems than those encountered with plate or shell elements. In particular, an unexpected slow
convergence was observed when using the modal basis, and very high frequency modes appear to be involved.

The objective of this paper is to diagnose properly the issues one can encounter when applying the STEP with
a modal basis to a structure discretized with 3D finite elements and present methods to overcome the problems.
In the course of the paper, we will show that the problem is intrinsically related to the use of the modal basis,
and that the STEP can be used with other inputs than the modal basis, in order to get better results. We restrict
our attention to thin structures that are symmetric in the thickness direction, such as straight beams or plates,
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for which there is a bending / longitudinal uncoupling at the linear level that greatly simplifies the understanding
of the phenomena and enables to obtain reference results.

The paper is organized as follows. Section 2 is dedicated to the framework of the study, the equations of motion
and a brief recall of the STEP. Section 3 addresses on test examples the issues of the STEP applied to 3D FE. It is
shown that a nonlinear coupling of bending modes with very high frequency modes involving deformations in the
thickness of the structures occurs, and thus called thickness modes. Those modes are the result of 3D deformation
effects that are not present when using beam or plate models. This unexpected coupling is different from the
traditional bending-longitudinal coupling and the numerical examples show that they are of prime importance to
achieve a converged solution. If one can compute all the coupled modes, two strategies are given to overcome the
large dimension of the reduced basis: static condensation and the reduction to a single nonlinear normal modes.
Both method shows that when a single master mode drives the dynamics, the ROM can still be composed of a
single nonlinear oscillator. However, finding out all the coupled high-frequency modes is generally out of reach for
complex structures. In section 4, we then show that using a static condensation of a single modal derivative allows
to retrieve the same converged result, in a more direct and efficient way. In addition, a modified version of the
STEP is proposed, to directly embed the coupling with thickness modes. It consists in applying the prescribed
displacement only on selected degrees of freedom and let the other free. In section 5, the physical mechanisms of
those nonlinear couplings are explained and section 6 presents numerical results to validate the proposed numerical
methods, able to overcome the convergence issues of the classical STEP.

2 Modelling

2.1 Reduced order model and STEP

An elastic mechanical structure discretized by the finite element method and having geometrical nonlinearities is
considered. The time-dependent displacement vector x gathers all the degrees of freedom of the model (displace-
ments/rotations at each nodes) and is N -dimensional. The equation can be written:

Mẍ+Cẋ+ f(x) = fe, (1)

where M and C are the N × N dimensional mass and damping matrices, f(x) is the internal force vector,
fe(t) is the external force vector and the overdot represents the classical differentiation with respect to time t:
•̇ = d • /dt. Note that since we are more interested in the computation of the nonlinear restoring force, a linear
viscous damping model has been used. In the present case of geometrically nonlinear structures, the internal force
vector encompasses only polynomial terms up to order three and involves the displacement vector x only [19,22,
47,11]. For the present study, we restrict our attention to this case, but extensions to more complex cases involving
for examples velocity terms can also be handled.

It is convenient to split the internal force vector into a linear part and a purely nonlinear part. Assuming that
the equilibrium point, the structure at rest, is given by x = 0, the tangent stiffness matrix K classically writes:

K =
∂f

∂x

∣∣∣∣
x=0

, (2)

so that the nonlinear internal force vector is defined as

fnl(x) = f(x)−Kx, (3)

and the equations of motion reads:
Mẍ+Cẋ+Kx+ fnl(x) = fe, (4)

where the geometrically nonlinear part of the problem is concentrated in the nonlinear internal force vector fnl(x).
The modal basis can be used as a first step in order to make the linear terms diagonal. The eigenmodes are

the family of couples eigenfrequency-eigenvectors (ωk,φk), k = 1, . . . , N , solutions of the undamped, free and
linearized Eq. (4):

(K − ω2
kM)φk = 0. (5)
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Assuming the modal expansion for the displacement vector:

x(t) =
N∑
k=1

φkXk(t), (6)

where Xk(t) is the modal amplitude, and using Galerkin projection allows one to rewrite the equations of motion
in the modal space, for all k = 1, . . . , N , as:

Ẍk + 2ζkωkẊk + ω2
kXk +

N∑
i=1

N∑
j=i

αkijXiXj +
N∑
i=1

N∑
j=i

N∑
l=j

βkijlXiXjXl = Qk, (7)

with
Qk = φT

k fe/mk, mk = φT
kMφk, (8)

where mk is the modal mass, and where a modal damping (of factor ζk) has been assumed uncoupled (an assump-
tion valid for small damping, even with non-proportional C matrix [7]). The nonlinear part of this reduced order
is written with quadratic and cubic polynomial terms with coefficients αkij and βkijl. It is an exact expansion in
the case of 3D FE [47] or beam/plate/shell FE based on von Kármán strain/displacement law [19], whereas it is
truncated in the case of geometrically exact theories [38].

In Eqs. (7), the linear parameters ωk, φk and Qk are obtained by the modal analysis of Eq. (5), available in
any finite element code. The main issue is thus to compute the nonlinear coupling coefficients αkij and βkijl. The
STEP (STiffness Evaluation Procedure) when used with the modal basis as first introduced by Muravyov and
Rizzi [23], is a non-intrusive (or indirect) method, allowing one to get these coupling coefficients from standard
computations available in any FE code. It relies on imposing prescribed static displacements having the shapes
of selected eigenmodes, with a given amplitude. From a clever choice of the modes and the amplitudes, a simple
algebra allows one to retrieve all the coefficients from the internal force vector given by the FE code, the key idea
being to impose plus/minus the displacement with selected combinations of modes. The reader can find detailed
explanation on this calculation in a number of papers, including the original one [23], as well as the improvement
proposed in [28] using the tangent stiffness matrix.

To illustrate the method, we only show the computation of coefficients αkpp and βkppp; for the general case the
interested reader is referred to [23,28]. The following static displacements are prescribed to the structure:

xp = ±λφp ⇒
{
qp = λ,
qj = 0 ∀j 6= p,

(9)

where λ refers to an amplitude coefficient of the eigenvector φp whose value has to be chosen so as to activate
the geometrical nonlinearities. A value of h/20, where h is the thickness of the plate, is recommended in [8]. Since
the modes are orthogonal, imposing a displacement along mode p is equivalent to consider that only the modal
coordinate qp is not vanishing, as detailed in the second part of Eq. (9). Since xp is time independent, introducing
Eq. (9) into Eqs. (4) and (7) leads to, for all k = 1, . . . , N :

λ2αkpp + λ3βkppp = φT
k fnl(λφp)/mk, (10a)

λ2αkpp − λ3βkppp = φT
k fnl(−λφp)/mk. (10b)

Hence the unknown quadratic and cubic coefficients are found easily as

αkpp =
1

2λ2
φk
mk

(fnl(λφp) + fnl(−λφp)) , (11a)

βkppp =
1

2λ3
φk
mk

(fnl(λφp)− fnl(−λφp)) . (11b)

Similar algebraic manipulations with more modes involved in the prescribed displacement then allows one to get
the full family of quadratic and cubic coefficients. The non intrusive nature of the method appears clearly: in
the FE software, one prescribes the displacement field xp and computes the corresponding external force vector
fe = f(xp) with successive linear and nonlinear static computations. Then, fnl(xp) is obtained with Eq. (3).
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2.2 The case of flat structures

In this article, we restrict the analysis to flat structures, such as straight beams or plates with a boundary of
arbitrary shape. The thickness of the plate can be non-constant, but the geometrical and material distribution
must be symmetric with respect to the middle line / plane of the structure.

If a plate theory, with a Kirchhoff-Love kinematics for instance, is applied to this structure, the displacement
field of any point of the structure is described by the displacement field of the middle plane. There is a membrane
/ bending decoupling in linear elasticity and two families of modes are obtained: bending modes, for which only
the transverse component of the middle plane displacement are non-zero, and membrane modes, for which the
transverse component of the middle plane displacement field is zero. Analogous properties are valid for a beam
theory, with a longitudinal / transverse decoupling on the middle line.

In the present case of a 3D structure which has the shape of a beam / plate, it is also possible to split the
eigenmodes into two families in the same manner. The first family includes the bending modes, analogous to the
ones obtained in the plate theory. Their frequencies are in the lower part of the spectrum, while their deformed
shapes are dominated by transverse displacements. They, up to the accuracy of the plate theory, have the same
displacement field in the middle plane / line, with no longitudinal displacement. The second family gathers all
the other modes, denoted by non-bending (NB) modes, that appear at higher frequencies in the spectrum. Some
of them are analogous to the longitudinal modes of the plate theory, with the same transverse displacement field
in the middle plane / line. Other modes are also present, linked to 3D effects and thus with no counterpart in
the beam / plate theory, with mode shapes dominated by thickness deformations. For any mode of this second
family, the displacement field in the middle plane / line has only longitudinal components, and thus no transverse
component. Examples of NB modes will be shown throughout the paper, especially in Tab. 2.

Let us decompose the displacement vector X by denoting as qr, r = 1, ..., NB the bending coordinates, and ps,
s = NB + 1, ..., N the membrane coordinates: X = [q1, ..., qNB

, pNB+1, ..., pN ]T. Then, Eq. (7) can be rewritten for
each coordinates [13,8] and involves quadratic and cubic coupling terms between the qr and the ps. We restrict
ourselves to the case of a transverse low frequency excitation, for which the external forces remain normal to the
middle plane of the plate. As a consequence, the dynamics is dominated by the bending modes, which are the only
ones that receive external excitation. In this case, Eq. (7) can be simplified. First, all quadratic αrij coefficients
involving two bending coordinates i, j vanishes, in order to fulfil the symmetry of the restoring force [8,39]. In
addition, one can assume that the bending coordinates, which are directly excited by the external forcing, are
considered of the order magnitude of a small parameter ε: qr = O(ε), for all r ∈ {1, . . . , NB}. On the other hand,
NB coordinates, since they are not directly excited and shall vibrate at a lower order of magnitude, are assumed
to scale as ε2: ps = O(ε2) for all s ∈ {NB + 1, . . . , N}. Plugging these two scaling in Eq. (7) and keeping only the
leading order, one arrives to, for the bending coordinates, ∀ r = 1, ..., NB :

q̈r + 2ζrωr q̇r + ω2
rqr +

NB∑
i=1

N∑
l=NB+1

αrilqipl +

NB∑
i=1

NB∑
j=i

NB∑
k=j

βrijkqiqjqk +O(ε4) = Qr, (12)

and for the membrane coordinate, ∀ s = NB + 1, ..., N :

p̈s + 2ζsωsṗs + ω2
sps +

NB∑
i=1

NB∑
j=i

αsijqiqj +O(ε3) = 0. (13)

In the above equation, one can notice that because of the transverse excitation, the second member of Eq. (13) is
zero.

Eqs. (12,13) approximate the dynamics of the structure in the present case of a 3D FE model. If an analytic von
Kármán model was used, those equations would be exact, with the terms O(ε3) and O(ε4) identically vanishing
[8]. Those equations also show that the in-plane vibrations are quadratically coupled to the bending coordinates,
while in the equations of motion of the transverse modes, only two nonlinear terms have to be taken into account: a
quadratic coupling involving a product between a transverse and an in-plane coordinate, and a cubic term involving
three transverse modes. This very specific form of equations renders the case of flat structures easier to solve than
general shell problems that encompass all the possible nonlinear couplings as stated in Eq. (7).
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2.3 Static condensation and nonlinear normal modes

Since the non-bending (NB) modes have natural frequencies very large as compared to those of the directly excited
bending modes, ωs � ωr, the dynamical part of Eqs. (13) can be neglected. The nonlinearities being more simple
in this case, one can directly express the non-bending coordinate as function of the bending ones as:

ps = −
NB∑
i=1

NB∑
j=i

αsij
ω2
s
qiqj . (14)

Substituting Eq. (14) into Eq. (12), one can rewrite the dynamics of the structure as a closed system involving
only bending coordinates as

q̈r + 2ζrωr q̇r + ω2
rqr +

NB∑
i=1

NB∑
j=i

NB∑
k=j

Γ rijkqiqjqk = Qr, (15)

where the cubic Γ rijk coefficients appear. Their general expression is derived in Appendix A.
If one is interested in deriving a reduced-order model for a single bending mode (say the master mode with

label p), taking into account all the other non-bending mode, then Eq. (15) can be used and the leading nonlinear
cubic term simply reduces to:

Γ pppp = βpppp −
N∑

s=NB+1

Cpsppp (16)

where the correction factors have been introduced and read:

Cpsppp =
αppsα

s
pp

ω2
s

=
2(αspp)2

ω2
s

. (17)

These expressions show that the cubic term βpppp of the standard modal expansion must be corrected by the
summation of all NB modes quadratically coupled to the master one.

The quadratic coefficients αpij have some symmetry relationships, provided that the nonlinear stiffness derives
from a potential [23]. In particular, the following relationship holds: αpps = 2αspp, which leads to the second
equation (17). Recalling Eq. (10), the evaluation of αspp requires only the computation of the nonlinear force fnl
when the displacement along the p-th linear mode is prescribed, whereas the calculation of the αpps coefficients for
each s-th mode would require as many evaluation of fnl as the number of non-bending modes. Nevertheless, it
requires the projection of nonlinear force onto each membrane eigenvector φs, and thus their computation, which
is costly in practice since a large number of them is required to reach convergence (see section 3.2).

From a physical perspective, following Eq. (10), coefficient αspp can be seen as the projection onto the s-th
membrane mode of the quadratic stiffness forces arising in the structure when a displacement along the linear
p-th mode is imposed. Interestingly, this quadratic coefficient is related to a monomial q2p on the s-th oscillator
equation for ps. These terms are recognized as invariant-breaking terms (see e.g. [46,42]), in the sense that as soon
as energy is given to the master mode p, all s modes having these important invariant-breaking terms will no longer
be vanishing. These invariant-breaking terms are responsible for the loss of invariance of the linear eigenspaces,
and they are found back naturally as correction factors when applying static condensation. They are also key in
the formulation of invariant manifolds in order to define NNMs in phase space [46,33].

In parallel to the static condensation emphasised here, one can use the reduction formulae given by the normal
form approach, restricting the motion to a single Nonlinear Normal Mode (NNM) [46,42,47]. In this case, the
reduced order model is directly constructed from Eqs. (7). The main advantage as compared to the above described
static condensation is that there is no need to assume the particular structure of the equations obtained for flat
structures (Eqs. (12,13)), thus generalizing the results to arches and shells. Considering only the NNM label p, the
reduced-order model reads:

q̈p + ω2
pqp +

(
N∑

s=NB+1

−
αppsα

s
pp

ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p

)
+ βpppp

)
q3p +

(
N∑

s=NB+1

αppsα
s
pp

ω2
s

(
2

ω2
s − 4ω2

p

))
qpq̇p

2 = 0 . (18)



Non-intrusive ROM for the dynamics of geometrically nonlinear flat structures using 3D FEM 7

Once again, one can observe that the correction brought to the cubic term βpppp is solely given by the quadratic
invariant-breaking terms. If one has been able to compute all the quadratic αpij coefficients appearing in Eq. (18),
then the model can be used to simulate the dynamics. Also, it is worth mentioning that since the NB modes have
high frequencies, we can assume that ωs � ωp (which is equivalent to neglect the membrane inertia). Then the
term in factor of q3p in Eq. (18) exactly reduces to the one obtained with static condensation in Eq. (15). On the
other hand, the term in factor of qpq̇p

2 has no counterpart in static condensation, but is an order of magnitude
smaller since it scales as 1/ω4

s , so that both models are almost equivalent when a slow/fast decomposition can
be assumed. This extends the results of [4], in which the term q3p is chosen as the leading term for experimental
identification purposes. A complete comparison of static condensation and nonlinear normal modes is also provided
in [34] in the context of clarifying the implicit condensation and expansion method. Finally, one can note that the
formula used in Eq. (18) have been obtained thanks to a normal form approach on the conservative system [46],
but they can be extended in order to take into account the damping of the slave modes in the master coordinate
ROM, hence accounting for a finer prediction of the losses [43], a feature that once again is not possible with static
condensation.

3 STEP convergence with 3D elements

3.1 Test examples and direct computation of coefficients with the STEP

x

yz

(a) Thin beam mesh

x

yz

(b) Thick beam mesh

Fig. 1: Mesh used in the FE computations for the first two test cases on thin and thick beams.

In order to properly point out the convergence issues faced by using the modal basis as input prescribed
displacements for the STEP, we consider the simple case of a clamped-clamped thin beam, shown in Fig. 1(a),
with length, thickness and width equal to L = 1 m, h = 1 mm, b = 50 mm. The Young’s modulus is chosen
as E = 210 GPa. This particular geometry has been chosen to be thin (the thickness to length ratio is 10−3) to
compare the results of the STEP computation to analytic values, obtained from a beam model with Euler-Bernoulli
kinematics and von Kármán assumptions, see [8] where these comparisons have been more fully addressed. Table 1
presents the computations of nonlinear modal coupling coefficients obtained by the classical STEP with 3D and
shell elements, compared to the analytical values. The two meshes used here consist of four node DKQ shell
elements and twenty-node brick elements (HEX20), respectively. The computations are realized with the open
software Code Aster [6]. 100 elements in length, 4 elements in the width have been used for both meshes, with 2
elements in the thickness for the 3D mesh. This sufficiently refined mesh ensures that there is no convergence issue
for the computations of the nonlinear coefficients.

The results clearly highlights the fact that using blindly 3D elements in a STEP computation with the modal
basis leads to individual values of coupling coefficients that are far from their reference, analytical values. In
particular, the cubic coefficients are largely overestimated and a strong dependence to the Poisson’s ratio is found
with the 3D elements: the βriii are exactly twice the expected result with 3D elements and a zero Poisson’s ratio,



8 A. Vizzaccaro, A. Givois, P. Longobardi, Y. Shen, J.-F. Deü, L. Salles, C. Touzé, O. Thomas

βriii βriii αsii αril
i = r = 1 i = r = 2 i=2, s=NB+2 i=r=2, l=NB+2

Analytic coefficient (Ac) 1.334e+03 2.128e+04 -110.0 -660.24

STEP, shell elements, ν = 0 1.334e+03 2.128e+04 -110.4 -660.96

Relative error with Ac (%) 0.02 % 0.005 % 0.36 % 0.11 %

STEP, shell elements, ν = 0.3 1.458e+03 2.343e+04 -110.4 -663.60
Relative error with Ac (%) 9.3 % 10.1 % 0.36 % 0.51 %

STEP, 3D elements, ν = 0 2.668e+03 4.257e+04 -109.9 -660.26
Relative error with Ac (%) 100 % 100% 0.09 % 0.003 %

STEP, 3D elements, ν = 0.3 5.185e+03 8.229e+04 -111.69 -664.74

Relative error with Ac (%) 288.7 % 286.7 % 1.54 % 0.68 %

Table 1: Nonlinear dimensionless coefficients αril, α
s
ij and βrijk of the clamped beam, with non-zero and zero

Poisson’s ratios (ν = 0 and ν = 0.3). The modes considered in the coefficient indexes are the first two bending
modes (i = 1, 2) and the second axial mode (l = NB + 2). The maximum of displacement amplitudes has been
fixed at h/20 for these computations.

but they become almost three times overestimated with ν = 0.3. On the other hand, using shell elements allows
recovering the exact analytical result if selecting ν = 0, whereas a 10 % error is found for the same STEP
computation with ν = 0.3. These results clearly demonstrate that the modal basis as input for the STEP can be
used safely with 2D elements but its extension to 3D elements is very problematic and should lead to large errors.
As already noticed in the introduction, the problem comes from the fact the one uses eigenmodeshape functions
as projection basis, but not from the calculation procedure itself.

3.2 Condensation of the cubic coefficient and frequency-response curves

In the previous section, we showed that a direct calculation of individual coefficients leads to different values
as compared to analytical results. However, of main importance is the prediction of the global behaviour of the
structure, in a dynamical regime where modes are nonlinearly coupled and interacting together. In this section,
we show how the static condensation presented in Section 2.3 can help to understand how the modes are coupled
in order to define the hardening/softening behaviour of bending modes.

In order to shed light on the couplings arising between the modes, another test case is chosen. It is a thick
beam, with the same length L = 1 m but with a square cross section with h = b = 30 mm, as shown in Fig. 1(b).
The cross section was chosen square to be able to easily observe the 3D deformations of the cross section. The
material properties are E = 210 GPa for the Young’s modulus and ρ = 7800 kg/m3 for the density. A coarse mesh
of 15 HEX20 elements along the axis and 2× 2 in the cross section is chosen, to obtain full model with a reduced
number of degrees of freedom (1287). The analyses on this beam are run in the software CodeAster [6]. For the
sake of simplicity, we restrict attention to the convergence of the effective cubic coefficient of the first bending
mode, Γ 1

111.
Fig. 2(a) shows the behaviour of the correction factor C1s111 (defined in Eq. (17)), normalized by the cubic

coefficient β1
111, as a function of the mode number s, for the thick beam having 1287 dofs. This plot shows that

the number of modes that are coupled to the first bending mode by invariant-breaking terms is very large, and
uniformly distributed along the frequency spectrum. In order to facilitate the readings, the modes for which the
correction factor is below 10−15 have been sorted as negligible. In this family of modes that are not important,
one find backs all the odd axial modes, for symmetry reason. On the other hand, all even axial modes are strongly
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(b) Beam discretised with 5733 dofs

Fig. 2: Nondimensional correction factor C1s111/β1
111 (Eq. (17)), associated to the first bending mode (p = 1) and

to all the other modes (s = 2, . . . N) of the thick beam testcase, over the nondimensional mode number s/N . The
Poisson ratio is ν = 0.3.

coupled to the first one. The most surprising result is that if one does considers only axial modes, then only a few
portion of the couplings will be revealed and taken into account. Indeed, Fig. 2(a) shows that there is a very large
number of modes having very large frequencies, and still being strongly coupled to the master bending mode.

In order to check the independence of this behaviour from the mesh refinement, a second mesh of 20 elements
on the axis and 3 x 3 elements on the section has been defined on the same beam geometry. Fig. 2(b) reports
a very similar behaviour for this second test case, where the distribution of coupled modes is uniform along the
whole set of modes.

Fig. 3 shows the same data than Fig. 2, but with now the modes sorted by decreasing correction factor. It
is possible to observe that, by choosing 10−15 as a threshold for the significance of each contribution, a small
percentage of modes, around 20%, is actually relevant. Consequently, the number of relevant modes depends on
the mesh: the more refined it is, the more relevent modes are needed to reach convergence. Moreover, as seen on
Fig. 2, these modes are spread over the entire spectrum, which would need the computation of all the eigenmodes
of the structure, an operation impossible in practice for a complex structure with a larger number of dofs.

In order to gain insight into these coupled modes, Table 2 shows the associated mode shapes, sorted according
to the importance of their contribution in the correction factor, thus following Fig. 3(a). The table shows the
first nine eigenmode shapes, recalling in the first column their number of appearance when the modes are sorted
according to the eigenfrequencies. One can observe that only one of these modes is a pure axial mode: the fourth
one appearing in table 2, also being the 34th by order of increasing frequencies. All the other ones involve important
deformation in the thickness of the beam. They are thus called thickness modes, their presence being the direct
consequence of 3D effects. The second column of Table 2 displays the eigenfrequencies, showing that they all are
high-frequency modes. The last column shows the deformation of the section, showing the importance of thickness
deformation.

The frequency-response curves of the thick beam in the vicinity of its first eigenfrequency is investigated in
order to illustrate how the static condensation and the NNM approach are able to retrieve the correct nonlinear
behaviour. Fig. 4(a) shows the comparison of the solutions obtained by continuation, for different reduced-order
models and the full model solution. The latter has been obtained by solving all the degrees of freedom of the
system with a parallel implementation of harmonic balance method and pseudo-arc length continuation [2]; the
computation of the full forced response with 3 harmonics lasted approximately 36 hours. The convergence of the
solution using static condensation with an increasing number of modes to compute the correction is also shown.
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Coupled modes
# ωl/(2π)[Hz] C1l111/Γ 1

111 Shape Section

330 1.137e5 3.22e-1

328 1.125e5 1.34e-1

1143 3.698e5 1.05e-1

34 1.043e4 9.26e-2

1147 3.699e5 7.01e-2

370 1.202e5 4.60e-2

167 7.644e4 3.35e-2

172 7.653e4 2.93e-2

324 1.112e5 2.89e-2

Colormap

Table 2: Order of appearance in the basis (#), eigenfrequencies, correction factors and shapes of the most relevant
modes coupled with the first bending mode in y-direction for the thick clamped-clamped beam. The colors scale
the modulus of the displacement field and arrows display the axial displacement for axial mode 34. The Poisson
ratio is ν = 0.3.
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Fig. 3: Nondimensional correction factor C1s111/β1
111 (Eq. (17)), associated to the first bending mode (p = 1) and to

all the other modes (s = 2, . . . N) of the thick beam testcase, over the sorted nondimensional mode number s/N ,
where the imposed order is by decreasing correction factor. The Poisson ratio is ν = 0.3.
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(a) Forced response functions at beam centre node
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(b) Convergence of partially corrected cubic coefficients

Fig. 4: Convergence to the full model solution with the increase of coupled modes taken into account in the reduced
model. (a) Frequency response curve of the beam at center, in the vicinity of the first bending mode eigenfrequency;
case of the thick beam with 1287 dofs. Red: full model, and convergence curves with increasing number of modes
retained in the truncation: 1 mode (yellow), 4 modes (green), 9 modes (blue), all modes statically condensed
(dashed light blue). Solution with one NNM in black. (b) Convergence of the evaluated corrected cubic stiffness
coefficient Γ 1

111, defined in Eq. (16), with increasing number of linear modes kept in the truncation.

Despite only few modes have a very high correction factor Cs1111, i.e. play a major role in the decrease of β1
111 (see

Eq. (16)), it is the sum of the contributions from all the coupled modes that makes the reduced model converge
to the solution of the full one. In Fig. 4(b), the strong stiffening effect coming from not having included enough
coupled modes, is slowly reduced by their inclusion in the basis; however, only the response obtained by static
condensation of all coupled modes (cyan dashed) approximates the solution correctly (almost overlapped with the
full model solution in red). On the other hand, the NNM solution with all the modes taken into account show also
a direct convergence to the frequency-response curve.
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Fig. 4(b) shows the convergence of the corrected cubic coefficient Γ 1
111 defined in Eq. (16) with the number of

modes retained, i.e. the first mode plus the number of coupled modes condensed. When only one coupled mode
is taken into account, the cubic coefficient β1

111 overestimates largely Γ 1
111 (5.5 times): it is first explained by the

classical bending-membrane coupling effect, and secondly to Poisson effect relating to the results given in Table
1. With 9 coupled modes the error on Γ 1

111 is still significant (more than 60%). This strong overestimation of
the cubic stiffness value results in the unrealistic stiffening effect observed in the forced response. The number
of coupled modes that must be taken into account to ensure an acceptable accuracy makes the use of STEP in
its first classic formulation (i.e. with the eigenmodeshape functions as projection basis and without condensation)
quite impractical: 44 modes give a 1% error and 68 an error of 0.1%. The condensation of these modes onto the
excited one becomes then a viable option to drastically reduce the computational burden without affecting the
accuracy of the solution.

4 Alternative computational methods

In the previous section, we have shown that in the case of 3D elements, a strong coupling with thickness modes
occurred, thus rendering the convergence of the modal ROM particularly stringent. When one is able to compute
all the linear modes and associated coefficients, then static condensation and normal form approach can be used to
finally produce accurate ROMs. However in most of the cases, the computation of all the linear modes, including the
thickness modes appearing at very high frequencies, is out of reach. In this section, we investigate two alternative
methods, for which there is no need to compute all the linear modes: static modal derivative, and a modified STEP.

4.1 Static modal derivatives

Sections 2 and 3 were devoted to the derivation of a reduced order model from a modal point of view. In fact, a
modal projection of the quadratic nonlinear forces onto each mode φs is required to obtain the coefficients αspp.
Here we want to introduce the concept of static modal derivatives (see [12]) because its application provides the
same results as the static condensation of all non-bending modes, but without requiring the computation of their
associated eigenvectors.

The definition of modal derivatives have arisen from the recognition of the fact that in the nonlinear range,
mode shapes and frequencies depend on amplitude [12]. Introducing this dependency in the eigenproblem defining
the modes, one arrives at a quantity defined as the modal derivative [12,51]. Following the definition of static
modal derivatives θpr (SMD) from [13], it reads:

θpr = −K−1

(
∂

∂qp

∂fnl
∂x

(φpqp)

)∣∣∣∣
qp=0

· φr. (19)

When p = r a more convenient expression (in the point of view of its direct computation from a FE code) for the
modal derivative θpp writes:

θpp = −K−1

(
fnl(λφp) + fnl(−λφp)

λ2

)
. (20)

The equivalent general expression for θpr, with p 6= r is provided in Appendix B. Eq. (20) shows how the SMD
can be easily computed from a set of applied static displacement, in a manner having analogies with the STEP.
The term in parenthesis in Eq. (20) can be seen as the numerical second order derivatives with respect to λ of
the nonlinear force along mode p, evaluated at the equilibrium position. This can be easily evaluated in any FE
software by imposing, on a nonlinear structure, a displacement proportional to the linear p-th mode with first
positive and then negative sign in order to isolate the quadratic part of the nonlinear forces.

The SMD can thus be seen as an added displacement vector that enriches the basis constituted by the linear
mode p, in a way that takes into account the nonlinear deformation of the structure. The use of SMDs as added
vectors in the reduced order model basis is extensively documented in [40,51,35,30,13], and a complete comparison
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of quadratic manifolds derived from modal derivatives with normal for theory is given in [48]. Here the focus is
on the relationship between modal derivatives and non-bending modes and on the equivalence between static
condensation of all non-bending modes and static condensation of modal derivatives.

Given a system with geometric nonlinearities up to cubic order, the static modal derivatives related to the p-th
and r-th linear modes can then be expressed in terms of the vector of quadratic coefficients αpr as:

θpr = −V Ω−2 αpr , (21)

and the one relative to the p-th linear mode as:

θpp = −2 V Ω−2 αpp , (22)

where the full matrix of eigenvectors V has been introduced. The detailed derivation of these two equations is
given in Appendix B together with the classical orthonormality properties of the matrix of eigenvectors V . By
expanding Eq. (22) over all the modes and by noticing that, for a flat structure, αspp is non-zero only when s is a
non-bending mode, one obtains this important relationship (see Appendix B and [48]):

θpp = −
N∑

s=NB+1

2φs
αspp
ω2
s
. (23)

The SMD thus appears as a linear combination of coupled modes with factor −2αspp/ω
2
s ; therefore, it can be seen

as a displacement field that takes into account the contribution of all non-bending modes into one equivalent
vector. To show this property, the SMD relative to the first bending mode of the thick beam test case is depicted
in Fig. 5(a). The projection of the SMD onto the linear modes of the system recovers Eq. (23). The contributions
from the non-bending modes that have been identified in previous calculations, the fourth axial mode as well
as various thickness modes, appear in the SMD. For each mode s, The modal amplitudes qs obtained from the
projection coincides with those from Eq. (23) i.e. they are equal to −2αspp/ω

2
s . These results recover and elaborate

on those obtained in [13,35], where it was shown that axial modes are contained in the SMDs of bending modes.
The result is here extended to thickness modes and specified since the exact participation factor of each mode is
made explicit.

(a) Static modal derivatives (b) Non-bending modes

Fig. 5: (a) Static modal derivative θ11 associated to the first bending mode. (b) Four first non-bending modes
contained in the SMD θ11, found equivalently by projecting θ11 on the linear mode basis, or by application of
Eq. (23). The relative modal participation factors qs of each of these modes numbered 34, 167, 328 and 330 (see
also Table 1) is also numerically given, normalized by the total amplitude of the SMD θ11 (qSMD = 1), and exactly
recovers the factors exhibited in Eq. (23).

Once understood that the SMD allows gathering in a single vector the participation of all coupled modes, we
want to show how to retrieve directly, from the calculation of the SMD, the correct nonlinear behaviour of the
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structure, when the motion is restricted to a single master mode. In the specific case of a flat structure, Eq. (14)
shows that the amplitudes of the NB modes can be explicitely related to the squared amplitude of the single
master mode labeled p, thanks to the static condensation, as:

ps = −
αspp
ω2
s
q2p. (24)

The physical displacement x(qp) that corresponds to the solution gathering together the master bending mode p
and all its coupled NB modes can be written as:

x(qp) = qpφp +
N∑

s=NB+1

ps φs. (25)

In this last equation, replacing ps by its value obtained from static condensation, Eq. (24), and then using Eq. (23)
defining θpp as a summation on the NB modes, one arrives easily at the fact that this physical displacement can
be expressed as a function of the modal coordinate plus the participation of the SMD as:

x(qp) = qpφp +
1

2
q2pθpp . (26)

If one wants now to derive a reduced-order model composed of a single master coordinate (say qp here) and
that contains the correct nonlinear behaviour, then the equation of motion would simply read:

q̈p + 2ζpωpq̇p + ω2
pqp + Γ̃ ppppq

3
p = Qp, (27)

with Γ̃ pppp a corrected cubic coefficient. Thanks to Eq. (11b), one knows that a cubic coefficient can be found from
this computation, provided the imposed displacement is selected correctly. If the imposed displacement is along a
linear mode, as in Eq. (11b), then one will retrieve the modal nonlinear coupling coefficient, but other choice of
imposed displacement can be made. In particular, if one selects the one given by Eq. (26), then the cubic coefficient
Γ̃ pppp will contain the contribution of the master mode plus that of the SMD. Since Eq. (23) shows that in our
particular case (flat structure, one master mode), the SMD is completely equivalent to the static condensation of
all coupled NB modes, then one will easily understand that Γ̃ pppp = Γ pppp, the corrected cubic coefficient given in
Eq. (16). The complete proof of this result is provided in Appendix C.

The main result, from the SMD perspective, is that if one restricts to a single master mode p, then the SMD
can be easily computed thanks to Eq. (20). Then the corrected cubic coefficient can be directly computed from:

Γ pppp = φT
p (fnl(x(λ))− fnl(x(−λ))) /2λ3, (28)

where the imposed displacement is selected as in Eq. (26). This procedure allows then to find exactly the same
corrected cubic coefficient of the master mode, but without resorting to the computation of all eigenvectors, as
needed in the static condensation. It is thus a much more computationally efficient to use this methodology.
Numerical examples are provided in Section 6.1.

4.2 A modified STEP for 3D elements

As observed in the previous sections, the modal ROM associated to 3D FE discretization shows a slow convergence
because of the couplings with very high frequency modes involving thickness deformations. Since these thickness
modes are a peculiarity of the 3D model, they have no counterpart in plate or beam theory, which concentrate
the kinematical description on the middle plane / line. Also, using the STEP with plate / beam elements show a
faster convergence since one has to recover only the well-known coupling between bending and in-plane motions.
In order to circumvent these difficulties, we propose here to modify the STEP by prescribing the displacements
only on the middle line / plane of the structure, and to let free the other degrees of freedom (Fig. 6). The idea is
to include automatically the effects of NB modes, by a kind of implicit condensation of their motion, embedded
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Transverse direction

Middle line

Middle surface

Transverse direction

Fig. 6: Examples of prescribed displacement field of the M-STEP, in the transverse direction and in the middle
surface / line of a plate / beam

into the prescribed displacement on the middle line / plane. The obtained method is called the M-STEP, for
Modified-STEP. Note that a comparable idea has also been introduced in [15,49], but for 2D flat structures only,
where only transverse motions were prescribed, leaving the other degrees of freedom free and thus building directly
a condensed model.

4.2.1 Formulation

We show in this section that it is possible to compute directly the cubic coefficients Γ rijk of Eq. (15) with a modified

STEP, without having to compute all the coefficients αkij and βkijl beforehand. Note that in the classical STEP,
the three components of the displacement field are prescribed to all the nodes of the FE mesh: the whole vector of
unknown x is imposed and the FE code computation is just an evaluation of the internal force vector fe = f(x).

Here, we choose to apply the STEP by prescribing the displacement field only to selected nodes and for selected
components. Precisely, we denote by S the middle plane / line of the structure and n the bending direction. To
compute Γ kppp for a given p ∈ {1, . . . NB}, we choose to perform a FE computation by prescribing (i) only the
transverse component of the bending mode φp (ii) only on the nodes of the middle plane / line of the structure
(Fig. 6). We then prescribe the following time independent displacement to the structure:

x|S,n = λφp|S,n, λ ∈ R. (29)

where x|S,n corresponds to displacement x restricted to (i) the nodes of the FE mesh belonging to S and to (ii) its
components along the direction defined by n. In all the other nodes and directions, a zero forcing is prescribed. We
then use the finite element code to solve this problem and obtain x as well as f(x) = fe everywhere. Since some
components of x are not prescribed, a Newton-Raphson procedure is necessary to solve this nonlinear algebraic
problem.

To precise the method, we call master dofs the ones for which the displacement is prescribed, and slave dofs
the other ones. The full displacement vector x and the internal forcing f can thus be decomposed as:

x =

[
xM

xS

]
, f =

[
fM
fS

]
, (30)

where the index M and S are associated to the master and slave dofs, respectively. The M-STEP consists in
prescribing: {

xM = λφM
p ,

fS = 0.
(31)

Then, solving the static problem f(x) = fe with the FE code leads to compute the internal force vector fM(x)
on the master nodes and the displacement xS on the slave nodes. The solution of the problem then reads:

x =

[
λφM

p

xS

]
, f = fe =

[
fM
0

]
. (32)
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Translated in the modal space, the above computations are close to the following situation. Prescribing via x
only the transverse motion in the form of φp, and because φp is orthogonal to the other bending modes φk, k 6= p,
the modal coordinate are qp ' λ and qk ' 0. Considering the orthogonality relations associated to the stiffness
matrix, this leads to assume that, for all s ∈ {1, . . . NB}, s 6= p:

φT
pKx ' φT

pK(λφp) = λω2
pmp, φT

sKx ' φT
sK(λφp) = 0. (33)

In other words, it is assumed that the nonzero slave part xS of x is not involved in the orthogonality relations of the
bending modes. Moreover, since the part of the displacement associated to longitudinal and thickness displacements
is not prescribed by x, the associated NB modal coordinates are not zero and their value depend on the nonlinear
coupling and the geometric nonlinearities. Finally, because any NB eigenmode φs has zero displacements on the
middle plane / line in the transverse direction, the modal forcing of the NB modes is exactly zero:

φs =

[
0

φS
s

]
⇒ Qs =

φT
s fe
ms

= 0. (34)

To summarize, one has: 
qp ' λ,
qk ' 0 ∀k = 1, . . . N, k 6= p

Qs = 0 ∀s = NB , . . . , N

(35a)

(35b)

(35c)

Error estimates of those assumptions will be introduced in section 4.2.2.
Using the assumptions (35) in Eqs. (12,13) leads to:

λω2
p +

N∑
s=NB+1

λαppsps + λ3βpppp = φT
p f(x)/mp,

N∑
s=NB+1

λαkpsps + λ3βkppp = φT
k f(x)/mk, ∀k = 1, . . . , NB , k 6= p

ω2
sps + λ2αspp = 0, ∀s = NB + 1, . . . , N

(36)

(37)

(38)

The above Eq. (38) leads to:

ps = −
αsppλ

2

ω2
s

, (39)

that can be condensed into (36),(37) to give:βpppp − N∑
l=NB+1

αppsα
s
pp

ω2
s

λ3 = φT
p f(x)/mp − λω2

p, (40)

βkppp − N∑
l=NB+1

αkpsα
s
pp

ω2
s

λ3 = φT
k f(x)/mk, ∀k 6= p. (41)

One then recognizes the terms in parenthesis as the sought corrected cubic coefficients Γ ippp, defined by Eqs. (16)
and (51), so that:

Γ pppp =
φT
p f(x)

mpλ3
−
ω2
p

λ2
, Γ kppp =

φT
k f(x)

mkλ3
. (42)

Consequently, all Γ ippp, i = 1, . . . NB relies on a single nonlinear static finite elements computation, defined by

Eq. (45). Other coefficients Γ kijl can be obtained in the same manner, by mixing different xM on several bending
modes, following the classical STEP.
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This above described M-STEP method is a way of automatically embed in the computation the effect of all the
NB modes nonlinearly coupled to the bending modes associated to Γ kijl. The essence of the method is to select the
prescribed displacement x so that (i) it leaves free the degrees of freedom associated to the NB modes, so that the
forcing Qs of the longitudinal modal coordinates in Eq. (38) is exactly zero and (ii) it is as orthogonal as possible
to the other bending modes than the p-th.

4.2.2 Quality indicator for the convergence of the method

In order to be able to quantify a priori the quality of the computation, a main idea is to check the validity of the
assumptions used in the two first equations (35), which are true at first order but might deteriorate in case of an
incorrect selection of master dofs. Equivalently, one can verify the orthogonality of the displacement vector x to
the bending modes written in Eqs. (33). To that purpose, let us define the following errors:

epp1 =
φT
pKx

λω2
pmp

− 1, epk1 =
φT
kKx

λω2
pmp

, ∀k 6= p, (43)

that should be small as compared to 1 because of Eqs. (33). If one wants to compute those errors with a FE in a
non intrusive way, Kx = f1 can be computed as the reaction force vector f1 of a linear static computation where
x is prescribed to all the nodes of the FE mesh.

Another check can also be performed by prescribing Eq. (31) into a linear static computation:

Kxl = fe, (44)

which gives:

xl =

[
λφM

p

xlS

]
. (45)

Since there are no geometrical nonlinearities, imposing φp on the middle line / surface in the transverse direction
should result in a vector almost collinear to φp, that is xl ' λφp. In particular, the slave part xlS of xl should be
very close to φS

p, the slave part of φp. We then define the following error:

e(ŷ,y) =
||ŷ − y||
||y|| , (46)

where || · || is the norm of vector ·, and we check that ep2 = e(xl, λφp) is very small as compared to 1.

5 Physical mechanisms of the nonlinear couplings

5.1 Poisson effect

The previous sections show that in the case of a 3D model, a given bending mode is nonlinearly coupled to numerous
high frequency modes, most of them involving thickness deformations. To understand this effect, a numerical study
of the sensitivity of the coefficients computed with the STEP on the Poisson ratio is here given. It is found that
a precise dependence of the cubic coefficient βriii can be established: in Fig. 7, the values obtained by the direct
application of the STEP are fitted to an heuristic law related to the Poisson ratio. In particular, the growths of
the cubic coefficients in the case of shell and 3D elements match perfectly the ratios:

ρ1 =
1

1− ν2 , ρ2 =
2

(1 + ν)(1− 2ν)
, (47)

related to 2D and 3D constitutive laws. Indeed, the 3D constitutive law for an isotropic elastic material writes:

π =
E

(1 + ν)(1− 2ν)

[
ν tr(ε)I3 + (1− 2ν)ε

]
, (48)



18 A. Vizzaccaro, A. Givois, P. Longobardi, Y. Shen, J.-F. Deü, L. Salles, C. Touzé, O. Thomas
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Fig. 7: Evolution of the ratio of the cubic coefficients βiiii compared with the analytic values βi,ANiii , with regard
to the Poisson ratio, for the first four (i = 1, . . . 4) bending modes of the thin beam (Fig. 1(a)) meshed with shell
or 3D elements, as specified on the plot. The heuristic dependences on the Poisson’s ratio are plotted with black
dashed lines. All symbols are merged.

where π denotes the second Piola-Kirchhoff stress tensor, ε the Green-Lagrange strain tensor, I3 the identity
operator in 3D and (E, ν) the Young’s modulus and the Poisson ratio of the material.

Moreover, in the case of usual plate theories, a plane stress state is assumed, for which the transverse component
πzz = 0 of the stress tensor is zero (z being the direction normal to the middle plane of the plate). In this case,
the in-plane counterpart of (48) reads:

π̃ =
E

1− ν2
[
ν tr(ε̃)I2 + (1− ν)ε̃

]
, (49)

where π̃ and ε̃ denote the plane parts of π and ε, respectively, and I2 the identity operator in 2D.
Equations (48) and (49) makes directly appear the ratios ρ1 and ρ2, which suggests also a direct relationship

between the constitutive law and the results presented in Fig. 7. As a side note, the reference values, used to
compare nondimensional values of cubic coefficients in Fig. 7, differ from those in Figs. 4(b) and 8(b). Indeed,
in Fig. 7, the normalising coefficient has been selected as β1,AN

111 , the analytical value obtained from the beam
theories (see e.g. [8]). As shown in the previous sections, this coefficient has to be compared with the corrected
coefficient used once the convergnce is obtained from 3D models. On the other hand, in Fig. 4(b) and 8(b), the
reported values are normalized with respect to β1

111, i.e. the uncorrected cubic coefficient, the one coming from
direct application of STEP and shown in Table 1. This explains the different values observed between the two
figures (e.g. β1

111/β
1,AN
111 ≈ 3.8 for ν = 0.3 on Fig. 7, whereas β1

111/Γ
1
111 = 5.5 on Fig. 4(b)).

5.2 Geometrical nonlinearities

In this section, we focus on the physical explanation of the nonlinear couplings with thickness modes, whose origin
is the geometrical nonlinearities. Considering first Fig. 7, it can be inferred that the couplings are amplified by
the Poisson ratio, but that they are present even without Poisson effect, since there is a factor 2 between the FE
value of βiiii with respect to its corresponding analytical value in the case ν = 0. This leads us to investigate the
couplings in this particular case.
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Fig. 8: Convergence without Poisson effect (ν = 0) for the thick beam. (a) Nondimensional correction factor
C1s111/β1

111 of all the modes over the nondimensional mode number s/N . (b) Convergence of the evaluated corrected
cubic stiffness coefficient Γ 1

111, defined in Eq. (16), with increasing number of linear modes kept in the truncation.
(c) Mode shapes and order of appearance in the basis (#) of four of the most relevant modes coupled with the
first bending mode.

Figure 8 is the analog, with ν = 0, of Figs. 3(a), 4(b) and Tab. 2. Comparing those figures shows that the
number of coupled modes is much smaller in the case ν = 0 than for ν = 0.3: the relevant modes correspond to 5%
of the modal basis if ν = 0, whereas it was 20% for ν = 0.3 (see the modes with a correction factor above 10−15

in Figs 3(a) and 8(a)). Moreover, the deformations of the cross section in the case ν = 0 are purely in the bending
transverse-y direction in the case ν = 0 (y, as defined in Figs. 1 and 14, is the deformation direction of the first
bending mode considered in all computations of the present article), whereas they were more complex (in 2D) in
the case ν = 0.3 (compare the mode shapes of Tab. 2 and Fig. 8). Finally, taking a close look at the static modal
derivative (SMD), shown in Fig. 5(a), that gathers all the corrections brought by the NB modes, shows that it
has almost the same shape in both cases ν = 0 and ν = 0.3. In particular, Fig. 9 shows that the deformations of
the SMD cross section occur without distorsion: initially a square, it is deformed in a rectangle. In the case of no
Poisson’s ratio, the deformation is purely in the bending y-direction, whereas the Poisson’s effects adds a slight
deformation in the lateral z-direction.

Those effects are purely geometrical and come from (i) the particular 3D shape of the eigenvectors and (ii)
how these particular shapes, resulting from a linear computation, are modified by the geometrical nonlinearities.
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Fig. 9: Static modal derivative and wiew of the cross-section in the undeformed and deformed configurations, with
both ν = 0 and ν = 0.3.

A closed form solution in a simple bending case is exposed in Appendix D. It shows that the 3D shape of the
eigenmodes is the combination of three contributions (see Eq. (89)):

– the deformation of the neutral axis / plane of the structure, described by classical beam / plate theories;
– the 3D rotation of the cross section around the z-axis, that produces an axial deformation with a linear

dependence in the thickness coordinate y;
– the 3D Poisson effect, that distorts the cross section in its two (y and z) directions.

Then, by computing the Green-Lagrange strain tensor with this particular linear deformation, it is shown that the
geometrical nonlinearities adds two contributions to the classical von Kármán beam / plate model:

– 3D effects that are independent of the Poisson effect, that explains a stretching in the transverse y direction,
without any deformation in the lateral z direction. Those effects are a direct consequence of the 3D rotation of
the cross section created by the bending;

– 3D Poisson effect, that involve stretching in both the transverse y and lateral z directions.

Those two geometrical effects are purely 3D and are additional to the classical membrane / bending coupling.

Having in mind those observations, we can now explain those nonlinear thickness coupling. We have first to
remark that in both cases of a beam(1D)/plate(2D) von Kármán model and the present 3D model, the modal
expansion of Eq. (7) is exact, provided N is the number of degrees of freedom of the model. Moreover, Tab. 3
and Fig. 4(a) show that all models converge to the same solution, which proves that the relevant modes of the
basis combine themselves in different ways to give, at the end, the same solution. In fact, as a consequence of the
above observations, the thickness modes are here to geometrically compensate (i) the nonlinear deformations in
the transverse bending direction due to the 3D rotation of the cross sections, shown in blue on Fig. 9 and (ii) the
additional deformations of the cross section due to the Poisson effect. Looking again at the deformed cross section
shown in red in Fig. 9, one can understand that at the end, the complex 3D distorsions of the cross section due
to the Poisson effect (shown in Fig. 14(c)) must be fully compensated by the NB modes, which then need to be
numerous. This explains the bad convergence of the modal expansion, even worse in the case of a non zero Poisson
ratio (5% of the modal basis if ν = 0, and 20% for ν = 0.3).

6 Numerical examples

In this section, numerical examples on the three different strategies proposed in order to overcome the bias observed
when using 3D elements, are given. In each case, the dominant cubic coefficient of a single mode is compared, using
either the M-STEP, the static condensation of all the coupled linear modes, or the static modal derivative. Two
test cases are used for the comparisons: the clamped-clamped beam of Fig. 1(b), and a clamped circular plate.
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Fig. 10: First-mode displacements prescribed on the middle line of the clamped beam and the middle surface of the
circular plate. For visualisation purpose, the mesh of the plate is less fine than the one use for the computations
of the ROM coefficients.

6.1 Application to a clamped-clamped beam

Computations of the condensed coefficients Γ rijk are first performed with the three methods. For the M-STEP, the
prescribed displacement is depicted in Fig. 10. The comparison made in Tab. 3 attests that the condensation with
all the eigenmodes and the first static modal derivative are quasi equivalent, whereas the M-STEP gives very close
values. The relative errors are very small (< 0.5 %) in each case. The analytical reference values present slightly
larger errors, between 1 % and 5 %, probably due to unavoidable differences between the analytical beam theory
and the numerical 3D computation. This could be explained by the aspect ratio h/L = 0.03 of the beam, which is
not so small to fully verify Euler-Bernoulli assumptions.

Corrected Coefficients
Γ 1
111 Γ 3

111 Γ 3
113 Γ 1

333 Γ 3
333

M-StEP 2.9790e+08 -2.3555e+08 2.7964e+09 -1.9044e+09 1.9235e+10

Static condensation 2.9792e+08 -2.3572e+08 2.8003e+09 -1.9083e+09 1.9288e+10

Static Modal Derivative 2.9792e+08 -2.3573e+08 2.8004e+09 -1.9084e+09 1.9288e+10

Analytic coefficients 2.9150e+08 -2.3151e+08 2.7082e+09 -1.8310e+09 1.8687e+10

Table 3: Corrected cubic coefficients with the three condensation methods and comparison with anaytical values.
Due to the symmetry of the mode shapes, the nonlinear coefficients which couple the first and the third modes
have all nonzero values, and are therefore chosen for these computations.

In the case of the M-STEP with the displacement field prescribed on the neutral fiber, Fig. 11(a) gives the
sensitivity to the prescribed displacement amplitudes of the corrected cubic coefficients Γ iiii for different modes
i. It is shown that a range of validity for the displacements amplitude centered around max(λφp) ' h/2 can be
defined. As it could be expected, the length of this validity range, defined on Fig. 11(a) by a relative error smaller
than 3%, decreases with the mode order.

Fig. 11(b) shows what happens if the M-STEP is applied with different selections of the master degrees of
freedom. We tried to prescribe the displacement field on three other lines of the beam, parallel to but different
than the neutral fiber, as shown in the inset of Fig. 11(a). We can conclude that the neutral fiber seems the
best choice and that the upper line gives very close results. On the other hand, the values obtained when the
displacements are prescribed on one of the lateral lines are far from the reference values. This feature will be
analyzed in the following considering error estimators.

The error estimate epi1 , introduced in Section 4.2.1, is now analyzed. The criterion epi1 is first computed with
the master transverse dofs prescribed in the neutral fiber, a single master mode p = 1 and different transverse
modes k ∈ {1, ..., 5}. The values presented in Fig. 12(a) show that the orthogonality is well verified, until the upper
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range of
validity

(a)

Beam cross section with master nodes

(b)

Fig. 11: (a) Dependence of the cubic coefficient Γ iiii with regard to the prescribed displacement amplitude, for
different modes i, with i = 1, 2, 3, 4. Black dashed line : reference analytical value (Γ i,FEiii = Γ i,ANiii ), red dashed
lines: limits of the range of validity. (b) Dependance of the cubic coefficient Γ 1

111 with regard to the prescribed
displacement amplitude for different lines where the displacements are prescribed. Black dashed line : reference
value (Γ 1,FE

111 = Γ 1,AN
111 ). The inset shows the location, in the cross section of the beam, of the lines in which the

master displacement is prescribed.

Neutral line Upper line Lateral line Up/Lat line

e111 -3.496e-04 1.234e-04 -0.0210 -0.0213

e121 -6.993e-04 -2.183e-04 -8.136e-05 2.006e-04

e131 5.604e-04 -3.466e-04 0.0577 0.0579

e141 3.347e-04 6.647e-04 8.501e-05 -6.071e-04

e151 1.553e-04 -2.552e-04 0.1231 0.1228

e12 1.425e-05 1.424e-05 0.0227 0.0227

Table 4: Values of the relative error epi1 for different p, i, and master dofs. Nonlinear computations are performed
with max(λφM

p )) = h/2

limit of validity range observed on Fig. 11(a), after which the values e131 and e151 deviate from 0. For p > 1, the
coefficients epp1 evolve in a similar way as e111 , as depicted on Fig. 12(b). Tab. 4 give the numerical values of e1i1
in the plateau of Fig. 12(a), proving that the error is the order of 10−4. Consequently, the orthogonality of the
prescribed displacement field x to the transverse modes φi is well verified, thus validating assumptions (35a,b).

Then, the same error estimate epi1 is computed in the cases of a master displacement prescribed in the other
lines of the inset of Fig. 11(b). The obtained values are given in Tab. 4. In this cases, we quantitatively confirm
the observation linked to Fig. 11(b): the orthogonality of the displacement are not verified when the master dofs
are placed on a line of the lateral surfaces of the beam. In particular, the values of the criterion epi1 presented with
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(a) (b)

Fig. 12: Dependence of the criterion epi1 with regard to the prescribed displacement amplitude when displacements
are prescribed on the neutral fiber. The values are presented on (a) for p = 1 and different modes i = 1, 2, 3, 4, 5.
On (b), the values eii1 are presented, also for i = 1, 2, 3, 4, 5.

p = 1 and i = 1, 2, 3, 5 in Table 4 highlight a loss of orthogonality between the first and the odd modes i = 1, 3, 5,
in the case of master dofs on a lateral line: indeed, the values of e111 , e131 and e151 deviate from 0.

The second error estimate e12, also introduced in Section 4.2.1 and linked to an estimate of the collinearity
of the prescribed displacement xl to the master transverse modes φ1, in the case of a linear computation (see
Eq. (44)). This estimate confirms the above results, in particular that the displacements must preferentially be
prescribed on the neutral line.

A physical explanation of those effects can be deduced from the 3D displacement field of the modes. Because
of the Poisson effect and the rotation of the sections , the displacement field on the nodes at other locations from
the neutral line is not purely transverse for a bending eigenvector φp and not zero for a NB eigenvector φs. This
explains the losses of orthogonality observed above, as well as the loss of condition (35c), since the master part of
φs is not zero: φs

s 6= 0.

6.2 Application to a clamped circular plate

In order to extend the results obtained on the beam test examples, the case of a clamped circular plate is here
investigated. The selected plate has a radius R = 0.3 m, a thickness h = 0.005m, and the material properties are:
density ρ = 7800 kg/m3, Young’s modulus E = 210 GPa and Poisson ratio v = 0.3. As for the beam cases, a coarse
mesh is chosen so as to compute all the modes and apply the different proposed methodologies. Consequently, 540
HEX20 elements on the face and 2 HEX20 elements in the thickness were used, with a total of 1931 nodes and
4928 degrees of freedom.

The convergence study and appearance of thickness modes are investigated for the fundamental axisymmetric
bending mode of the clamped plate, as well as the first asymmetric (1,0) mode, having one nodal line and no
nodal circle. The case of the first axisymmetric mode is awaited to share the same complexity as the beam case
for symmetry reasons, but the asymmetric mode might be more difficult to achieve convergence.

Fig. 13(a) shows the behaviour of the normalised modal correction factor 2(αnpp/ωn)2/βpppp used in the previous
sections, where p refers to the master mode (either p = 1 for the first axisymmetric mode, or p = 2 for the first
asymmetric) and n ∈ {1, N} with N the number of dofs. In Fig. 13(a) only the case of the first asymmetric mode
is shown for the sake of brevity (thus p = 2), but for p = 1 the trend was very similar. As for the beam, a strong
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Fig. 13: (a) Normalised modal correction factor for the clamped circular plate, as a function of the normalised
mode number (normalization by the number of dofs), for the first asymmetric (1,0) mode of the plate. (b) The
correction factors are now sorted by decreasing values, and two cases are shown : the case of the first asymmetic
mode, corresponding to sorting (a), and the case of the first axisymmetric mode, showing a faster convergence.
Grey points are negligible modes in terms of coupling, magenta points are the important in-plane coupled modes
while blue points are the important thickness modes.

coupling with very high frequency modes is also observed. Investigating more precisely which modes are involved
in the couplings, it is found that the ones having the most important correction factor are once again thickness
modes.

Table 5 shows the deformed shape of the first nine modes, sorted according to their correction factor, which
are thus the most important in the coupling with the bending (1,0) mode. Two purely in-plane modes are found,
in position 5 and 8, and all others are thickness modes. The deformed shapes can be compared to that obtained
for the beam and shown in Table 2. Indeed, the first thickness mode having the most important correction factor
shows a similar geometry for both structures. Strong similarities are also observed between the second mode of
the beam and mode (c) in Table 5, and the ninth mode in each case.

Fig. 13(b) shows the normalized correction factor now sorted by order of decreasing values, and for the two cases
of the axisymmetric fundamental mode and first asymmetric mode. It shows in particular that the convergence
on the correct cubic coefficient is more rapidly achieved for the axisymmetric mode, where less than 10% of the
modes are needed. On the other hand, the convergence is more difficult for the first asymmetric mode. Concerning
the coupling with high-frequency modes and thickness modes for these two first bending modes, it is interesting to
note that the subset of coupled modes is almost exactly the same in the two cases, showing in particular that the
coupling with the thickness modes is not very dependent on the selected bending mode. Indeed, more than 90%
of the coupled modes are the same for the two cases investigated.

Table 6 gathers the numerical results for the corrected cubic coefficient Γ pijk defined in Eq. (51), with p = 2 for
the first asymmetric (1,0) mode and p = 4 for the (2,0) asymmetric mode (the first bending modes being sorted
by increasing frequencies, p = 1 is the fundamental axisymmetric, p = 2, 3 for the two configurations of the (1,0)
asymmetric mode and p = 4, 5 for the two configurations of the (2,0) mode with two nodal lines). This choice has
been guided by the fact that these two asymmetric modes are coupled and thus shows important cubic coefficients
that are needed if one wants to derive a reduced-order model. The three methods presented in the previous sections:
M-STEP, static condensation of all the linear modes and of the modal derivative, give the same results, showing
the convergence of the methods also in this case. Only Γ 2

444 shows a different result for the M-STEP, however the
value is very small as compared to the other ones so that this coefficient can be compared as negligible.
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(a1) (b) (c) (d) (e)

(a2) (f) (g) (h) (i)

Table 5: Mode shapes of the 9 most relevant modes coupled with the first flexural asymmetric (1,0) mode. Only
two of them are in-plane modes: (e) and (h), while all the others are thickness modes. (a2) is a side view of the
top view (a1) of the first thickness mode, in order to show the strong dependence on thickness deformation.

Corrected cubic Coefficients
Γ 2
222 Γ 4

222 Γ 4
224 Γ 2

444 Γ 4
444

M-StEP 6.4763e+10 -2.8539e+09 1.5374e+11 -57.3021 3.8776e+11

Static condensation 6.4762e+10 -2.8535e+09 1.5372e+11 5.3298e+03 3.8775e+11

SMDs condensed 6.4762e+10 -2.8536e+09 1.5372e+11 5.3080e+03 3.8775e+11

Table 6: Corrected cubic coefficient Γ pijk, for two flexural modes, i.e. i, j, k, p ∈ [2, 4], where 2 refers to the first
(1,0) asymmetric mode while 4 refers to the second (2,0) asymmetric mode; anf for three different methods :
the modified StEP, the static condensation where all the coupled modes are statically condensed, and the Modal
derivative where the added modal derivative is then statically condensed to the master mode.

7 Conclusion

In this article, a nonlinear coupling of bending modes with thickness modes of very high frequency has been
exhibited, due to geometrical nonlinearities in thin flat structures. This effect adds itself to the classical longitudinal
/ bending coupling and is the cause of a very slow convergence of a reduced order model (ROM) blindly built on
a modal expansion of the nonlinear problem. It has been shown that if all eigenmodes are computed, it is possible
to embed the effect of the non-bending modes into a master bending one, thus obtaining a reduced order model
composed of only one nonlinear Duffing oscillator. This procedure can be done either by static condensation or by
a normal form reduction, equivalent to the reduction on a single nonlinear mode. Finally, two alternative methods
have been proposed to overcome the problem: the use of a static modal derivative or the direct computation of
the cubic coefficients by an original method, the M-STEP, inspired by the standard STEP. Those methods have
been successfully verified on dedicated examples, showing equivalent results.

Most of the results presented in this paper are restricted to the case of flat structures. Indeed, the specific
shape of the equations of motion (see Eqs. (12),(13)) has been used to obtain exact equivalences between different
methods. One can await that the obtained results should extend to shallow curved structures. However, for more
generic shells with all the nonlinear couplings, most of the equivalences found here won’t probably hold anymore.
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We focused on the case of a 3D model discretized by finite elements. In section 3.1, we have shown on an example
that some convergence problems might also appear for thin structures meshed with plate or shell elements, and
having at least one long edge free. Our experience on thin ribbon have shown that the same kind of phenomenon
appears when blindly using the STEP with the modal basis, and are again due to the loss of invariance of the modal
eigenspaces. Indeed, high-frequency modes involving lateral deformations of the two free edges appeared. We also
made computation on a circular plate with a free edge, and found circumferential modes appearing. Consequently,
our finding is not restricted to 3D elements, and is completely linked to the use of the modal basis. Note that STEP
calculations can also be realized with other input functions, and this has be done in this paper e.g. in Eq. (28).
The complete investigation of the analogy between this contribution, focused on 3D elements, and the problems
related to plate and shell finite elements, is postponed to a future work.
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A Definition of cubic nonlinear terms

A particular feature of the manipulations of nonlinear coupling coefficients lies in the fact that they are related to monoms having
symmetry relationships. For example, a cubic coefficient βpijj is related to the monom qiq

2
j , which is also the case of βpjij and βpjji.

Consequently many formulations use upper triangular forms for quadratic and cubic coefficients αpij (assuming j ≥ i) and βpijk
(with k ≥ j ≥ i). However, direct calculations produce coefficients that have not this ordering property built-in. The formula given
here allows one to get from to another formulation.

The corrected cubic coefficients in Eq. (15) can be derived by replacing the value of ps from Eq. (14) into the quadratic term
of Eq. (12):

NB∑
i=1

N∑
s=NB+1

αrisqips =

NB∑
i=1

NB∑
j=1

NB∑
k=j

N∑
s=NB+1

−
αrisα

s
jk

ω2
s

qiqjqk

Manipulating the right hand side to make the sums over i, j, and k consistent with the ones of the cubic term of Eq. (12), i.e.
having the sum over j from i to NB , reads:

NB∑
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NB∑
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−
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(50)

This term can be rewritten in a more compact form by defining the correction factor:

Crsijk =
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leading to:
NB∑
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now with summation indexes consistent with the ones of Eq. (12).
Finally, the quadratic and cubic nonlinear terms in Eq. (12) read:

NB∑
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N∑
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 qiqjqk.
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and the corrected cubic coefficient in Eq. (15):

Γ rijk = βrijk −
N∑

s=NB+1

Crsijk (51)

B Expression of static modal derivatives in terms of quadratic coupling coefficients

Given the general equation of a system with quadratic and cubic nonlinearities in physical coordinates:

Mẍ+Cẋ+Kx+ fnl(x) = fe, (52)

the nonlinear force can be written in terms of nonlinear tensors as:

fnl(x) = Axx+Bxxx, (53)

where we used the compact tensor notation also employed in [13,30]. In order to explicit the notation, the products Axx and Bxxx
are here given with explicit indicial notation:

Axx =
N∑
i=1

N∑
j=1

Aijxjxi ,

Bxxx =

N∑
i=1

N∑
j=1

N∑
k=1

Bijkxixjxk.

The most inner product defined above coincides with a matrix product performed on the last index of the tensors.
In order to derive Eq. (23), we first express the i-th column of nonlinear stiffness matrix as:(

∂fnl

∂x

)
i

=

N∑
j=1

Aijxj +

N∑
j=1

Ajixj +

N∑
j=1

N∑
k=1

Bijkxjxk +

N∑
j=1

N∑
k=1

Bjikxjxk +

N∑
j=1

N∑
k=1

Bjkixjxk. (55)

Exploiting the symmetry of the tensors A and B which implies that Aij = Aji and similarly Bijk = Bjik = Bjki, that stems from
the fact that geometric nonlinear forces can be derived from a potential (see [23]), the nonlinear stiffness matrix can be written in
compact form as:

∂fnl

∂x
= 2Ax+ 3Bxx. (56)

The nonlinear stiffness matrix evaluated along mode p reads:

∂fnl

∂x
(Φpqp) = 2qpAΦp + 3q2pBΦpΦp , (57)

and its derivatives with respect to qp evaluated at qp = 0 reads:(
∂

∂qp

∂fnl

∂x
(Φpqp)

)∣∣∣∣
qp=0

= 2AΦp. (58)

Hence the static modal derivatives defined in Eq. (19) leads to:

θpr = −2K−1AΦpΦr , (59)

and, when p = r, to:
θpp = −2K−1AΦpΦp. (60)

We now want to relate these expressions to the quadratic modal coupling coefficients αspr obtained from the STEP method, as
well as expliciting directly how to compute the modal derivative from specific static evaluation of the internal force vector. When
p = r, Eq. (11b) reads:

αspp = ΦT
s

(
fnl(qpΦp) + fnl(−qpΦp)

2q2p

)
/ms. (61)

When p 6= r, the STEP method needs to call two static evaluations with qpΦp and qsΦs so that the expression writes:

αspr = ΦT
s

(
fnl(qpΦp + qrΦr) + fnl(−qpΦp − qrΦr)− fnl(qpΦp)− fnl(−qpΦp)− fnl(qrΦr)− fnl(−qrΦr)

2qpqr

)
/ms. (62)
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Let us now assume that the eigenvectors are mass normalised so that ms = 1, ∀s, using Eq. (53) we can find the relation between
αspp and A as:

αspp = ΦT
s AΦpΦp . (63)

Similarly for the coefficients αspr with p < r:

αspr = 2ΦT
s AΦpΦr , (64)

where the factor 2 appears for symmetry reasons and is related to the usual problem of representing the polynomial monoms by
counting them separately or not. Indeed, in the usual polynomial representation, the coefficients αspr with p < r contains both

values of ΦT
s AΦpΦr and ΦT

s AΦrΦp whereas the coefficients αsrp are set to zero. We can now observe that each coefficient αspr
can be seen as the row of a vector αpr whose compact expression would be:

αpr = 2V T AΦpΦr , (65)

where the full matrix of eigenvector V has been introduced. In the same line, the expression for the vector αpp when p = r has the
same shape but without the factor 2:

αpp = V T AΦpΦp . (66)

Introducing Eqs. (65)-(66) respectively in Eqs. (59)-(60), and using the relationships of the quadratic coupling coefficients from
the STEP method, Eqs. (62)-(61), one obtains the important formulas allowing one to compute directly the modal derivative from
static FE calculations. The expression for θpp is given in the main text as Eq. (20) while the formula for θpr reads:

θpr = −K−1

(
fnl(λ(Φp + Φr)) + fnl(−λ(Φp + Φr))− fnl(λΦp)− fnl(−λΦp)− fnl(λΦr)− fnl(−λΦr)

2λ2

)
(67)

We now want to relate more closely the modal derivative to the modal representation and derive an explicit expression showing
that the SMD gathers the contributions of all coupled modes. For that purpose, one needs to express the usual orthonormality
conditions shared by the matrix of eigenvectors V , assumed to be mass normalized:

V TMV = I, V TKV = Ω2,

where Ω2 is the diagonal matrix containing the squared eigenfrequencies.
Recalling eq. (59) we can now express the static modal derivatives in terms of αpr:

θpr = −K−1V −T αpr, (68)

and for p = r:
θpp = −2K−1V −T αpp. (69)

Moreover, using the orthogonality conditions:
K−1V −T = V Ω−2, (70)

we can express the static modal derivatives in the general case as:

θpr = −V Ω−2 αpr, (71)

θpp = −2V Ω−2 αpp. (72)

In the particular case of a flat structure, the equations of motions have a simple structure recalled in Eqs. (12)-(13), so that αspr
is nonzero only for the non-bending modes. Thanks to this simplification, one can express the static modal derivatives as a linear
combination of the non-bending modes only as:

θpr = −
N∑

s=NB+1

Φs
αspr

ω2
s

, (73)

θpp = −
N∑

s=NB+1

2Φs
αspp

ω2
s

. (74)

C Corrected cubic coefficient obtained from static modal derivatives

This appendix aims at demonstrating that coefficient Γ̃ pppp introduced in Eq. (27), i.e. by using an imposed displacement composed
of the master mode plus a quadratic part containing the SMD, is exactly equal to that given in Eq. (16), and obtained thanks to
the static condensation. For that purpose, let us recall that the imposed displacement in the first case reads:

x(qp) = qp Φp +
1

2
q2p θpp. (75)
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The cubic coefficient Γ̃ pppp can be computed by using the general formula from the STEP method, Eq. (11b), by replacing the
imposed displacement by the one given in Eq. (75). Consequently, one arrives at:

Γ̃ pppp = ΦT
p

(
fnl(λΦp +

1

2
λ2θpp)− fnl(−λΦp +

1

2
λ2θpp)

)
/2λ3. (76)

Using the explicit expression of the nonlinear forces from Eq. (53):

fnl(λΦp +
1

2
λ2θpp) = λ2AΦpΦp + λ3

(
1

2
AΦpθpp +

1

2
AθppΦp +BΦpΦpΦp

)
+ O(λ4) (77)

fnl(−λΦp +
1

2
λ2θpp) = λ2AΦpΦp − λ3

(
1

2
AΦpθpp +

1

2
AθppΦp +BΦpΦpΦp

)
+ O(λ4). (78)

Thus the difference between the above nonlinear forces reads:

fnl(λΦp +
1

2
λ2θpp)− fnl(−λΦp +

1

2
λ2θpp) = 2λ3

(
1

2
AΦpθpp +

1

2
AθppΦp +BΦpΦpΦp

)
+ O(λ5) (79)

and the coefficient Γ̃ pppp, neglecting high order terms, reads:

Γ̃ pppp =
1

2
ΦT
pAΦpθpp +

1

2
ΦT
pAθppΦp + ΦT

pBΦpΦpΦp (80)

Following a similar argument as the one of Eq. (61) it is possible to show that the last term on the right hand side of Eq. (80) is
the uncorrected cubic coefficient:

βpppp = ΦT
pBΦpΦpΦp (81)

As regards to the first two terms on the right hand side of Eq. (80), using the link between SMD and non-bending modes of Eq. (23)
valid in case of a flat structure, they can be written as:

1

2
ΦT
pAΦpθpp = −

1

2

N∑
s=NB+1

ΦT
pAΦpΦs

2αspp

ω2
s

(82)

1

2
ΦT
pAθppΦp = −

1

2

N∑
s=NB+1

ΦT
pAΦsΦp

2αspp

ω2
s

(83)

where the index s spans over all the non-bending modes. Using the symmetry of the tensor A once again:

ΦT
pAΦsΦp + ΦT

pAΦpΦs = 2 ΦT
pAΦpΦs (84)

and in light of Eq. (64):

2 ΦT
pAΦpΦs = αpps (85)

because p > s for each non-bending mode.
It is now possible to express the corrected cubic coefficient as:

Γ̃ pppp = βpppp −
N∑

s=NB+1

αpps
αspp

ω2
s

= Γ pppp (86)

and recover the same expression of the corrected coefficient given in Eq. (16) obtained with static condensation of all non-bending
modes.

It is worth mentioning that the demonstration could have been done with another pathway. Indeed, the displacement introduced
in Eq. (75) follows the general strategy proposed in [13,30], consisting of using SMD to build a quadratic manifold approach in
order to define a reduced-order models thanks to a nonlinear mapping between physical and reduced coordinates. However, the
SMD can also be used more simply, by considering θpp as an enrichment of the modal basis, composed here of the single master
eigenvector Φp. One could then derive a two-dofs reduced-order model, by projecting the general equations of motion onto these
two vectors. Then, since the motions associated to the SMD are linked to NB modes having high frequencies, one can neglect their
inertia and proceed to the static condensation of the part coming from the static modal derivative. By doing so, one would show
again that the corrected cubic coefficient is still equal to Γ pppp. Hence the static condensation of the SMD (a single vector) is thus
strictly equivalent, in our simplified case of a flat structure (and considering only one master mode), to the static condensation of
all coupled NB modes (including thickness modes).
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Fig. 14: Analytical solution of a beam in pure bending. (a) Stress state σxx in a cross section S; (b,c) reference
(in grey) and deformed (in blue) configurations of the beam. The Poisson effect has been magnified with a factor
20 in the cross section view (c).

D Analytical solution for the pure bending of a beam

We consider the linear elastic solution of a beam of rectangular cross section under pure bending (see Fig. 14). The beam is thus
subjected to a uniform bending moment Mb = Mez . The material of the beam is assumed linear elastic with Young’s modulus E
and Poisson’s ratio ν. The orthonormal frame (ex, ey , ez) is used, with ex colinear to the middle axis of the beam, ey the direction
of bending and ez = ex ∧ ey with ∧ the vector product. The local equilibrium of the beam is exactly verified by the following axial
stress state, linear through the thickness of the beam:

div σ = 0 ⇒ σ =

σxx 0 0
0 0 0
0 0 0

 , σxx = −αy, (87)

where div is the divergence operator, σ is the stress tensor and α is a constant. The bending moment writes M = αI where I is
the second moment of inertia of the beam. The linear strain tensor ε verifies:

ε =
1

2

(
∇U +∇TU

)
=

1 + ν

E
σ −

ν

E
trσI3 ⇒ ε = −α

y/E 0 0
0 −νy/E 0
0 0 −νy/E

 (88)

As exposed in [31], the following displacement field verifies exactly the above equations:

U = αxy ex −
α

2

[
x2 + ν(y2 − z2)

]
ey − ναyz ez . (89)

This displacement is composed of three parts:
– the transverse (ey) component, proportional to x2, which is the standard transverse displacement of the neutral line due to the

bending. This term is the one directly computed in a beam theory;
– the axial (ex) component, which is the 3D linearized rotation of the cross section around vector ez , also due to bending. In a

beam theory, it is the consequence of the Euler-Bernoulli kinematics;
– two additional terms in the transverse (ey) and lateral (ez) directions, proportional to ν and thus directly linked to the Poisson

effect. These terms are responsible of the distortion of the cross section, as seen in Fig 14(c).
To see the effect of the geometrical nonlinearities, we use the displacement field (89) to compute the nonlinear Green-Lagrange
strain tensor. We obtain:

γ =
1

2

(
∇U +∇TU +∇TU∇U

)
(90)

= ε+
α2

2

x2 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

γ1

+
α2

2

y2 xy 0
xy x2 0
0 0 0


︸ ︷︷ ︸

γ2

+
να2

2

 0 xy −xz
xy ν(y2 + z2) 0
−xz 0 ν(y2 + z2)


︸ ︷︷ ︸

γ3

(91)
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The above equation shows that, in addition to the linear part ε, the nonlinear part has three type of components:

– the first nonlinear term γ1 is purely axial, with the γxx term α2x2/2 being the leading term responsible of the standard axial
/ bending coupling due to the geometrical nonlinearities. It is the term predicted by the von Kármán theory: if v(x) = α/2x2

denotes the transverse displacement of the neutral fiber, the nonlinear terms added by the von Kárman theory in γxx is
v′(x)2/2 = α2x2/2 (see [8]);

– the second nonlinear term γ2 comes from purely 3D effects independent of the Poisson effect, that add (i) a stretch in the axial
ex direction, proportional to y2; (ii) a positive and homogeneous stretch in the transverse ey direction (proportional to x2);
(iii) a transverse shear;

– the third nonlinear term γ3 gathers the effects of the 3D Poisson effect. It involves stretching in both the transverse ey and
lateral ez direction as well as shear.

Even if the present results are strictly valid for a beam in pure bending, they can be extended and applied to understand qualitatively
any bending state.


	Introduction
	Modelling
	STEP convergence with 3D elements
	Alternative computational methods
	Physical mechanisms of the nonlinear couplings
	Numerical examples
	Conclusion
	Definition of cubic nonlinear terms
	Expression of static modal derivatives in terms of quadratic coupling coefficients
	Corrected cubic coefficient obtained from static modal derivatives
	Analytical solution for the pure bending of a beam

