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Comparison of nonlinear mappings for reduced-order modelling
of vibrating structures: normal form theory and quadratic
manifold method with modal derivatives

Alessandra Vizzaccaro · Löıc Salles · Cyril Touzé

Abstract The objective of this contribution is to compare two methods proposed recently in or-
der to build efficient reduced-order models for geometrically nonlinear structures. The first method
relies on the normal form theory that allows one to obtain a nonlinear change of coordinates for
expressing the reduced-order dynamics in an invariant-based span of the phase space. The sec-
ond method is the modal derivative (MD) approach, and more specifically the quadratic manifold
defined in order to derive a second-order nonlinear change of coordinates. Both methods share
a common point of view, willing to introduce a nonlinear mapping to better define a reduced-
order model that could take more properly into account the nonlinear restoring forces. However
the calculation methods are different and the quadratic manifold approach has not the invariance
property embedded in its definition. Modal derivatives and static modal derivatives are investi-
gated, and their distinctive features in the treatment of the quadratic nonlinearity is underlined.
Assuming a slow/fast decomposition allows understanding how the three methods tend to share
equivalent properties. While they give proper estimations for flat symmetric structures having a
specific shape of nonlinearities and a clear slow/fast decomposition between flexural and in-plane
modes, the treatment of the quadratic nonlinearity makes the predictions different in the case of
curved structures such as arches and shells. In the more general case, normal form approach ap-
pears preferable since it allows correct predictions of a number of important nonlinear features,
including for example the hardening/softening behaviour, whatever the relationships between slave
and master coordinates are.

Keywords Reduced Order modelling · Normal Form · Quadratic Manifold · Modal Derivatives

1 Introduction

Reduced-order modelling of thin structures experiencing large amplitude vibration is a topic that
has attracted a large amount of research in the last years. A number of methods have been proposed,
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with variants driven either by the structure under study and its peculiarity [63], the dynamical
behaviour exhibited by the system [64], the model [54] or the discretisation method [33].

Roughly speaking, one can divide the techniques proposed in the literature into two different
categories, the first one using linear change of coordinates, while in the second family nonlinear
mappings are defined. When referring to linear methods, one can also distinguish techniques where
the best orthogonal basis is computed once and from all. Modal basis [3, 12, 34, 56], Ritz vectors [20],
dual modes [25], and Proper orthogonal decomposition (POD) [4, 23, 27] falls into that family. The
proper generalized decomposition (PGD) [10, 14] under its progressive variant (pPGD) as defined
in [32] also belongs to that case since additional vectors are added when the dynamics is becoming
more complex. On the other hand, the linear change of coordinate can be adaptive, depending
on the dynamics, the computation (single point or a whole branch of solution) or the location in
phase space. Nonlinear principal component analysis (NLPCA) [22] as well as the optimized PGD
(oPGD) [32] belongs to this family of improved linear methods, sometimes coined as nonlinear since
the basis may change depending on some parameter.

In the third class of methods, a nonlinear change of coordinate is derived once and from all.
Nonlinear normal modes [26, 37, 43, 46, 57], Spectral submanifolds [16, 40], and the quadratic
manifold derived from modal derivatives [19, 44], belongs to this family. As shown in [5], when a
linear method (e.g. POD) tries to find the best orthogonal axis fitting a learning set that have a
complex shape, then the number of vectors will be larger than the number of curved subspaces
one can use to describe the same datasets. In this particular example, it was shown that invariant
manifolds pass exactly through the learning set thus diminishing the number of coordinates needed
to describe the dynamics.

Nonlinear normal modes (NNMs) and spectral submanifolds (SSM) offer a rigorously established
conceptual framework for reducing geometrically nonlinear structures. In particular, the invariance
property of reduction spaces is encapsulated in their definition, ensuring that the dynamical solu-
tions computed from a reduced-order model (ROM) also exist for the full system [17, 45, 50, 52].
This key ingredient allows deriving accurate ROMs, which, for example, are able to predict the
correct hardening/softening behaviour of nonlinear structure, which is not the case for their linear
counterparts [57]. More specifically, recent contributions by Haller and collaborators have shown
that SSMs are unique continuations of spectral subspaces of the linear system under the nonlinear
terms [16], and are thus the best mathematical object to be used in the present context. For non-
linear conservative vibratory systems, SSMs simplify to the classic Lyapunov subcenter manifolds
(LSM) that are filled with periodic orbits, thus unifying a number of definitions given for NNMs
in the past decades, see e.g. [21, 43, 45, 59].

On the other hand, modal derivatives (MDs) have been proposed independently [18, 64], and
they share a number of common points with NNMs. In particular, MDs are defined by assuming that
the mode shape (eigenvector) together with its eigenfrequency, have a dependence on amplitude, so
that one can differentiate the classical Sturm-Liouville eigenvalue problem that defines linear normal
modes, in order to make appear a quantity which is defined as the modal derivative. Symmetrically,
NNMs also relies on the fact that modal quantities depends on amplitude, a key feature in nonlinear
oscillations. The backbone curve and the dependence of the eigenmode shape with amplitude, is
then a result from the computation of NNMs, defined as invariant manifold in phase space. However,
a complete comparison of both method has not been drawn out yet. The only related paper uses
the modal derivatives as a reduction method, from which the NNM, seen in this case as the family
of periodic orbit in phase space –and thus reducing their information to the backbone curve only,
without using the geometrical information in phase space– can be computed [49].

A recent development in the use of modal derivatives is to form a quadratic manifold for more
accurate model order reduction. The properties of this nonlinear mapping are such that it is tangent
to a subspace spanned by the most relevant vibration modes, and its curvature is provided by modal
derivatives [19]. An idea also claimed in [44] is that such a quadratic manifold should be able to
cancel the quadratic forces in the ROM. Incidentally, NNMs defined in the framework of normal
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form theory, as proposed in [53, 57], already present these features. Indeed, a third-order nonlinear
change of coordinate is given, which has the property to be identity-tangent when the initial model
is expressed in modal coordinates, thus conserving the linear modes as first approximation. Also,
in case of no second-order internal resonance, the mapping exactly cancels all quadratic terms.
Finally, the invariance property is directly inherited from the definition of an NNM as an invariant
manifold in phase space, while the invariance of the quadratic manifold computed from MDs is not
at hand.

The aim of this contribution is thus to investigate more properly the common points and
differences of the two methods, and explain their advantages and drawbacks in the context of
building reduced-order models for geometrically nonlinear structures. The paper is organized as
follows. Section 2 is concerned with the theoretical developments. The framework of geometrically
nonlinear structures is briefly recalled, then both methods of interest, normal form theory, modal
derivatives and their extension to quadratic manifold (QM), are recalled and analysed in depth.
The general derivation of the QM framework for both modal derivatives (MDs) and static modal
derivatives (SMDs) is highlighted, whereas previous contributions generally use the simplifying
assumption of SMDs in the developments. As a consequence of this development, the distinctive
treatment of the quadratic nonlinearity between MDs and SMDs is specifically underlined. Of
particular interest is the comparison of methods when a slow/fast decomposition of the system
can be assumed. In the course of the paper, we will contrast the results given by MDs, SMDs
and normal form and underlines that the simplifying assumption of slow/fast approximation allows
retrieving partly the correct results. By doing so, an illustration of the general theorem given in [17]
is thus provided for a more restrictive framework. Indeed, theorems given in [17] encompasses more
generality and exact results, allowing to deal with the case of damping and forcing. We give however
here more detailed comparisons, and in particular analyse how the SMD can produce incorrect
predictions for structures having a strong quadratic coupling such as arches and shells. Section 3
illustrates the findings of the previous section on two simple two degrees-of-freedom (dofs) systems.
Finally section 4 applies the previous results to continuous structures discretised with the finite
element (FE) procedure.

2 Models and methods

2.1 Framework

Geometric nonlinearity refers to the case of thin structures vibrating with large amplitudes while
the material behaviour remains linear elastic. In this framework, the semi-discretised version of the
equations of motion, generally obtained from a finite-element procedure, reads :

Mü + F(u) = Q, (1)

where M is the mass matrix, u the displacement vector at the nodes, F the nonlinear restoring force
and Q the external force. The number of degrees of freedom (dofs) is N , being thus the dimension
of vectors u, F and Q. Note that damping is presently not taken into account since most of the
presented work deals with efficient treatments of nonlinearities in the restoring force. While the
concepts of NNMs and spectral submanifolds (SSM) can be straightforwardly extended to the cases
with damping, as already shown for example in [53] for normal form or in [16] for SSM, a clear
extension of MDs to damped systems does not seem to be present in the literature, to the best
of our knowledge. Consequently, we restrict ourselves in this contribution to the treatment of the
nonlinear stiffness without considering the effect of damping, but we acknowledge that damping
have important effects in nonlinear vibrations that should thus need further investigations.

Geometric nonlinearity for slender structures is assumed so that F, for the sake of simplicity,
only depends on the displacement vector u, but other cases can also be treated. More particularly, a
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number of models have been derived for thin structures such as plates and shells, relying on simpli-
fying assumptions (e.g. von Kármán models for beams and plates [7, 28, 51], Donnell’s assumption
for shallow shells [1, 2]), showing that the partial differential equations of motion only contains
quadratic and cubic terms with respect to the displacement. On the other hand, general equations
for three-dimensional elasticity with geometric nonlinearity (linear stress/strain relationship but
nonlinear strain/displacement relationship) also show that the nonlinear terms in the restoring force
should be of this type [12, 30, 33, 58]. Consequently we consider in this contribution a nonlinear
force that can be expressed as a function of the displacement up to cubic order terms, reading:

F(u) = Ku + Guu + Huuu. (2)

In this last equation, we use a simplified notation of the tensor product for the quadratic and cubic
terms, already introduced in [19, 44]. The notation is fully explained in Appendix A, where the
indicial expressions of the products are detailed for the sake of clarity. G is a third-order tensor of
quadratic coefficients with current term Gpij , while H is the fourth-order tensor grouping the cubic
coefficients Hp

ijk. For example, the vector Guu of the quadratic terms writes:

Guu =
N∑
i=1

N∑
j=1

Gijuiuj , (3)

with Gij the N-dimensional vector of coefficients Gpij , for p = 1, ..., N . Note also that in this
contribution, the representation of quadratic and cubic terms does not use the fact that the usual
product is commutative (uiuj = ujui), so that the second summation in (3) could be limited to the
indices such as j ≥ i, assuming also Gij = 0 for i ≥ j. In the representation selected throughout
the paper, all summations will be full, as in (3) with a fully populated tensor of coefficient G. The
same rule applies for the cubic term also. This choice has been made since it allows shorter and
simpler expressions for a number of equations given in the presentation, but of course it is not a
limiting assumption and the other choice could have also be done.

The first (linear) term in Eq. (2) makes appear the usual tangent stiffness matrix K defined
by :

K =
∂F

∂u

∣∣∣∣
u=0

, (4)

from which one can define the eigenmodes, solution of the eigenvalue problem:

(K− ω2
iM)φi = 0, (5)

with φi the ith eigenvector and ωi its associated eigenfrequency, for i = 1, ..., N . Using u = ΦX,
with Φ the matrix of all eigenvectors φi, and X the modal coordinates, the problem can be rewritten
in the modal basis by premultiplying Eq. (1) by ΦT , arriving at:

Ẍ + Ω2X + gXX + hXXX = q, (6)

where we have introduced Ω the matrix of eigenfrequencies ωi, g and h the tensors of quadratic
and cubic coefficients in the modal basis, and q = ΦTQ the modal external force. The equation of
motion in modal space can be written in explicit form with these coefficients as:

∀ p = 1, ..., N : Ẍp + ω2
pXp +

N∑
i=1

N∑
j=1

gpijXiXj +
N∑
i=1

N∑
j=1

N∑
k=1

hpijkXiXjXk = qp. (7)

The relations between the nonlinear tensors in physical coordinates G and H, and those in modal
coordinates g and h are derived from the linear change of coordinates and involves products with
the matrix of eigenvectors Φ. They are provided in Appendix C for the sake of completeness.
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2.2 NNMs and normal form

Nonlinear normal modes or NNMs have been used since the pioneering work by Rosenberg [43]
in numerous vibratory problems. It offers a sound conceptual framework in order to understand
the organization of the dynamics in the phase space. Different definitions have been given in the
past, e.g. family of periodic orbits [24, 43], invariant manifold in phase space, tangent at the linear
eigenspaces near the origin [46]. More recently, a mathematically well-justified definition of NNM
has been provided [16], allowing to settle down the different treatments in an unified way. For that
purpose, Haller and Ponsioen proposed to refer to the smoothest member of an invariant manifold
family tangent to a modal subbundle along an NNM as a spectral submanifold (SSM). In that
sense, SSMs provides a rigorous framework allowing to define the corresponding concepts in all the
situations encountered in mechanical vibrations: conservative or dissipative systems, autonomous
or non-autonomous systems. Interestingly, the authors also provide in [40] automated formulations
in order to derive SSMs up to large order, allowing them to draw out comparisons with numerous
other methods proposed in the recent years, see e.g. [9]. Enforcing the invariant property is key in
a perspective of reduced-order modelling, since it is the only way to ensure that the trajectories of
the ROM will also exist for the full system. Elaborating on this idea, NNMs has been used in the
perspective of model-order reduction using either center manifold theorem [39, 46], normal form
theory [52, 54, 57], or spectral submanifolds [9, 16, 40, 60].

In this contribution, the normal form theory, as defined in [53, 57], is used. The main idea is
to define a nonlinear change of coordinates, from the modal coordinates to new ones defined as
the normal coordinates. The nonlinear mapping is inherited from Poincaré and Poincaré-Dulac
theorems, based on the idea of finding out a nonlinear relationship capable of eliminating as much
as possible of nonlinear terms. In this contribution, only the main results are recalled, the interested
reader is referred to [52, 53, 57] for more details. The nonlinear change of coordinates is identity-
tangent, and formally reads:

Xp = Rp + Pp(Ri, Sj), (8a)

Yp = Sp +Qp(Ri, Sj), (8b)

where Pp and Qp are third-order polynomials, the analytical expressions of which are given in [57]
for the undamped case and in [53] for the damped case. Xp is the modal coordinate, Yp the modal
velocity, and (Ri, Sj) are the new coordinates related to the invariant manifolds, and called normal
coordinates.

The method used to derive the nonlinear mapping is based on the recognition of nonlinear
resonances involving the eigenfrequencies of the system. In case where no internal resonance is
present, one can show for example that all the quadratic terms can be cancelled from the normal
form which is thus much simpler than the original system.

The dynamics, expressed with the newly introduced normal variables (Ri, Sj), is written in an
invariant-based span of the phase space, and thus prone to open the doors to efficient reduced-
order models, as already shown in [52]. The general equation for the dynamics expressed in the
new coordinates reads:

∀ p = 1, ... , n :

R̈p+ω2
pRp + (Apppp + hpppp)R3

p +BppppRpS
2
p+

+Rp

n∑
j=1

j 6=p

(
(3hppjj + 2Apjjp +Appjj)R

2
j +BppjjS

2
j

)
+ Sp

n∑
j=1

j 6=p

(
2BpjjpRjSj

)
= 0. (9)

where n is the number of master modes retained for the ROMS, R = (R1, ..., Rn); in most cases
n � N , but the formula are given for n arbitrary and can be used also for n = N . Note that the
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expression in slightly different from the one proposed in [57], a direct consequence of the choice of
the representation of quadratic and cubic terms, with full summations. The coefficients Apijk and

Bpijk stems from the cancellation of the quadratic terms. Their expressions read:

Apijk =
N∑
s=1

2 ḡpisa
s
jk, (10a)

Bpijk =
N∑
s=1

2 ḡpisb
s
jk, (10b)

where ḡpis = (gpis+g
p
si)/2 is the mean value between two adjacent terms implying the same monomial

term. The coefficients asjk and bsjk appearing in the expression of Apijk and Bpijk are related to
the quadratic terms of the change of coordinate. For the sake of completeness, the interested
reader can find their full expressions in Appendix B. As known from the theory, these second-order
coefficients have a singular behaviour in the vicinity of internal resonances. In this case, a strong
coupling is present between the nonlinear oscillators whose eigenfrequencies are commensurate,
and the associated coefficient in the change of coordinate is set to zero, so that the corresponding
monomial terms stay in the normal form.

From Eqs. (9), one can observe that invariant-breaking terms are no longer present in the
equations of motion. Invariant-breaking terms are defined as quadratic monomials of the form
gkppX

2
p and cubic monomials hkpppX

3
p on k-th oscillator equation. As soon as mode p has some

energy, then these invariant-breaking terms directly excite oscillator k, thus breaking the invariance
of the linear mode subspace. As these terms are no longer present in Eqs. (9), it shows that the
dynamics is now expressed in an invariant-based span. One can also note that the only monomial
terms present in Eqs. (9) are those related to trivially resonant terms.

A ROM is simply selected by keeping in the truncation only the normal coordinates (Rp, Sp) of
interest, depending on the problem at hand. By doing so, one restricts the motion in the invariant
manifold described by the master normal coordinates retained, giving rise to efficient reduced
models, that simulate trajectories existing in the complete phase space, and allowing to recover the
correct type of nonlinearity [55, 57] as well as nonlinear frequency response curves [54]. The simplest
ROM is built by restricting the motion to a single NNM by keeping only one pair (Rp, Sp) and
cancelling all the other: ∀ k 6= p, Rk = Sk = 0. In this case the nonlinear change of coordinates
for the master coordinates reads:

Xp = Rp + apppR
2
p + bpppS

2
p , (11a)

Yp = Sp + γpppRpSp, (11b)

whereas for the slave coordinates one has:

∀ k 6=p :

Xk = akppR
2
p + bkppS

2
p + rkpppR

3
p + ukpppRpS

2
p , (12a)

Yk = γkppRpSp + µkpppS
3
p + νkpppSpR

2
p. (12b)

Again, all the introduced coefficients, γppp, rkppp, ukppp, µkppp and νkppp, originate from the explicit
expression of the polynomials Pp and Qp of Eq. (8). They are all analytic and their expressions
are given in [57]. Interestingly, Eqs. (12) describes the geometry of the invariant manifold in phase
space, up to order three, but of course one can limit the development of this equation to second-

order only. The dynamics on the invariant manifold (pth NNM) is found by cancelling all (Rk, Sk)
for k 6= p in Eqs. (9). In the case of a single NNM motion the equation is particularly simple and
reads:

R̈p + ω2
pRp + (Apppp + hpppp)R3

p +BppppRpṘ
2
p = 0 . (13)
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Of particular interest here is the fact that the correcting coefficients Apppp and Bpppp appearing in
this last equation are provided by the second-order terms in the nonlinear change of coordinates.
Consequently, the third-order terms have no influence on this reduced dynamics, which is thus
exactly the one given by the second-order truncation of the normal form nonlinear mapping.

All these formulas can be used to reconstruct the mode shape dependence on amplitude, as-
suming the motion is enslaved to a single NNM, i.e. lying in the invariant manifold associated to
mode p. Assuming this single-NNM motion, the physical displacement is reconstructed from

u =
N∑
k=1

Xkφk = Xpφp +
N∑
k=1
k 6=p

Xkφk, (14)

where Xp is replaced using Eq. (11a) and Xk using Eq. (12a), so that one finally obtains the
amplitude-dependent mode shape as :

u =
(
Rp + apppR

2
p + bpppS

2
p

)
φp +

N∑
k=1
k 6=p

(
akppR

2
p + bkppS

2
p + rkpppR

3
p + ukpppRpS

2
p

)
φk. (15)

This formula has already been used in order to represent the amplitude dependence of mode shapes
on amplitude, see e.g. [47, 57], and will be further analysed and compared to the prediction given
by the method of quadratic manifold from modal derivatives in Sect. 2.4.2.

Note that, as a comparison to quadratic manifold is targeted, a detailed description of the
effects of order truncation in the normal form approach is in order. In the present approach of
the normal form, the change of coordinates is up to order three, but the reduced-order dynamics
can be considered as up to the second order, since the effect of cancelling the cubic terms to the
higher-orders have not been taken into account due to the third-order truncation of all asymptotic
developments. Also, most of the comparisons in the remainder of the paper will be drawn between
single-mode reduced-order dynamics. In this simplified context, Eq. (13) clearly shows that the
cancellation of the third-order non-resonant monomials have absolutely no effect on this equation
which is left unchanged. Consequently, Eq. (13) is the reduced dynamics obtained with a second-
order normal form nonlinear mapping. The only difference between second-order and third-order is
in Eq. (12), which describes how the exact invariant manifold is approximated in phase space, and
one can analyse the effect of either second-order or third-order nonlinear mapping in this respect.
In the remainder of the paper, a clear attention will be devoted to these two specific truncations
in order to draw out a fair comparison with the quadratic manifold approach.

We now turn to the definition of modal derivatives and the associated nonlinear mapping: the
so-called quadratic manifold, before comparing the two methods in detail.

2.3 Modal Derivatives

Modal derivatives have been first introduced by Idehlson and Cardona to solve structural vibrations
problems with a nonlinear stiffness matrix [18]. They have been used in recent years in the context
of reduced-order modelling [64], and the last developments propose to use them in order to create
a nonlinear mapping with a quadratic manifold [19, 44]. In this section, we derive again the most
important definitions, make the distinction between modal derivatives (MDs) and static modal
derivatives (SMDs), and introduce the quadratic manifold approach.
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2.3.1 Definition of Modal Derivatives and Static Modal Derivatives

The modal derivatives have been first introduced with the aim of offering a framework taking into
account the dependence of mode shapes and eigenfrequencies on amplitude for nonlinear system.
This is a common point with nonlinear normal modes, that also recognizes this fact as a major
outcome that needs to be addressed correctly in the modelling. The introduction of the modal
derivatives proposed in this section is mostly heuristic and based on previous works. Let us denote
φ̃i(u) this amplitude-dependent eigenvector. The already introduced eigenvector φi, solution of
the Sturm-Liouville problem, Eq. (5), represents the value of φ̃i(u) when u = 0. The ij-th modal
derivative (MD) is defined as the derivative of φ̃i with respect to the j-th coordinate used for the
reduced basis, denoted here as Rj . For the sake of clarity, Xi is the modal coordinates, and Rj
the reduced coordinates, following the notations introduced for the normal form approach. At first
order, one has Xi = Ri, but as we consider nonlinear change of coordinates, these relationships will
be enriched by higher-order terms. For the quadratic manifold approach, this will be explained in
the next subsections, so that for the present definitions, one can assume Ri = Xi. In that context,
the ij-th MD Θij is the derivative of φ̃i with respect to a displacement enforced along the direction
of the j-th eigenvector φj as introduced in [18, 19, 44, 64], and writes:

Θij
.
=
∂φ̃i(u)

∂Rj

∣∣∣∣
u=0

. (16)

In order to derive an equation from which the MD can be computed, one has to rewrite the
eigenproblem given by Eq. (5) assuming the known dependencies on the amplitude, as:(

∂F(u)

∂u
− ω̃2

i (u)M

)
φ̃i(u) = 0, (17)

where the linear stiffness matrix is replaced by the full nonlinear restoring force, and both eigen-
values and eigenvectors are amplitude-dependent. Note that, in this contribution, the mass matrix
is assumed to be independent of the amplitude, since this is the selected framework for this paper
focused on geometric nonlinearity. However further development could include a dependence of the
mass matrix on the amplitude in order to extend the use of MDs to other cases. The nonlinear
eigenproblem of Eq. (17) must be complemented with the nonlinear mass normalisation equation:

φ̃i(u)TMφ̃i(u) = 1. (18)

The last two equations, (17)-(18) can then be Taylor-expanded as function of the amplitude, as-
suming moderate vibrations in the vicinity of the position at rest defined by u = 0. Assuming
that the displacement u depends on the coordinates introduced for the reduced basis, R1 to Rn,
each term can then be expanded along these new coordinates. The full derivation of this Taylor
expansion is given in Appendix E.

The Taylor expansion of Eq. (17) and Eq. (18) in the Rj coordinates, up to first order, generates
constant terms that coincide with the linear eigenproblem and mass normalisation. The next order
terms, linear in Rj , allows deriving the following system, where the two unknowns are the MD
vector Θij , and the scalar describing the variation of the squared eigenfrequency with respect to

amplitude,
∂ω2

i

∂Rj
: K− ω2

iM −Mφi

−φTi M 0




Θij

∂ω2
i

∂Rj

 =


−2Gφjφi

0

 , (19)

where the quadratic tensor G of the restoring force introduced in Eq. (2), has been used. The
detailed proof for the derivation of this system is given in Appendix E.



Comparison of nonlinear mappings for reduced-order modelling of vibrating structures 9

In most of the studies concerned with application of modal derivatives to model order reduction,

the so-called static modal derivatives (SMDs) are used instead. Let us denote as Θ
(S)
ij the SMD of

Θij , obtained by neglecting the terms related to the mass matrix in (19), which then simplifies to:

KΘ
(S)
ij = −2Gφjφi. (20)

This last simplification evidently highlights the fact that MDs and SMDs are able to retrieve the
quadratic coupling generated by the nonlinear restoring force, since being directly proportional
to the tensor of coefficients G. Eq. (20) also shows that the computation of SMDs is drastically
reduced as compared to MDs, for two main reasons. The first one is that, given the usual symmetry
of the quadratic tensor G at hand in structural problems, one has Gφjφi = Gφiφj , so that the

SMDs are symmetric Θ
(S)
ij = Θ

(S)
ji . This involves that the number of calculations for indexes i 6= j

is then halved in the case of SMDs as compared to MDs. The second reason lies in the fact that,
despite the sizes of the systems to solve are comparable (the size of system (19) is N + 1 and the
size of system (20) is N), the computation of a SMD can be done with a standard operation in
a commercial FE software whereas the computation of a MD cannot. Indeed, the non-intrusive
computation of a SMD requires to solve a linear system Ku = f , where the applied force f is the
right-hand side of Eq. (20) and the resultant displacement u is the SMD. Solving such linear system
coincides with operating a simple linear static analysis on the structure with imposed force and
unknown displacement. Conversely, the linear system to compute a MD is the one in Eq. (19). The
solution of this system does not correspond to the standard operation one could easily perform in
a FE software. Consequently to compute the MD, one needs not only to access to the full stiffness
and mass matrices but also to export them in an external code to be able to solve the linear system.
When the structure is discretised with a large number of dofs, such operation can be memory and
time consuming when not infeasible.

2.3.2 Expression of MDs as function of the quadratic coefficients from the modal basis

In this section, the relation between MDs and SMDs and the coefficients of the quadratic tensor
in modal basis g is derived. This relation will help to draw comparisons between the normal form
method and the quadratic manifold method that will be introduced in the next section. For that
purpose, the ij-th MD in the modal basis, denoted as θij , is introduced as

Θij = Φθij =
N∑
s=1

φsθ
s
ij , (21)

following the linear change of basis from physical to modal space, where the summation thus spans
over all the modes of the structure, being Φ the full eigenvector matrix. In the modal basis, the
eigenvector φi coincides with the i-th vector basis ei, where the entries of ei are all zero except 1
in position i, so that: φi = Φei.

The system of equations (19), can be now written in modal coordinates by premultiplying the
first N rows by ΦT and by substituting the values of φi and Θij with their values in modal
coordinates. One finally obtains:

Ω2 − ω2
i I −ei

−eTi 0




θij

∂ω2
i

∂Rj

 =


−2gij

0

 , (22)

where the right-hand side has been simplified using the relationship gij = ΦTGφiφj , demon-
strated in Eq. (84a) of Appendix C.
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The system (22) is easier to understand when written term by term:

(ω2
s − ω2

i )θsij = −2gsij , for s 6= i, (23a)

∂ω2
i

∂Rj
= 2giij , for s = i, (23b)

θiij = 0. (23c)

One can notice that the ij-th modal derivatives is then directly proportional to the ij-th com-
ponent of the quadratic tensor in modal coordinates. This clearly shows that the ij-th MD is able
to retrieve a strong quadratic coupling occurring between slave mode s and the master modes i
and j. The value of the modal derivative in physical coordinates can be now easily reconstructed
from the preceding development, and reads:

Θij =
N∑
s=1
s 6=i

φs
−2 gsij
ω2
s − ω2

i

. (24)

If one follows a similar procedure for the case of static modal derivative, Eq. (20) is written in

modal coordinates as Ω2θ
(S)
ij = −2gij and the static modal derivative in physical coordinates is

directly given as:

Θ
(S)
ij =

N∑
s=1

φs
−2 gsij
ω2
s

. (25)

In both cases, MDs and SMDs can be simply defined as a linear combination of modes weighted
by a factor proportional to gsij , the quadratic modal coupling coefficient. In the case of modal
derivative, the method shows a divergent behaviour in case of 1:1 internal resonance between two
eigenfrequencies, a feature that will be further commented in Sect. 2.4.1. One can also note that
the weighting factors have larger values for the modes, the eigenfrequencies of which are closer to
the eigenfrequency of the i-th mode. On the other hand for static modal derivatives, the weighting
factors are simply proportional to the inverse of the squared eigenfrequencies, and thus should
decrease for higher modes. Note however that this fact can be severely compensated by the values
of the quadratic coefficients, which scales according to the linear stiffness. Consequently, as shown
for example in [49, 61] for thin and flat symmetric structures (beams and plates), the SMD is able
to recover the most important couplings with in-plane modes.

As a conclusion, MDs and SMDs can be seen as a displacement field that takes into account the
contribution of all quadratically coupled modes into one equivalent vector. From this perspective, the
use of a reduced basis composed of MDs is equivalent to using a basis composed of all quadratically
coupled modes, with the supplementary condition that the quadratic couplings makes appear new
directions in phase space, that are independent of the already selected mode. If the quadratic
coupling is only dependent on modes already present in the reduced basis, then the new vector will
not bring out new eigendirections.

2.3.3 Quadratic manifold

The quadratic manifold approach has been introduced in [19, 44] in order to extend the use of
modal derivatives in the context of model order reduction, and propose a nonlinear mapping from
initial to reduced coordinates. The nonlinear mapping is quadratic in nature and does not account
for nonlinear internal resonance as the normal form theory does. In this section, the derivation of
reduced-order models using the quadratic manifold is given, following the previous results obtained
in [19, 44]. A particular attention is paid on writing the differences one can await when using the
quadratic manifold with MDs and SMDs, with the comparison to the results provided by normal
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form theory in mind, thus giving rise to new developments. The coordinates describing the reduced-
order models are denoted as Rp for all the methods in order to compare more directly the equations.
One has however to keep in mind that the meaning of these coordinates is not the same for each
method.

Since the MDs are defined from a second-order Taylor expansion of the nonlinear eigenvalue
problem, it is intuitive to use them in a quadratic nonlinear mapping. If one operates a Taylor
expansion of the approximate solution u in the reduced coordinates R up to quadratic order, one
finds:

u(R) = u(0) +
n∑
i=1

∂u(R)

∂Ri

∣∣∣∣
0

Ri +
1

2

n∑
i=1

n∑
j=1

(
∂2u(R)

∂Rj∂Ri

) ∣∣∣∣
0

RiRj +O(|R|3), (26)

where n is the number of master modes retained for the ROMS, R = (R1, ..., Rn). By extending the
definition of linear eigenvectors to the nonlinear ones, the nonlinear eigenvector spans the tangent
space of the displacement with respect to the reduced coordinates, so that:

∂u

∂Ri
= φ̃i(R). (27)

In Eq. (26), we can then substitute u(0) = 0 (the position at rest is at the origin of the
coordinates), and

∂u(R)

∂Ri

∣∣∣∣
0

= φi, (28)

∂2u(R)

∂Ri∂Rj

∣∣∣∣
0

= Θij , (29)

However, this series of operations would lead to an inconsistent formulation in the case of MDs
due to their asymmetry, as already outlined in [19]. In fact, since Θij 6= Θji, it implies that the
Schwarz’s identity ∂2u/∂Ri∂Rj 6= ∂2u/∂Rj∂Ri is not fulfilled anymore. To overcome this issue,
and given the independence of the quadratic mapping on the asymmetric part of each MD shown
in [19], the correct strategy proposed in [19] is to express both the mapping and its tangent space
by means of symmetrized MDs Θ̄ij = (Θij + Θji)/2, leading to:

u(R) ≈
n∑
i=1

φiRi +
1

2

n∑
i=1

n∑
j=1

Θ̄ijRiRj = φR +
1

2
Θ̄RR, (30)

φ̃i(R) ≈ φi +
n∑
j=1

Θ̄ijRj = φi + Θ̄R. (31)

Note that these expressions are used in order to define the reduced-order model, so the dimension
n of R is much smaller than the dimension N of u, n � N , since only the master coordinates of
the ROM are present in R. Consequently φ is the matrix of eigenvectors relative to the master
coordinates, and should be distinguished from the full matrix of eigenvectors Φ used e.g. in (21).
Finally, Θ̄ is the third-order tensor gathering the MDs Θ̄ij .

For future comparison with the normal form method, it is useful to also define the quadratic
mapping in modal coordinates:

X(R) ≈ R +
1

2
θ̄RR, (32)

and by components:

Xk ≈ Rk +
1

2

n∑
i=1

n∑
j=1

θ̄kijRiRj . (33)
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2.3.4 Reduced-order model obtained with quadratic manifold

The nonlinear mapping can then be used in order to derive the reduced-order equations by directly
applying Eq. (30) to the original equations of motion, Eq. (1), and using a standard Galerkin
projection. For that purpose, one has to compute the derivatives of Eq. (30) with respect to time,

and finally left-multiply Eq. (1) by φ̃
T

i . These derivations have already been proposed in [19, 44],
we refer the interested reader to these articles for details about the procedure. Here we give the
reduced-order dynamics obtained once the projection realised, as a function of the modal coupling
coefficients g and h, a derivation that is not given in [19, 44] and will allow drawing out more direct
comparisons with the normal form approach.

The dynamics for each reduced coordinates Rp finally reads, for p = 1...n:

R̈p + ω2
pRp +

n∑
i,j=1

(
(gpij +

ω2
p

2
θ̄pij) RiRj + θ̄pij (ṘiṘj +RiR̈j) + θ̄jpi (ω2

jRiRj +RiR̈j)

)
+

+
n∑

i,j,k=1

((
hpijk +

N∑
s=1

(
ḡpis θ̄

s
jk + θ̄spk (gsij +

ω2
s

2
θ̄sij)

))
RiRjRk +

N∑
s=1

(
θ̄spk θ̄

s
ij

)
(ṘiṘjRk + R̈iRjRk)

)
= 0,

(34)

where the following notations have been introduced for simplifying the expressions : ḡpis =
gpis+g

p
si

2 .
Note that this formula simplifies in the case of a symmetric quadratic tensor, which is generally
the case in structural mechanics.

One can observe that the linear part is uncoupled, resulting from the fact that the first term of
the quadratic manifold in Eq. (30) is the usual expansion onto the eigenmodes, thus implying, at
linear order, uncoupled linear oscillators. The nonlinear terms can be compared to those obtained
when using the normal form approach as nonlinear mapping, Eqs. (9). In particular, one can
observe that the normal form approach completely cancels all quadratic terms, provided that no
second-order internal resonance are present, a key feature embedded in the derivation which makes
the distinction between resonant and non-resonant terms. On the other hand, quadratic terms are
always present in (34). A second comment is on the presence of terms depending on accelerations
in (34), not present in the reduced-order dynamics given by the normal form approach.

The restriction to a single master dof is provided, so that one could draw out a term-by-term
comparison between the reduced-order dynamics provided by the two methods. Assuming that only
mode p is present as reduced coordinates, thus Ri = 0, for all i 6= p, Eq. (34) simplifies to:

R̈p + ω2
pRp + (gppp +

ω2
p

2
θppp) R2

p + θppp (Ṙ2
p +RpR̈p) + θppp (ω2

pR
2
p +RpR̈p) +

+ hppppR
3
p +

N∑
s=1

(
ḡpps θ

s
pp R

3
p + θspp (gspp +

ω2
s

2
θspp) R3

p +
(
θspp
)2

(Ṙ2
pRp + R̈pR

2
p)

)
= 0

(35)

This last equation can then be used either for MD or SMD, so that one can contrast the results
obtained by using one of these two strategies (modal derivatives, be they static or dynamic) with
the nonlinear change of coordinates provided by normal form theory, which is the aim of the next
section.

2.4 Comparison of the methods and slow/fast approximation

This section aims at comparing the different nonlinear mappings used to derive reduced-order
models on the different outcomes they provide: reduced-order dynamics, and prediction of typical
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nonlinear features such as hardening/softening behaviour, and dependence of mode shapes on
amplitude. For that purpose, we restrict ourselves to a single master mode. Moreover, from now
on, we introduce the symmetry property of the quadratic tensor g that results from the fact that the
internal force derives from a potential, thus leading to gijk = gikj and gijk = gjki = gkij . Note however
that, due to our initial choice of fully populated sums and tensors without assuming commutativity
of the product, the symmetry property may appear a bit different from e.g. [34] when equal indexes
are present. Indeed, in [34] one can read for example gpps = 2gspp. This is the only consequence of the
initial choice since in [34] one has gpsp = 0 for s > p. In our case, the relationship reads gpps = gspp
and gpsp = gspp.

By using such symmetry property, we can also simplify ḡpps = gpps = gspp and substituting the
value of the modal derivative in modal space θspp = −2gspp/(ω

2
s − ω2

p) when s 6= p and θppp = 0 in
Eq. (35), one obtains:

R̈p + ω2
pRp + gppp R

2
p + hppppR

3
p −

N∑
s=1
s6=p

(gspp)2
2

ω2
s − ω2

p

(
ω2
s − 2ω2

p

ω2
s − ω2

p
R3
p −

2

ω2
s − ω2

p
(Ṙ2

pRp + R̈pR
2
p)

)
= 0.

(36)

If the value of the SMD is used instead of the MD, then the reduced-order dynamics writes:

R̈p + ω2
pRp − gppp

2

ω2
p

(ω2
pR

2
p + Ṙ2

p + 2RpR̈p) + hppppR
3
p −

N∑
s=1

(gspp)2
2

ω2
s

(
R3
p −

2

ω2
s

(Ṙ2
pRp + R̈pR

2
p)

)
= 0.

(37)

For the explicit comparison, we rewrite the reduced-order dynamics derived with the normal form
approach, Eq. (13), where the Apppp and Bpppp terms have been expanded:

R̈p + ω2
pRp + hppppR

3
p −

N∑
s=1

(gspp)2
2

ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p
R3
p −

2

ω2
s − 4ω2

p
Ṙ2
pRp

)
= 0. (38)

Note that the remark on the order of the truncations given at the end of section 2.2 may be
better understood from these single-mode reduced dynamics. Eq. (38) is the ROM given by normal
form, be the calculation of the nonlinear change of coordinate truncated at order two or at order
three. Consequently this equation gives the third-order reduced dynamics produced by truncating
the normal form at second order. In the same line, Eqs. (36) and (37) are the third-order reduced-
dynamics provided by the quadratic manifold approach. Hence comparing the predictions given
by these reduced dynamics is correct since the same order of asymptotic developments is at hand.
The only difference one can estimate in the analysis thus relies in the nonlinear mapping, which
can be pushed at third-order easily in the normal form approach since the calculation has already
been proposed in the past. This means that in the comparisons, the only difference will be on the
geometry of the manifold in phase space and the reconstruction formula, but not on the reduced-
order dynamics.

In order to have a better view on the reduced-order dynamics for each of the methods, the
general nonlinear oscillator equation describing the dynamics on the reduced subspace can be
written under the general form as:

R̈p + ω2
pRp + C1R

2
p + C2

Ṙ2
p

ω2
p

+ C3
R̈pRp
ω2
p

+ C4R
3
p + C5

Ṙ2
pRp

ω2
p

+ C6
R̈pR

2
p

ω2
p

= 0, (39)

with C1 to C6 different coefficients, which values are summarized in Tables 1, 2 for the three
different methods.

As already remarked, only the normal form approach is able to cancel the quadratic nonlinearity
and produce a parsimonious, cubic-order reduced dynamics, depending on two separate coefficients
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C1 C2 C3

MD gppp 0 0

SMD -2gppp -2gppp -4gppp

NF 0 0 0

Table 1: Table of coefficients of the reduced system given by the three methods

C4 C5 C6

MD hpppp −
∑N
s=1
s 6=p

(gspp)2
2(ω2

s − 2ω2
p)

(ω2
s − ω2

p)2
∑N
s=1
s 6=p

(gspp)2
4 ω2

p

(ω2
s − ω2

p)2
∑N
s=1
s 6=p

(gspp)2
4 ω2

p

(ω2
s − ω2

p)2

SMD hpppp −
∑N
s=1(gspp)2

2

ω2
s

∑N
s=1(gspp)2

4 ω2
p

ω4
s

∑N
s=1(gspp)2

4 ω2
p

ω4
s

NF hpppp −
∑N
s=1(gspp)2

2(ω2
s − 2ω2

p)

ω2
s(ω2

s − 4ω2
p)

∑N
s=1(gspp)2

4 ω2
p

ω2
s(ω2

s − 4ω2
p)

0

Table 2: Table of coefficients of the reduced system given by the three methods

only. Using SMDs creates the larger number of coefficients while only 4 are needed for MDs. Most
importantly, the closeness of the results given by the three methods can be underlined in the case
where a slow/fast decomposition can be assumed between the master mode p and the slave modes
s. This case is often encountered in mechanical vibrations since one has often to deal with a large
number of modes with very high eigenfrequencies. Let us assume that all the slave modes s are
well separated from the master mode, so that for all s one has ωs � ωp. It is then very easy to
verify on the coefficients given in Tables 1, 2 that those provided by the normal form and the MD
method tends to the values given by the SMD approach. More specifically, C4 and C5 from normal
form exactly match those from the SMD, so that the only difference between the two reduced-order
dynamics lies in the additional terms C1, C2, C3 and C6 for the SMD method. On the other hand,
using the slow/fast approximation for the coefficients provided by the MD shows that C4, C5 and C6

tends exactly to the values obtained with SMDs, the only difference being in the summation, where
the p term is excluded in the MD approach whereas it is not in the SMD, as a direct consequence
from Eq. (23). Indeed, Eq. (23b) shows that for MD, the gppp term is taken into account in the
amplitude-frequency relationship, and not in the reconstruction of the vector as given by Eq. (24).
On the other hand for SMD, the gppp term is taken into account in the vector defining the SMD,
Eq. (25), but not in the frequency dependence on amplitude. This important difference between
the two methods will have consequences that are commented further in the next sections, and the
gppp will be denoted further as the self-quadratic term.
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In order to better understand the observed differences on the reduced-order dynamics, a fair
comparison has to be given not onto a term-by-term comparison, since the meaning of the reduced
variables is not the same, but on the general predictions given by each reduction method on the
most important nonlinear features. The next sections are thus devoted to comparing the prediction
of the type of nonlinearity provided by each method (i.e. the first term in the amplitude-frequency
relationship that dictates the hardening or softening behaviour), as well as the mode shape depen-
dence on amplitude.

2.4.1 Hardening/softening behaviour

The generic reduced-order dynamics, Eq. (39), can be solved with a perturbation method in order
to derive the type of nonlinearity predicted by each method. Keeping the general notation with the
Ci coefficients for the ease of reading, the general solution up to second order in amplitude reads:

Rp = a0 cos[ωp t (1 + Γa20)] + a20

(
C1 − C2 − C3

6ω2
p

cos[ 2ωp t (1 + a20Γ )]− C1 + C2 − C3

2ω2
p

)
+O(a30),

(40)
with a0 the amplitude, and Γ the general coefficient that dictates the hardening/softening be-
haviour. Indeed, one can introduce the nonlinear frequency ωNL = ωp(1 + Γa20). If Γ > 0 then the
system is hardening. The general expression for Γ with all the Ci coefficients writes:

Γ = − 1

24ω4
p

(
10C2

1 + 10C1C2 + 4C2
2 − 7C2C3 + C2

3 − 11C1C3

)
+

1

8ω2
p

(3C4 + C5 − 3C6) .

(41)
One can note in particular that with the normal form approach, one has C1 = C2 = C3 = 0

since the method fully cancels the quadratic terms, so that there is no second harmonic term in
the reduced-order dynamics and Eq. (40) reduces to its first term at order two. However, since
quadratic terms are present in the nonlinear change of coordinates, this simplification does not
imply that the second harmonic is not present in the reconstructed displacements, as it will be
shown in the next section. Once again, these two last equations show that normal form approach
produces a parsimonious representation of the reduced dynamics which is generally easier to read
and interpret.

Replacing the values of the Ci coefficients obtained for each method (MD, SMD or NF for
normal form), one arrives at the prediction of the type of nonlinearity provided by each reduced-
order model as:

ΓMD =− 5

12 ω2
p

(
gppp
ωp

)2

+
3

8 ω2
p

hpppp − N∑
s=1
s6=p

2

(
gspp
ωs

)2
(

1 +
ω2
p(4ω2

s − 3ω2
p)

3(ω2
s − ω2

p)2

) , (42a)

ΓSMD =− 5

12 ω2
p

(
gppp
ωp

)2

+
3

8 ω2
p

hpppp − N∑
s=1
s6=p

2

(
gspp
ωs

)2
(

1 +
4ω2

p

3ω2
s

) , (42b)

ΓNF =− 5

12 ω2
p

(
gppp
ωp

)2

+
3

8 ω2
p

hpppp − N∑
s=1
s6=p

2

(
gspp
ωs

)2
(

1 +
4ω2

p

3(ω2
s − 4ω2

p)

) . (42c)

One can note that the first terms of the prediction are the same, while the difference arise from
the way the slave (or neglected) coordinates are taken into account in order to predict the type
of nonlinearity. This feature is however key in order to give a correct prediction since there is a
strong need to take properly into account the curvature of the manifolds in phase space, otherwise
incorrect predictions are given [57].
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In order to give more insights into Eqs. (42), let us first notice that in the summed terms, the
first one is always the same since the different expressions all start with 1 + .... Let us isolate this
term and introduce the following notation :

CsSC = 2

(
gspp
ωs

)2

. (43)

One can notice that this correction term is the one obtained by using static condensation, as already
shown for example in [48, 61], thus the subscript SC. Denoting as CMD, CSMD and CNF the correction
factors given by each method (i.e. the term in the summation), one can then simply compares all
these terms to CsSC in order to have an expression depending only on the eigenfrequencies. Assuming
that there is only one slave mode s in the summation in order to highlight the contribution brought
by each term, the following ratios can be written:

CMD

CSC
= 1 +

4

3

ρ2 − 3/4

(ρ2 − 1)2
, (44a)

CSMD

CSC
= 1 +

4

3

1

ρ2
, (44b)

CNF

CSC
= 1 +

4

3

1

ρ2 − 4
, (44c)

where ρ = ωs/ωp has been introduced in order to highlight their behaviour with respect to the
fulfilment of the slow/fast partition. These expressions clearly underline the fact that each method
refine the correction factor of static condensation by an additional term. One can also observe that
the refinement of the CsSMD comes from the inertia and velocity terms C5 and C6, whereas the
term C4 is exactly the one from static condensation. Consequently, using SMD without quadratic
manifold could lead to erroneous predictions since inertial and velocity corrections could be missed.
This remark should be particularly relevant in a case of geometric nonlinearity involving inertia,
as e.g. in the case of a cantilever beam.

To better assess the quality of the predictions given by the three methods, Eqs. (44) can be
Taylor-expanded by using the slow/fast assumption ωs � ωp for the slave modes s. This assumption
allows introducing a small parameter ωp/ωs, or, equivalently, considering the expansion under the
assumption ρ→∞. One then obtains:

CMD

CSC
= 1 +

4

3

1

ρ2
+
∞∑
i=2

3 + i

3 ρ2i
, (45a)

CSMD

CSC
= 1 +

4

3

1

ρ2
, (45b)

CNF

CSC
= 1 +

4

3

1

ρ2
+
∞∑
i=2

4i

3 ρ2i
. (45c)

These formulas show in particular that all the methods predict the same first two terms in the
expansion that assumes slow/fast partition, and the limit for ρ → ∞ is the same for all methods,
including static condensation, since the ratios tends to 1 in this case. This means that a formal
equivalence in the prediction of the type of nonlinearity is obtained only in the limit case of ωs � ωp
for all the studied methods. Fig. 1 illustrates this convergence and shows that it is obtained rapidly,
indicating in particular that from the value ωs/ωp ' 4, all methods are almost converged in terms
of type of nonlinearity, thus quantifying more properly the value from which the slow/fast partition
is effective so that one can use the methods based on modal derivatives safely. In order to be a bit
more quantitative, one can remark that the relative difference between CMD and CNF is equal to 5%
for ρ = 3.25 and 1% for ρ = 4.6, so that the proposed bound ωs/ωp ' 4 has not to be understood
as a strict one. Moreover, the error on Γ will be smaller than the error on the correction factor C,
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being Γ composed of other terms that are not affected by the reduction method. The conclusion is
that ρ ∈ [3, 4] can be understood as a transition region, and converged results thanks to slow/fast
assumption can be faithfully obtained over 4, but below 3 caution has to be exercised.

0 1 2 3 4
−3

−1

1

3

5

7

9

ρ

C
CSC

QM SMD
QM MD

NF
SC

Fig. 1: Evolution of the ratios
CMD

CSC
,
CSMD

CSC
and

CNF

CSC
, defined in Eqs. (44), as a function of the

parameter ρ = ωs/ωp, from which the behaviour of the type of nonlinearity defined by the Γ
coefficients in Eqs. (42), can be directly deduced. Dashed grey line is the (constant) value predicted

by static condensation (all curves are normalized with respect to this value). Yellow curve:
CSMD

CSC
predicted by static modal derivatives; orange curve:

CMD

CSC
computed from modal derivatives, blue

curve:
CNF

CSC
given by normal form theory.

Fig. 1 shows also other interesting features on the behaviour of the type of nonlinearity. Besides
the convergence of all curves in the limit ρ→∞, important differences occur in the regions where
the methods have a singularity. The normal form approach displays a singular behaviour in the
vicinity of the 1:2 internal resonance when ωs ' 2ωp. This fact is logical and has already been
commented in numerous prior publications. Indeed, when such a resonance exists, then a strong
coupling arises between the two modes, so that reducing the dynamics to a single master mode has
no meaning anymore, and the minimal model should be composed at least by these two internally
resonant modes. The divergence in the behaviour of CNF/CSC reflects this fact, meaning that in this
zone the definition of the type of nonlinearity is of no more use since another dynamical regime takes
place. Previous publications also clearly underlines that the prediction given by ΓNF in Eq. (42c)
is correct [57], which has been confirmed with comparisons to direct simulations of the full-order
model, and this prediction of the type of nonlinearity has then been used for continuous structures
such as cables and shells [6, 38, 41, 55].

On the other hand, the prediction given by MD displays a divergence at the 1:1 resonance,
when the slave and master modes have close eigenfrequencies, ωs ' ωp. This divergence does not
rely on a firm theoretical result from dynamical systems. Indeed, even though in the case a 1:1
internal resonance exists so that the two modes need to be taken into account to study the coupled
dynamics, uncoupled solutions still exist and the backbone curves of these uncoupled solutions
can be computed, thus preserving the meaning of the Γ coefficients defined in Eqs. (42), see e.g.
[13, 31, 56]. Thus the divergence of CMD/CSC is interpreted as a failure of the method. Finally,
for small values of ρ, one can observe that the SMD method shows a singular behaviour, and will
predict unreasonably stiff behaviour. On the other hand, MD method gives a finite value, which
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is a bit different from the correct one given by normal form approach. All these results underline
that MD and SMD can be used safely only when the assumption ωs > 4ωp is fulfilled, otherwise
unreliable predictions may be given by these two methods.

2.4.2 Drift and mode shapes

A second comparison on the global outcomes of the three method can be provided by contrasting
the mode shape dependence on amplitude. Indeed, assuming a single mode motion with Rs = 0
for all s 6= p (only master mode p participates to the vibration), allows recovering the amplitude
dependence of the p-th mode shape. At small amplitude, the three methods recover the usual
eigenmode, but they then differ in the way they are taking into account the cross-couplings with
slave modes. Let us denote as uMD, uSMD and uNF the physical displacement following single-mode
motion for each of the three methods. Using the previous formula allows one to reconstruct

uMD(t) =φpRp(t)−
N∑
s=1
s6=p

gspp
ω2
s − ω2

p
R2
p(t)φs, (46)

uSMD(t) =φpRp(t)− φp
gppp
ω2
p
R2
p(t)−

N∑
s=1
s6=p

gspp
ω2
s
R2
p(t)φs, (47)

uNF(t) =φpRp(t)− φp
gppp
ω2
p

1

3

(
R2
p(t) +

2

ω2
p
Ṙ2
p(t)

)
−

N∑
s=1
s6=p

gspp
ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p
R2
p(t)− 2

ω2
s − 4ω2

p
Ṙ2
p(t)

)
φs.

(48)

Comparing the mode shapes given by MD and SMD, one can already underline that the summed
term given by MD reduces to that given by SMD if one considers the slow/fast assumption with
ωs � ωp. However a difference persists in the two methods since with SMD an added quadratic
term, depending on mode p only, is present (second term in (47)). This comes again from the
treatment of the self-quadratic gppp term in Eqs. (23), already underlined in Sect. 2.3.2. Indeed, the
gppp term for the MD method is not present in the reconstruction, but in the dependence of the
nonlinear frequency with amplitude instead, while the SMD method distributes the influence of
this gppp term on the spatial reconstruction, but not on the amplitude-frequency relationship. This
explains why the prediction of the hardening/softening behaviour appears to be more general for
the MD method than for the SMD. Comparing now with the normal form approach, one can see
that NF reduction gives rise to velocity-dependent terms in these formula, a feature that is not
present in the other method, which is a direct consequence of the fact that NF method takes into
account both independent displacement and velocity variables as it should be from a dynamical
system perspective.

Again, one can also observe that the summed term in (48) reduces (at first significant order) to
that provided by SMD when the slow/fast assumption is at hand, showing that the SMD method
provides the most simplified expressions.

From the general expressions given in (46)-(48), one can isolate the constant term (zero-th
harmonic) which is produced by the quadratic nonlinearity, in order to compare more closely one
term of this general expansion. This constant term is known as a drift since it corresponds to the
fact that due to quadratic nonlinearity, the oscillations are no more centred around zero, and it
has already been compared for different reduction methods, see e.g. [35, 57]. One can then simply
replace Rp(t) by the expression given by Eq. (40); while the values of R2

p(t) and Ṙ2
p(t) up to second
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order write:

R2
p(t) =

a20
2

(1 + cos[2ωNLt]) +O(a30) (49)

Ṙ2
p(t) =

a20
2
ω2
NL (1− cos[2ωNLt]) +O(a30) (50)

where the nonlinear frequency ωNL = ωp(1+a20Γ ) has been introduced. Isolating the constant term
leads to the following expressions for the drift d predicted by each reduction method:

dMD =
a20
2

−gpppω2
p
φp −

N∑
s=1
s6=p

gspp
ω2
s − ω2

p
φs

 , (51)

dSMD =
a20
2

−gpppω2
p
φp −

N∑
s=1
s6=p

gspp
ω2
s
φs

 , (52)

dNF =
a20
2

−gpppω2
p

(
1

3
+

2

3

ω2
NL

ω2
p

)
φp −

N∑
s=1
s6=p

gspp
ω2
s

(
1−

2(ω2
NL − ω2

p)

ω2
s − 4ω2

p

)
φs

 . (53)

One can observe that assuming slow/fast dynamics, the drift predicted by MD reduces to that
given by SMD. On the other hand, one can also see that in order to retrieve the drift predicted
by SMD from dNF, one has to assume that the deviation of the nonlinear frequency ωNL is small
as compared to the linear frequency so that ωNL ' ωp. Hence the prediction of the mode shape
dependence on amplitude given by SMD is reliable only in the case where the backbone curve does
not depart severely from the linear resonance, which is a strong assumption.

In order to point out a last difference on the theoretical expressions which will have important
consequences in the next sections, let us also follow the first harmonic of the solution in the
reconstruction procedure. Using Eq. (40) to define the harmonic content of the master variable,
and going back to the harmonic content of the modal coordinates Xi defined using either the QM
method, Eq. (33), or the normal form approach, Eqs. (11)-(12), one can easily follow the first
harmonic and retrieve its expression in the modal coordinates. Since p is the master mode and at
lowest order Xp = Rp, then the most important contribution is present in Xp as compared to other

Xk’s. Let us denote as [X
(H1)
p ]MD the first harmonic for the MD approach (and SMD and NF for

the other two methods), these expressions write:

[X(H1)
p ]MD =a0 cos(ωNLt)

(
1 +O(a40)

)
, (54a)

[X(H1)
p ]SMD =a0 cos(ωNLt)

(
1− a20

2

3

(
gppp
ω2
p

)2

+O(a40)

)
, (54b)

[X(H1)
p ]NF =a0 cos(ωNLt)

(
1 +O(a40)

)
. (54c)

They underline the importance of the treatment of the self-quadratic gppp term between MD and
SMD method. Indeed, whereas the amplitude a0 defined from (40) corresponds, for the MD and
NF cases, to the amplitude of the first harmonic in Xp, this is not the case for the QM derived from
SMD. In that case, the amplitude has an extra term implying the self-quadratic coupling term.
Importantly, this term appears as a difference so that the amplitude of the first harmonic can tend
to small values with increasing a0. Whereas all the comparisons led in this section shows that the
methods tend to be equivalent under a slow/fast assumption, this last expression highlights the
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fact that, for the SMD method, the amplitude of the master mode can be very different from the
amplitude of the initial coordinate. The consequence of this finding will be more clearly illustrated
in the next sections on examples, and will be key to understand why the SMD method can fail
even under the slow/fast assumption.

3 Comparison on two degrees of freedom systems

In this section, the comparisons drawn out on the theoretical expressions are illustrated on two
dofs systems, in order to highlight the main differences on simple cases. Two different models are
selected. The first one is derived from the equations of motion of a beam, and is selected in order to
mimic the nonlinearities present in a flat symmetric system, where these simplifying assumptions
help in letting the methods based on SMD work properly. The second example has important
quadratic couplings and better accounts from the problems arising with curved structures such as
arches and shells.

3.1 A two-dof model representing a flat symmetric structure

3.1.1 Presentation of the model

The particular nature of the nonlinear couplings in the case of flat symmetric structures such as
beams and plates, relies on the simplifying facts that flexural and in-plane modes are linearly
uncoupled, and their nonlinear couplings involve simple terms that can be easily traced from the
von Kármán models. These simplifications have been used in numerous recent papers in order to
explain why a number of methods for producing ROMs are able to predict very good results in
this case, see e.g. [12, 19, 60, 61]. In order to propose a simple two-dofs system mimicking these
particular relationships, the von Kármán model for slender beams is used and simplified to two
vibration modes, one flexural and one longitudinal, in order to produce the simplified system, from
which the coefficients can be related to meaningful quantities of the beam and in particular to its
slenderness.

A non-prestressed beam of length L is thus considered, with a uniform rectangular cross section
of area S = bh (h being the thickness and b the width) and second moment of area I = bh3/12 ,
made in an homogeneous and isotropic material of Young’s modulus E and density δ. Boundary
conditions are clamped at X = 0 and X = L.

The equations of motion for the transverse displacementW (X,T ), and the longitudinal displace-
ment U(X,T ) (X and T being the dimensional space and time variables), assuming von Kármán
theory, reads [12, 36]:

Ẅ +
EI

δS
W

′′′′
− E

δ

(
U

′
W

′
+

1

2
W

′ 3
)′

= 0, (55a)

Ü − E

δ
(U ′′ +W

′
W

′′
) = 0. (55b)

A particular feature of Eqs. (55) is that the longitudinal displacements are only quadratically cou-
pled with the transverse, as shown in (55b). On the other hand, the only nonlinear terms appearing
on the equations of motion for the flexural term W are: (i) a quadratic coupling involving a prod-
uct between one in-plane and one transverse component, and a cubic term with only transverse
components, see Eq. (55a).

Following [12], the equations of motion can be made nondimensional so that the resulting
system depends only on two physically meaningful parameters: the slenderness ratio σ = h/L,
and the wavelength β appearing naturally when solving the eigenvalue problem. Indeed, focusing
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on the linear problem for the transverse motion, the eigenvalue problem φ
′′′′

= ω2 δS
EIφ is solved

by using a combination of sine, cosine, hyperbolic sine and hyperbolic cosine functions of kx,
with k dimensional wavelength such that k4 = δS

EIω
2 and β = kL. Assuming clamped boundary

conditions the characteristic equation for β, from which the eigenfrequencies are deduced, reads :
cos(β) cosh(β) = 1. The reader is referred to Appendix F for the details of this classical derivation.

Introducing the thickness h as characteristic length, so that the nondimensional displacements
are as w = W/h and u = U/h, normalizing time using t = T (β2/L2

√
EI/δS) and the space

variable with the beam length, x = X/L; Eqs. (55) are rewritten as follows:

w,tt +
1

β4
w,xxxx −

12

β4σ
(u,xw,x),x −

6

β4

(
w,x

3
)
,x

= 0, (56a)

u,tt −
12

β4σ2
u,xx −

12

β4σ
w,xw,xx = 0. (56b)

In order to derive a minimal two dofs system from these equations, we select the first flexural
eigenmode and the most important longitudinal mode coupled to the first flexural. From previous
studies, see e.g. [12, 49, 61], it is known that the fourth in-plane mode is strongly coupled to the
first flexural. Let us denote as q1 the modal amplitude of the first transverse mode and p4 the
modal amplitude of the fourth in-plane mode (see Appendix F for the details). Using a standard
Galerkin projection (see e.g. [12]), Eqs. (56) can be rewritten as

q̈1 + q1 +
2G

σ
p4q1 +Dq31 = 0, (57a)

p̈4 +
(4π)212

β4σ2
p4 +

G

σ
q21 = 0, (57b)

where D and G are the nonlinear coupling coefficients arising from the Galerkin projection, and
involves integral on the length of products of derivatives of the mode shape functions, see [12] for
the general calculation and Appendix F for the detailed expression of these two coefficients. One
can note in particular that, due to the choice of the nondimensional time to arrive at Eqs. (56),
the eigenfrequency of the first flexural mode is 1, while the natural frequency of the fourth in-plane

mode reads ω2
2 =

(4π)212

β4σ2
. Due to the normalisation selected (involving ω1 = 1 for the fundamental

mode), the term in factor of p4 in Eq. (57a) can be easily interpreted as the square of the ratio
ρ = ω2/ω1, recovering the term introduced in Sect. 2.4.1. Thanks to its explicit expression, ρ can
now be directly related to the slenderness ratio:

ρ =
4π
√

12

β2

1

σ
≈ 1.95

1

σ
. (58)

So that the final two-dofs system that will be used for the investigations reads:

Ẍ1 +X1 + 2 Ḡ ρX1X2 +DX3
1 = 0, (59)

Ẍ2 + ρ2X2 + Ḡ ρX2
1 = 0, (60)

where Ḡ = Gβ2/(4π
√

12) has been introduced for the ease of reading. Also the notation for the
variables has been changed with X1 = q1 and X2 = p4 for the sake of simplicity. A particular
feature of this system is that the coupling between master and slave mode is purely quadratic.
Consequently the potential third-order tensors from the normal form approach are all vanishing. In
this case, the two nonlinear mappings are thus exactly at the same order due to the very simplified
shape of the starting equations.

This system is now investigated in order to see how the methods under study behaves when
reducing the system to its first (flexural) mode using different nonlinear mappings. The advantage
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of this formulation is that all coefficients are related to a physical problem so that some insights
can be given to the results obtained with this simplistic model with regard to continuous problems.
In particular, Sect. 2.4 underlined that all methods show a convergence on some properties when a
slow/fast assumption is assumed, which has been quantified precisely on the type of nonlinearity as
occurring for ρ > 4. Also, divergent behaviours has been underlined and explained for ρ ' 1 (case
of MD) and ρ ' 2 (case of normal form). Consequently the system will be studied for three different
values close to these points, namely ρ = 1.25, ρ = 2.5 and ρ = 10. Note that a beam is generally
considered as slender if σ ≤ 1/20. Thanks to Eq. (58), this means that ρ ≥ 40. The consequence
of this remark is that in all slender beams the slow/fast assumption is very well fulfilled, and our
study concerns specific cases occurring for very thick beams. Regarding the nonlinear coefficients
G and D, they only depend on the modes selected in the expansion. In our study, we will always
consider the first flexural and fourth axial, so that G and D are constants since they only depend
on the nondimensional shape functions of the selected modes. In the remainder of the study, we
have selected D = 2.67, Ḡ = 0.63.

3.1.2 Results

The comparisons between the different methods are drawn out on the geometry of the manifolds,
as well as on the dynamics onto these manifolds, described by the frequency-amplitude relationship
(backbone curve). All the solutions are computed thanks to a numerical continuation method using
the asymptotic-numerical method, implemented in the software Manlab, where the unknowns are
represented thanks to the harmonic balance method [11, 15, 29]. After a convergence study, the
number of harmonics retained in the computations is 7. In each case, the master mode is the
fundamental one, X1, and the slave mode X2. The dynamics onto the reduced subspaces is given
by Eq. (36) when using the MD approach, Eq. (37) if one considers SMD instead, and Eq. (38) with
the normal form method, with R1 the master coordinates. For the reduced models, continuation
is performed on the master coordinate in order to compute the frequency-amplitude relationships.
From these values, the nonlinear mappings, given either by Eqs. (8) for the normal form approach,
or by Eqs. (33) for the QM method, allows to retrieve the initial modal amplitude X1 and X2. From
all these data, one can plot either the geometry of the manifolds in phase space (X1, Y1, X2, Y2),
or the backbone curves.

(a) ρ = 1.25. (b) ρ = 2.5. (c) ρ = 10.

Fig. 2: Comparison of manifolds in phase space for the first example, and for three different values
of ρ = ω2/ω1. The exact NNM, represented in violet (full system solution: FS), is compared to the
reduction manifolds obtained by QM from MDs (dark orange), from SMDs (yellow), and normal
form (blue). (a) ρ = 1.25, (b) ρ = 2.5, (c) ρ = 10 with slow/fast assumption fulfilled.

Fig. 2 shows the geometry of the manifolds obtained for this first system, when one increases
the values of ρ so as to meet the slow/fast assumption. One can remark that the reduced subspaces
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produced by the quadratic manifold method don’t show a dependence on the velocity. Increasing
the values of ρ it is observed that the real manifold obtained from the full system loses this velocity
dependence so that this approximation is less and less wrong. On the other hand, the manifold
produced by normal form has two important advantages: it is an invariant manifold of the full
system by construction, and it has this velocity dependence, hence allowing for a correct prediction
of the reduction subspace, whatever the value of ρ. As a matter of fact the only limitation of
the normal form approach is that it relies on a Taylor expansion, so that for large amplitudes,
the solution departs from the exact manifold. But in any case the correct invariant subspace is
approximated. As already remarked, due to the fact that only quadratic couplings are present
between master and slave coordinates, the manifolds shown in Fig. 2 for the normal form are
obtained thanks to the second-order expansion, the third-order terms being all equal to zero.

Fig. 2a shows also that the quadratic manifold produced by MD encounters a problem near the
1:1 resonance, which is here underlined since ρ has been selected close to 1. Comparison with a full
order solution clearly shows that this is a failure of the method. On the other hand, Fig. 2c shows
that when the slow/fast assumption is verified, then all methods converge to the same reduced
subspace, in line with the theoretical results.

We now turn to the prediction given on the backbone curves. First of all, one can compare the
values of the Γ coefficients dictating the type of nonlinearity. Eqs. (42) have thus been rewritten
for the present two-dofs system and now read, as a function of the ratio ρ = ω2/ω1:

ΓMD =
3D

8
− Ḡ2(3ρ2 − 2)ρ2

4(ρ2 − 1)2
, (61a)

ΓSMD =
3D

8
− Ḡ2(3ρ2 + 4)

4ρ2
, (61b)

ΓNF =
3D

8
− Ḡ2(3ρ2 − 8)

4(ρ2 − 4)
. (61c)
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Fig. 3: Values of the coefficient Γ dictating the hardening/softening behaviour for the first two-dofs
system. Comparison of ΓMD, ΓSMD and ΓNF, given respectively by QM with MDs, with SMDs,
and normal form, Eqs. (61), and for varying ρ = ω2/ω1 ratio.

These values are represented in Fig. 3, which shows important similarities with Fig. 1. Again
the same divergent behaviours are observed, and the convergence of all methods for ρ > 4 is clearly
observed. To be more quantitative, the relative difference between ΓMD and ΓNF is 5% for ρ = 2.95
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and 1% for ρ = 3.93. On the other hand, the difference between ΓSMD and ΓNF is 5% for ρ = 3.06,
and 1% for ρ = 4.18, underlining clearly that ρ ∈ [3, 4] has to be understood as a transition zone.
For very small values of ρ, the quadratic manifold based on SMD will predict incorrect result with
a softening behaviour. Also, after its failure at ρ = 1, the MD method will also produce an incorrect
prediction with a softening behaviour.
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Fig. 4: First mode backbone curves as a function of modal amplitude X1 (first row), and X2

(second row), and for different values of ρ = ω2/ω1. Comparisons between the exact solution (FS:
full system, violet), that predicted by QM with MDs (dark orange), SMDs (yellow) and normal
form (NF, blue).

Fig. 4 shows the backbone curves obtained from the reduced-order dynamics and compared
to that obtained from the full system. The comparison is drawn on the main modal amplitude
X1, which shows the largest values (first row), but also on the slave coordinate X2 (second row).
The first case selected, just after the 1:1 resonance with ρ = 1.25, shows, as envisioned in Fig. 3,
that the QM produced from MD can be very wrong in this case and predict at first order a
softening behaviour. When ρ = 2.5, the three methods predicts a very similar behaviour and are
almost undistinguishable. One can note that for large amplitude, the full system solution is less
and less hardening. This is probably a consequence of the vicinity of the 2:1 internal resonance.
Since ω2 = 2.5ω1 and the behaviour is hardening, the nonlinear frequency tends to approach the
2:1 ratio at higher amplitudes, which could explain this particular behaviour of the full system
solution. Finally, for ρ = 10, the three methods give the same predictions which are fully aligned
with the full system.

The conclusion on this first example with simple nonlinearities are in the line of the theoretical
results, since all methods tends to perform well in the limit of the slow/fast assumption, again
estimated as a ratio of 4 between the eigenfrequencies of the master and slave mode. On the other
hand, when this assumption is not fulfilled, the quadratic manifold is not reliable and can produce
incorrect predictions, in contrary to the normal form approach, that gives a correct ROM up to
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the third-order, whatever the link between slave and master coordinates. These results explain
also why the application of modal derivatives on slender structures that are flat and symmetric
produce accurate results. Indeed, slenderness is fulfilled when ρ is larger than 40, and our numerical
experiments show that the slow/fast assumption can be considered as valid as soon as ρ > 4.

3.2 A two-dof model representative of a shell structure

3.2.1 Equations of motion

In this section, a system composed of a mass connected to two springs representing geometric
nonlinearity, is selected. This system has been used in a number of studies so that numerous results
are already present in the literature, the interested reader is referred to [57] for the derivation of
the equation of motions specifying the behaviour of the springs, and to [9, 42, 53, 57] for different
results already published on this example system. The equations of motion read:

Ẍ1 + ω2
1X1 +

ω2
1

2
(3X2

1 +X2
2 ) + ω2

2X1X2 +
ω2
1 + ω2

2

2
X1(X2

1 +X2
2 ) = 0,

Ẍ2 + ω2
2X2 +

ω2
2

2
(3X2

2 +X2
1 ) + ω2

1X1X2 +
ω2
1 + ω2

2

2
X2(X2

1 +X2
2 ) = 0.

(62)

As compared to the previous example, this system has all quadratic nonlinear terms present in
the equations of motion, and all the nonlinear coefficients are expressed directly from the two
eigenvalues ω1 and ω2, so that the problem has only two parameters. Note that this model is
not derived from a continuous shell structure like the previous example was derived from the von
Kármán beam equations, however it is known that curved structures display strong quadratic
couplings that are found in this system. Moreover, the results will show that this model is sufficient
to show important departures between the three tested methods, which are due to the way the
quadratic terms are processed.

3.2.2 Results

As for the preceding example, comparisons are drawn out on the geometry of the manifolds and the
backbone curves. Numerical continuation is used to solve out the different systems and compare
their outcomes. The eigenfrequency ratio ρ = ω2/ω1 is also used and the same values, namely 1.25,
2.5 and 10 are selected to observe the differences between the methods when tending to fulfil the
slow/fast assumption. In the computation, ω1 = 1 in all cases so that one simply have ω2 = ρ.

Fig. 5 shows the geometry of the manifolds in phase space, as compared to the exact invariant
manifold defining the first NNM of the system. The comment on the velocity dependence, already
raised in the previous example, still holds: while for small values of ρ the quadratic manifolds are not
able to catch the correct curvature in this direction, for large values of ρ the velocity dependence
vanishes. Note that in all the three figures, the manifold produced by the SMD method has a
smaller range in amplitude. This maximal range used for the representation has been fixed from
the frequency-amplitude relationships (see Fig. 7, when the nonlinear frequency has decreased of
ten percent and reaches the value 0.9 –a softening behaviour is at hand in the considered cases–),
so that all manifolds spans the same frequency range, but corresponds to different amplitudes. This
underlines in particular that even if the correct manifold is approximated, which is the case for
ρ = 10, the amplitude-frequency relationship may be not.

Since the only difference between second- and third-order normal form can be appreciated from
the nonlinear mapping and not the reduced dynamics, Fig. 5 illustrates the case. In the first line, the
manifold produced by the second-order normal form (in blue) is contrasted to the other methods,
while the third-order is shown in the second line (in green). One can observe that the effect of
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(a) Case with ρ = 1.25. (b) Case with ρ = 2.5. (c) Case with ρ = 10.

(d) Case with ρ = 1.25. (e) Case with ρ = 2.5. (f) Case with ρ = 10.

Fig. 5: Comparison of manifolds in phase space for the second two-dofs example, and for three
different values of ρ = ω2/ω1. The exact NNM, represented in violet (full system solution: FS),
is compared to the reduction manifolds obtained by QM from MDs (dark orange), from SMDs
(yellow), and normal form up to the second order (blue manifold in the first line, plots a-b-c) and
third order (green manifolds, second line in plots d-e-f) are given. (a-d) ρ = 1.25, (b-e) ρ = 2.5,
(c-f) ρ = 10 with slow/fast assumption fulfilled. In all cases ω1 = 1.
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Fig. 6: First mode invariant manifolds cut on the Y1 = 0 plane, evaluated with the quadratic
manifold method (QM) (either with MD in dark orange, and SMD in yellow) and normal form
(NF) approach, where the distinction between NF up to second order (blue line) and third-order
(dashed green line) is reported, and compared to the numerical solution obtained with the full
system (FS). In all cases ω1 = 1.

retaining the cubic term is especially important for the smallest values of ρ = 1.25, but then the
differences between second- and third-order are barely visible. Interestingly, this example also shows
that the quadratic manifolds produced by MD and SMD does not tend to the same geometries,
even under the assumption of slow/fast dynamics. This can be appreciated in Fig. 5, but is more
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clearly evidenced in Fig. 6 where a section of the manifolds in space (X1, X2) is shown, without
the amplitude limit given by the frequency, used in the 3d plot.

Unlike Fig. 5, Fig. 6 has been directly obtained from the manifolds expressions given by Eq. (33)
for the QM approach, and (11)-(12) for the normal form approach, by simply prescribing the
values of R1 and compute the resulting (X1, X2) values. More specifically, let us underline the
main difference between the MD and SMD method in this case. Using Eqs. (33) with (23), the
reconstruction of (X1, X2) from the QM method derived from MD reads:

X1 = R1, (63a)

X2 = − g211
ω2
2 − ω2

1

R2
1 = − ω2

2

2(ω2
2 − ω2

1)
R2

1. (63b)

On the other hand, using SMD in the QM leads to:

X1 = R1 −
g111
ω2
1

R2
1 = R1 −

3

2
R2

1, (64a)

X2 = −g
2
11

ω2
2

R2
1 = −1

2
R2

1. (64b)

One can first notice that for this specific example, the manifold produced with the SMD method
does not depend on the parameters (ω1, ω2). Consequently, the cut of this manifold in (X1, X2)
plane in Figs. 6(a-c) for different values of ρ, is always the same. The second comment is on the
slow/fast approximation: even though the value given for X2 tends to be the same under the
slow/fast assumption ω2 � ω1, this is not the case for X1. This is a major difference between the
two methods, so that a persistent error on the manifold is done when using SMD, whereas MD
tends to the solution provided by the NF and full system when ρ increases. The last interesting
comment is on the fact that the manifold produced by SMD shows a constant folding point. Indeed,
X1 from Eq. (64a) cannot exceed the value of 1/6 (achieved at R1 = 1/3) after which the quadratic
term in Eq. (64a) is larger than the linear one.

This is a direct consequence of the different treatment of the self-quadratic coupling term g111,
already underlined at the end of Sect. 2.4.2, leading to the fact that even under the slow/fast
assumption, the QM built on SMD can lead to erroneous results. This point is further commented
on the backbone curves comparison. First, Eqs. (42) are written for this specific system, leading to
the following predictions, as a function of the ratio ρ = ω2/ω1:

ΓMD = −16ρ4 − 27ρ2 + 12

16(ρ2 − 1)2
, (65)

ΓSMD = −1, (66)

ΓNF = −ρ
2 − 3

ρ2 − 4
. (67)

In line with the constant manifold found with SMD, the method also predicts a constant type
of nonlinearity, independent of the variations of the eigenfrequencies (ω1, ω2). Assuming slow/fast
partition, ρ → ∞, then all three methods tends to predict the same Γ coefficient dictating the
hardening/softening behaviour. However, as underlined at the end of Sect. 2.4.2, the amplitude of
the first harmonics for each method is different. Since in this case g111 6= 0, a direct consequence of
(54b) is that the backbone curves for the SMD method will show a saturation effect, the amplitude
X1 being unable to overcome a maximum value. This phenomenon is clearly visible in Fig. 7,
depicting the backbone curves obtained for the three selected values of ρ. The constant value of
ΓSMD has for direct consequence that the backbone predicted by the SMD quadratic manifold is
almost unchanged with respect to variations of ρ. When the slow/fast assumption is fulfilled for
ρ = 10, Fig. 7(c), the backbone predicted by SMD QM is in line with those predicted by the
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other methods at small amplitude level. However, at higher amplitude the SMD backbone moves
away from the others and saturates to a limit value for all cases, since the amplitude is differently
computed as shown in Eq. (54b). On the other hand, the backbone predicted by the MD method
tends to the correct values under the slow/fast approximation, while the normal form approach
always produces a correct prediction. More specifically, the prediction for the master X1 component
given by the normal form is the same if one considers a quadratic or cubic normal form expansion,
see Eq. (11). On the other hand, the slave component X2 is affected by the order and this is
illustrated in Fig. 7(d-e-f), where one can observe that, as for the manifold approximation in phase
space, the third-order terms bring about a better estimate.
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Fig. 7: First mode backbone curves for the second two-dofs example with quadratic nonlinearity,
as a function of modal amplitude X1 (first row), and X2 (second row), and for different values of
ρ = ω2/ω1. Comparisons between the exact solution (FS: full system, violet), that predicted by
QM with MDs (dark orange), SMDs (yellow) and normal form (NF, blue, NF third order, dashed
green).

4 Comparison on continuous structures

4.1 Presentation of the test cases

This section aims at drawing a comparison between the different methods when applied on a con-
tinuous structure discretised with three dimensional finite elements. In order to investigate how the
results obtained in the previous section are confirmed in the general case, three beams are consid-
ered and shown in Fig. 8. They have been selected in order to fulfil different assumptions that have
been highlighted on the two-dofs examples in order to achieve correct predictions from the ROMs.
The first case, Fig. 8a, is a slender flat symmetric beam. The two other examples, Fig. 8b and
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Fig. 8c are arches, the first one being shallow while the third one is non-shallow. Adding curvature
has two important effects. First, flexural and in-plane modes are no longer linearly uncoupled. Sec-
ond, the curvature renders the restoring force asymmetric and an important quadratic nonlinearity
appears between the bending modes. This example illustrates the fact that the slow/fast assump-
tion is not enough to guarantee that the method based on static modal derivatives will converge.
The curvature will be used in order to play on the slow/fast assumption as well as on the values of
the quadratic coupling terms.

(a) Flat beam. (b) Shallow arch. (c) Non-shallow arch.

Fig. 8: Mesh and deformation along the mode under study for three different test cases: (a) a flat
beam, (b) a shallow arch and (c) a non-shallow arch. For each test case the mode under study
corresponds to the first flexural mode in the plane y− z where the curvature is imposed if present.

In all three cases, the boundary conditions are clamped, the material parameters are selected as
homogeneous linear elastic with Young modulus E = 124 GPa, Poisson ratio ν = 0.3 and density
δ = 4400 kgm/s2. In each cases, an equal thickness h and width b is selected: h = b = 5 cm. For
the flat beam, the length is L = 0.7 m. The arches have been built from a portion of a circle. For
the shallow arch, the radius of curvature is set as 250 cm, for an angular span of 2π/15, resulting
in a curvilinear length of 20π/3 ' 1.05 m. The height of the static deflection at center is 5.5 cm,
i.e. almost equal to the thickness. For the non-shallow arch, the radius of curvature is set as 50
cm, for an angular span of 2π/3, resulting in the same curvilinear length of 20π/3 ' 1.05 m,
but with a static deflection of 25 cm, i.e. 5 times the thickness. All beams are discretised with
three-dimensional hexahedral 20 nodes finite elements. The flat beam uses 60 elements (4 in the
section and 15 in the length), resulting in a total number of 1287 dofs. The two arches have 96
solid elements (4 in the section and 24 in the length) and 2097 dofs. A relative coarse mesh has
been selected in order to have a limited number of degrees of freedom so that all the methods can
be handled easily. Indeed, the key point here is not to look for converged and refined results on a
large frequency range, but to compare the different reduction methods on the same test examples.
Moreover, as already shown in [61], using 3D elements leads to couplings with very high-frequency
thickness modes, so that truncations and convergence are difficult to observe in general.

In the three cases, the nonlinear behaviour of the first flexural mode in the curvature plane is
investigated. The mode shape is shown in Fig. 8. In the case of the flat beam, it corresponds to
the first mode and its eigenfrequency is 545.60 Hz. As already underlined in Sect. 3.1, the most
important coupling arises with the fourth in-plane mode, whose eigenfrequency is 15.19 kHz, so
that the ratio ρ between the most important slave mode and the master mode is in this case equal
to 27.83. Consequently the slow/fast assumption and our criterion ρ ≥ 4 is perfectly fulfilled. This
example can be seen as an extension of the first two-dofs example, with the distinctive feature that
now many more modes are coupled to the first bending, all of them being of higher frequencies than
the fourth axial. Also, the nonlinear coupling terms have in this case a simplified form, following the
general discussion given in Sect. 3.1. In the case of the arches, for the shallow arch the first flexural
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mode corresponds to the second mode of the structure and its eigenfrequency is equal to 372.28 Hz
and, for the non-shallow arch, the first flexural mode corresponds to the fourth mode of the structure
and its eigenfrequency is equal to 1003.99 Hz. Contrary to the case of flat symmetric structures, the
curvature renders the restoring force asymmetric and an important quadratic nonlinearity appears
between the bending modes. Investigating the important couplings between the linear modes of
the curved beams shows that the first bending mode is strongly coupled with the third one. While
the ratio between the first and third bending modes is 5.4 in the case of the flat beam, it decreases
when the curvature increases. Consequently, for the case of the shallow arch, this ratio is equal
to 3.44 (eigenfrequency of third bending equal to 1283.33 Hz), and 1.66 for the non-shallow arch
(eigenfrequency of third bending equal to 1665.11 Hz). These two examples have thus been built
as an extension of the second two-dofs example. For the shallow arch, the slow/fast assumption
is almost fulfilled (3.44 is slightly smaller than the criterion we proposed with a limit value at 4),
but now important quadratic couplings are present and in particular the self-quadratic term gppp.
Finally, the case of the non-shallow arch allows testing a case where the slow/fast assumption does
not hold, and important self-quadratic terms are present.

4.2 Amplitude-frequency relationships

The methods are compared on their ability to predict the backbone curves. A reference solution is
computed thanks to a numerical continuation on all the degrees of freedom of the structure, using a
code with parallel implementation of harmonic balance method and pseudo arc-length continuation
algorithm [8]. In this computation, a small amount of mass proportional damping is added under
the form ζωpM so that a frequency-response function (FRF) is computed, in the vicinity of the
eigenfrequency of the master mode (first flexural). The values of ζ are 0.18%, 0.27%, and 0.1% for
the flat beam, shallow, and non-shallow arches, respectively. The forcing is located in the central
node of each mesh in the y-direction in order to excite the first flexural mode. The force amplitude
is chosen in order to have a displacement amplitude at resonance comparable to the thickness so
that its values are 5 kN, 1.5 kN, and 2.5 kN for the flat beam, shallow, and non-shallow arches,
respectively. It must be noticed that in the case of curved structures the value of amplitude of
vibration equal to the thickness has not been achieved and the reported FRFs excite a maximum
amplitude of approximately half of it. In fact, due to the long computational time that the full
model FRF requires, approximately 1 day for each FRF, and due to its high chances to undergo
internal resonance with higher modes, these values have been selected in order to stay in the limit
of one-mode approximation without exciting more complex dynamics. However, with this level
of amplitudes, the nonlinearity is sufficiently important so that its effect is clearly visible on the
backbone curves.

The ROMS are built using QM or NNM approach, and their backbone curves are computed
in the same manner than in the previous section, assuming a single master mode. For the normal
form approach, the third order coefficients have not been included in the computation. Indeed, the
third-order tensors require the computation of huge number of coupling coefficients from the modal
basis expressions, which would need for an important number of pre-computation steps. This choice
has also been guided by the fact that comparing the two methods at the same order of accuracy
is more meaningful. The FRF of the ROMS have not been computed since taking into account the
damping of the slave modes is important to achieve good results. If the normal form theory has
been developed for that purpose, see e.g. [53] where the effect of a small amount of damping of the
slave modes on the FRF of the master mode is reported, the inclusion of the damping for the modal
derivatives has not been derived theoretically yet. Hence it appears that a better comparison is
given on the backbone curves only, and the FRF of the full model with a small amount of damping
is used to underline if the nonlinearity is correctly addressed by the methods. Fig. 9 shows the
numerical results obtained for the three cases. The case of the flat beam is the one having the most
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(a) Flat beam. (b) Shallow arch. (c) Non-shallow arch.

Fig. 9: Comparison of backbone curves obtained from QM with MDs (dark orange), SMDs (yellow)
and normal form approach (blue), for the three tested structures: (a) flat beam, (b) shallow arch, (c)
non-shallow arch. Nondimensional amplitude of flexural displacement (along y, nondimensionalised
with respect to the thickness) of the central node of each beam as a function of ω/ω1 where ω1

refers to the eigenfrequency of the first flexural mode studied shown in Fig. 8. The backbone curves
are contrasted to the FRF obtained on the full system (FS, violet) with numerical continuation
and a small amount of damping, see text. The vertical gray dashed lines represent the frequency
at which the saddle-node bifurcation of the forced response occurs.

assumptions fulfilled (slow/fast separation and no self-quadratic terms). Consequently, the three
methods match very well and are all able to retrieve correctly the nonlinearity of the full model
with a very good accuracy. In the case of the shallow arch, the slow/fast assumption is almost
fulfilled (since being a little bit below the proposed criterion ρ ≥ 4), and important self-quadratic
coupling appears due to the curvature. The main consequence is that the QM built from SMD
is not able anymore to predict the correct type of nonlinearity. As already found for the second
two-dofs example, it overpredicts the softening behaviour and make appear again the saturation
phenomenon in the amplitude of the backbone. On the other hand, both QM based on MD and
normal form methods give a correct prediction. For the non-shallow arch, the slow/fast assumption
does not hold anymore. The consequence is that the MD method does not predict the correct
nonlinearity. This example again illustrates clearly that: (i) as soon as important self-quadratic
terms appear (case of arches and shells), then the SMD method is not reliable anymore, whatever
the slow/fast assumption is fulfilled or not, (ii) the MD can still give correct result but only if the
criterion ρ ≥ 4 for the slow/fast assumption is fulfilled. As soon as ρ gets under this value, then
the solution starts departing from the full-order model, and becomes unreliable when ρ ≤ 2.

4.3 Nonlinear modeshapes

The different approximations made by the three methods are finally contrasted on the mode shape
dependence on amplitude, illustrating the Equations given in Sect. 2.4.2. Recalling Eqs. (46) –
(48), it is possible to see that, for each method, the contributions to the nonlinear modeshape can
be divided into (i) a deformation along the master p mode and (ii) a deformation that contains
all the coupled modes but the p-th. In order to make the figures more illustrative, and since the
amplitude of the deformation along p-th mode generally gives the dominant contribution, it is
decided to compare the outcomes of the methods only on the (ii) part of the solution. Also, since
the normal form approach constructs the solution both with displacements and velocities, to draw
a better comparison the focus will be on the time step where the reduced variable Rp(t) reaches
its maximum and minimum values (i.e. a turning point such that Ṙp(t) = 0).
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Under these assumptions, let us define as u⊥ the component of the nonlinear mode shape u
that is orthogonal to φp. From Eqs. (46) – (48), it reads, for the three different methods:

u⊥MD(t∗) =−R2
p(t∗)

N∑
s=1
s6=p

gspp
ω2
s − ω2

p
φs, (68a)

u⊥SMD(t∗) =−R2
p(t∗)

N∑
s=1
s 6=p

gspp
ω2
s
φs, (68b)

u⊥NF(t∗) =−R2
p(t∗)

N∑
s=1
s6=p

gspp
ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p

)
φs, (68c)

where t∗ is the time instant where Rp is either maximum or minimum.
In order to compare to the full-order solution, the deformation must be first filtered out from

its component along the p-th mode. One can thus define u⊥FS for the full system as:

u⊥FS(t) = uFS(t)−
φT
p uFS(t)

φT
pφp

φp. (69)

Finally, given the quadratic nature of the deformation computed from the reduction methods based
on second-order expansions (and clearly underlined by the dependence in R2

p in Eqs. (68)), the third-

order component should be also filtered out from u⊥FS for a closer comparison. In order to cancel
the odd harmonics of the full-order solution, we thus define u⊥,symFS as the symmetric part of u⊥FS

with respect to amplitude:

u⊥,symFS =
1

2
(u⊥FS(tmax) + u⊥FS(tmin)). (70)

This value will be used as reference and compared to the prediction of the ROMS given by Eq. (68).

(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 10: Comparisons of the additional terms perturbing the linear mode shape solutions (deforma-
tion orthogonal to φp) for the case of the flat beam, computed at the saddle-node bifurcation point
marked in Fig. 9a, fixing the frequency at which they have been computed. (a) full model solution,

representation of the axial component of displacement u⊥,symFS .ez of the centre line nodes, (b) nor-
mal form: u⊥NF(t∗).ez, (c) Modal derivative : u⊥MD(t∗).ez, (d) Static modal derivative u⊥SMD(t∗).ez.

Fig. 10 shows the comparison between the u⊥ defined by Eq. (70) for the full-order system, and
those produced by the reduced-order models, Eqs. (68), for the case of the flat beam. Importantly
enough, since the nonlinear couplings are with in-plane modes, the contributions of the u⊥ along the
axial z direction is shown in Fig. 8, since the most important contributions are along this direction.
As it could be awaited from the previous analyses, Fig. 10 clearly shows that the three ROMs
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are all able to recover the correct spatial dependence of the contributions of coupled modes to the
fundamental flexural NNM. Also, this contribution is mostly conveyed by the fourth in-plane mode,
being the most importantly coupled to the fundamental flexural mode. Note that the amplitude
used to construct this figure is the one corresponding to the upper saddle-node bifurcation point
in the FRF of the full-order system, as shown by the gray vertical line in Fig. 9a. At that point,
the backbones and the FRF meet so that it can be used safely for a correct comparison. It also
corresponds to an amplitude of one time the thickness for the mode shape.

(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 11: Comparisons of the additional terms perturbing the linear mode shape solutions (deforma-
tion orthogonal to φp) for the case of the shallow arch, computed at the saddle-node bifurcation
point marked in Fig. 9b, fixing the frequency at which they have been computed. (a) full model

solution, representation of the displacement u⊥,symFS of the centre line in the y − z plane; vertical

axis u⊥,symFS .ey (transverse direction) and horizontal axis u⊥,symFS .ez (axial direction), (b) normal
form: u⊥NF(t∗), (c) Modal derivative : u⊥MD(t∗), (d) Static modal derivative u⊥SMD(t∗). Gray lines:
position of the centre line of the beam at rest. Solution amplified of factor 15.

In the case of the shallow arch, some differences are appearing due to the self-quadratic coupling
term, creating a deficiency in the prediction given by the SMD. This is underlined in the nonlin-
ear mode shape dependence in Fig. 11, where in this case, since the most important coupling is
between bending modes, the contributions of the different u⊥ are represented along the transverse
y direction. The amplitude used for the figure is illustrated in Fig. 9b with a gray line, and still
corresponds to the upper saddle-node bifurcation point in the FRF of the full-order system. One
can observe in Fig. 11 that, in the line of the results found on the nonlinear amplitude-frequency
relationships, normal form and MD methods are able to retrieve the correct spatial dependence for
the contribution of the slave modes. On the other hand, the treatment of the self-quadratic term
by the SMD approach prevents the correct prediction of this spatial dependence.

The case of the non-shallow arch is shown in Fig. 12, for an amplitude of motion marked by the
gray line in Fig. 9c. Following the observation on the frequency, one can notice that only the normal
form approach is able to retrieve the correct spatial dependence. On the other hand, SMD method
fails because of the incorrect treatment of the self-quadratic term, while QM constructed from MD
does not produce the correct result since the slow/fast assumption is not fulfilled anymore.

5 Conclusion

In this contribution, a detailed comparison of different methods proposed in the recent years in
order to define nonlinear mappings with the aim of providing accurate reduced-order models for
geometrically nonlinear structures, has been made. The quadratic manifold proposed from the
definitions of modal derivatives has thus been contrasted to the normal form theory, related to the
definition of nonlinear normal modes as invariant manifolds in phase space. While the quadratic
manifold only contains the displacements as unknowns, the normal form approach takes into account
displacements and velocities, thus giving a more complete link to the geometry in phase space.
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(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 12: Comparisons of the additional terms perturbing the linear mode shape solutions (deforma-
tion orthogonal to φp) for the case of the non-shallow arch, computed at the saddle-node bifurcation
point marked in Fig. 9c, fixing the frequency at which they have been computed. (a) full model

solution, representation of the displacement u⊥,symFS of the centre line in the y − z plane; vertical

axis u⊥,symFS .ey (transverse direction) and horizontal axis u⊥,symFS .ez (axial direction), (b) normal
form: u⊥NF(t∗), (c) Modal derivative : u⊥MD(t∗), (d) Static modal derivative u⊥SMD(t∗). Gray lines:
position of the centre line of the beam at rest. Solution amplified of factor 50.

Secondly, the quadratic manifold is defined up to the second-order while current expressions of
normal form are up to order three and can be continued to higher orders easily. Thirdly, normal
form theory relies of firm mathematical theorems, ensuring a clean conceptual framework, while
modal derivatives appear as an ad-hoc, yet efficient, method used in the vibration community.

The main outcomes of this article are the following. First, the theoretical derivations of the
quadratic manifold using either MD or SMD, has been fully made explicit. These calculations have
highlighted the fact that both methods do not handle the quadratic terms in the same manner, and
especially the self-quadratic coupling terms arising between the master coordinates. This difference
has been found to have important consequences on the global predictions of the methods. Secondly,
detailed comparisons between the three methods have been fully analysed on the mathematical ex-
pressions: nonlinear change of coordinates, reduced-order dynamics, and main predictive outcomes
of the methods such as type of nonlinearity, drift and mode shape dependence on amplitude. To
illustrate the results, two two-dofs systems have been used as starting example, and the results
found from these have been extended to a continuous structure: a clamped-clamped beam with
varying curvature.

A main result of our investigations is that the results predicted by the QM approach with
MDs converge to those provided by the normal form approach, only in the case where a slow/fast
assumption between master and slave coordinates, holds. This result is fully in the line of general
theorems provided in [17, 60], and thus further illustrates the general findings given in these papers
where a more general framework including damping is given, together with an exact result that
do not rely on asymptotic expansion. A first quantification of the limit value for the slow/fast
assumption to hold has been provided, based on the predicted values for the type of nonlinearity,
showing that a small gap is needed: ωs > 4ωp, thus justifying a posteriori the good results found by
previously published papers using this method. However, the different treatment of the quadratic
nonlinearity (and more specifically the self-quadratic coupling term) between MD and SMD, leads
to the fact that even with a slow/fast assumption, the QM built from SMD can lead to erroneous
predictions, as soon as an important self-quadratic coupling term is present. This result has im-
portant implications when one wants to build ROMs for slender curved structures such as arches
and shells. This specific feature has been clearly highlighted on the two-dofs system, and found in
the more general case of a non shallow arch. On the other hand, the robustness of the normal form
approach has been underlined in each case.

These results argue for the use of the tools from dynamical system theory to derive safe and
robust ROMS: invariant manifold, normal form theory and spectral submanifold. A limitation
could be the use of these methods in the context of FE models where the need of computing,
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possibly in a non-intrusive manner, the nonlinear coefficients might be a difficult task, see e.g. all
the literature related to the STEP method (Stiffness Evaluation Procedure, see e.g [12, 33, 34]).
However recent developments show that the coefficients can be directly computed, for the case of
spectral submanifold [60], or for the case of normal form in a non-intrusive manner [62], so that
this limitation does not hold anymore.

A Definition of dot products for tensors

The products between quadratic nonlinear tensors G and g and the displacement vectors u and X, in physical
and modal basis respectively, are defined as follows:

Guu =

N∑
i=1

N∑
j=1

Gijujui, (71a)

gXX =

N∑
i=1

N∑
j=1

gijXjXi, (71b)

where Gij and gij are the N-dimensional vector of coefficients Gpij and gpij , for p = 1..N . Note that, in the course

of this paper, the summation are kept complete so that all the terms in Eqs. (71a)-(71b) are present. This is
a choice of representation, the other choice (often realized in literature) consisting in symmetrizing the tensor,
given the fact that products ujui can commute. In this case, a quadratic tensor is made symmetric such that for
example Gij = 0 when j < i, so that the summations can be written for j ≥ i only. Here we consider full tensors
of coefficients without using their potential symmetry.

Similarly, the cubic nonlinear tensors H and h, with current terms Hp
ijk and hpijk, contracts to an N -

dimensional vector when multiplied with three displacements vectors. The cubic terms thus explicitly writes,
in indicial components, with u and X the two associated displacement vectors:

Huuu =

N∑
i=1

N∑
j=1

N∑
k=1

Hijkukujui, (72a)

hXXX =

N∑
i=1

N∑
j=1

N∑
k=1

hijkXkXjXi, (72b)

where again Hijk is the N -dimensional vector with entries Hp
ijk, for p = 1...N . The innermost product defined

above coincides with a matrix product performed on the last index of the tensors; a more extensive definition of
this notation is provided:

(Gu)i =

N∑
j=1

Gijuj (73a)

(Hu)ij =
N∑
k=1

Hijkuk (73b)

(Huu)i =
N∑
j=1

N∑
k=1

Hijkujuk (73c)

Same definition holds for the equivalent products in modal basis.

B Normal form coefficients

In this appendix, the nonlinear coefficients of the mapping given by the normal form theory are given in detail. For
the sake of brevity, only the coefficients appearing in the simplified case where a single master mode p is selected in
the reduced model, are recalled. The interested reader can refer to [53, 57] for most complete expressions covering
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all the cases, including also damping. We begin with the second-order coefficients, aspp, bspp and γspp coefficients,
with p the master mode and s a slave mode :

aspp = gspp
2ω2

p − ω2
s

−ω2
s(4ω2

p − ω2
s)
, (74a)

bspp = gspp
2

−ω2
s(4ω2

p − ω2
s)
, (74b)

γspp = gspp
2

4ω2
p − ω2

s

. (74c)

The third order nonlinear mapping coefficients are equal to zero in the specific case when s = p. Their full
expressions for s 6= p read:

rsppp =
(Asppp + hsppp)(7ω2

p − ω2
s) + 2Bsppp(ω4

p)

(ω2
s − ω2

p)(ω2
s − 9ω2

p)
, (75a)

usppp =
6(Asppp + hsppp) +Bsppp(3ω2

p − ω2
s)

(ω2
s − ω2

p)(ω2
s − 9ω2

p)
, (75b)

µsppp =
6(Asppp + hsppp) +Bsppp(3ω2

p − ω2
s)

(ω2
s − ω2

p)(ω2
s − 9ω2

p)
, (75c)

νsppp =
3(Asppp + hsppp)(3ω2

p − ω2
s) + 2Bsppp(ω2

pω
2
s)

(ω2
s − ω2

p)(ω2
s − 9ω2

p)
, (75d)

(75e)

where:

Asppp =

N∑
l=1

2gspla
l
pp (76a)

Bsppp =

N∑
l=1

2gsplb
l
pp (76b)

with gpl, the vector of quadratic coupling between the master mode p and a generic mode l of the structure.

C Linear change of coordinates from physical to modal basis

The nonlinear force vector in physical basis reads:

F(u) = Ku + Guu + Huuu. (77)

The nonlinear force vector in modal basis is in the form:

f(X) = Ω2X + gXX + hXXX, (78)

where the assumption of mass normalised eigenvectors is used to retrieve the squared eigenfrequencies on the
diagonal of the matrix Ω2.

The transformation from physical to modal basis uses the full linear eigenvector matrix Φ and reads:

f(X) = ΦTF(ΦX). (79)

Expanding the right-hand side (RHS) term, it reads:

f(X) = ΦTK ΦX + ΦTG ΦX ΦX + ΦTH ΦX ΦX ΦX. (80)

The relation between linear stiffness matrix in physical and modal coordinates can easily be found by comparing
the linear terms in Eq. (78) and Eq. (80), allowing one to retrieve the classical formula:

Ω2 = ΦTKΦ. (81)
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To relate the quadratic and cubic tensors in physical basis to those in modal basis, it is necessary to expand the
term ΦX into the sum of all eigenvectors multiplied by their modal amplitudes:

ΦX =
N∑
i=1

φiXi, (82)

and substitute this sum into Eq. (80). By doing so one obtains:

ΦTG ΦX ΦX = ΦTG
N∑
i=1

φiXi

N∑
j=1

φjXj =

N∑
i=1

N∑
j=1

ΦTGφiφj XiXj , (83a)

ΦTH ΦX ΦX ΦX == ΦTH
N∑
i=1

φiXi

N∑
j=1

φjXj

N∑
k=1

φkXk =

N∑
i=1

N∑
j=1

N∑
k=1

ΦTHφiφjφk XiXjXk. (83b)

where the last simplification comes from the rearrangement of summations made in order to isolate the modal
amplitudes. Finally, comparing the RHS of Eqs. (83) with the definition of products given in Eq. (71b) and
Eq. (72b) of Appendix A leads to:

gij = ΦTGφiφj , (84a)

hijk = ΦTHφiφjφk. (84b)

These last two equations allows expressing the quadratic and cubic coefficients of the modal basis from those
computed in the physical basis. Please note that the obtained formula directly depend on the choice of the
representation used for the coefficients. Since we have selected to keep full-order tensors of coefficients without
exploiting the symmetries arising from the fact that the usual product is commutative, the obtained formula are
as in (84a)-(84b). If one chooses to use symmetric tensors for the coefficients, then, for the quadratic term, the
relationship would have read gij = 2ΦTGφiφj and gji = 0.

D First and second order derivatives of the nonlinear force vector

Given the definition of the nonlinear force tensor in physical basis, one can show that:

(
∂F

∂u

)r
s

=
∂F r

∂us
= Krs +

N∑
j=1

(Grsj +Grjs)uj +

N∑
j=1

N∑
k=1

(Hr
sjk +Hr

jsk +Hr
jks)ujuk

= Krs +

N∑
j=1

2 Grsjuj +

N∑
j=1

N∑
k=1

3 Hr
sjkujuk

where the last simplification is derived from the symmetry of the quadratic and cubic tensors [34]. In compact
form we can write:

∂F(u)

∂u
= K + 2Gu + 3Huu. (85)

ans similarly for the second order derivatives:

(
∂2F

∂u∂u

)r
sp

=
∂F r

∂us∂up
=(Grsp +Grps) +

N∑
k=1

(Hr
spk +Hr

psk +Hr
pks +Hr

skp +Hr
ksp +Hr

kps)uk

= 2 Grsp +

N∑
j=1

N∑
k=1

6 Hr
spkuk

and in compact form:

∂2F(u)

∂u∂u
= 2G + 6Hu (86)
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E Derivation of modal derivatives

In this appendix, we derive the Taylor expansion of the nonlinear eigenproblem defined by Eq. (17), and recalled
here for the sake of completeness: (

∂F(u)

∂u
− ω̃2

i (u)M

)
φ̃i(u) = 0, (87)

Assuming small motions in the vicinity of the position at rest, this nonlinear eigenproblem can be expanded up
to second order as:(

∂F(u)

∂u
− ω̃2

i (u)M

)
φ̃i(u) =((

∂F(u)

∂u
− ω̃2

i (u)M

)
φ̃i(u)

) ∣∣∣∣
u=0

+

n∑
j=1

(
∂

∂Rj

((
∂F(u)

∂u
− ω̃2

i (u)M

)
φ̃i(u)

)) ∣∣∣∣
u=0

Rj +O(|R|2),

(88)

where the second term has been expanded along the coordinates Rj used for the reduced basis, and the expansion
has been written up to O(|R|2) terms, or equivalently O(|u|2) terms. As the constant term of the expansion, one
retrieves the linear eigensystem of Eq. (5), since the Jacobian of the nonlinear force vector at u(R = 0) coincides
with the linear stiffness matrix K:

∂F(u)

∂u

∣∣∣∣
u=0

= K. (89)

Consequently the first term of the expansion allows recovering the i-th eigenvalue ωi as well as the i-th eigenvector
φi.

To verify Eq. (17) up to first order, not only the constant term, but also all the linear terms in Rj , ∀j = 1, . . . , N
must be zero. By expanding the j-th term, one obtains the condition:((

∂

∂Rj

(
∂F(u)

∂u

)) ∣∣∣∣
0

−
∂ω̃2

i (R)

∂Rj

∣∣∣∣
0

M

)
φi +

(
K− ω2

iM
) ∂φ̃i(R)

∂Rj

∣∣∣∣
0

= 0. (90)

In this equation, the sought modal derivatives is the vector
∂φ̃i(R)
∂Rj

∣∣∣∣
0

and the other unknown of the system is the

value
∂ω̃2

i (R)

∂Rj

∣∣∣∣
0

. Moreover, by noticing that:

(
∂

∂Rj

(
∂F(u)

∂u

)) ∣∣∣∣
0

=

(
∂

∂u

(
∂F(u)

∂u

)
∂u

∂Rj

) ∣∣∣∣
0

=

(
∂2F(u)

∂u ∂u

) ∣∣∣∣
0

φj , (91)

one can write Eq. (90) as:(
∂2F(u)

∂u ∂u

) ∣∣∣∣
0

φjφi −
∂ω̃2

i (R)

∂Rj

∣∣∣∣
0

Mφi +
(
K− ω2

iM
) ∂φ̃i(R)

∂Rj

∣∣∣∣
0

= 0. (92)

The first term can be further simplified by recalling the definition of the nonlinear force vector and the value of
the second derivatives of it given in Eq. (86), leading to:

2Gφjφi −
∂ω̃2

i (R)

∂Rj

∣∣∣∣
0

Mφi +
(
K− ω2

iM
) ∂φ̃i(R)

∂Rj

∣∣∣∣
0

= 0. (93)

This is now an undetermined system of equation in the unknowns
∂φ̃i(R)
∂Rj

∣∣∣∣
0

and
∂ω̃2

i (R)

∂Rj

∣∣∣∣
0

. To solve this system,

the additional equation of mass normalisation must be introduced.
Following a similar approach, i.e. expanding in Taylor series the nonlinear mass normalisation equation one

obtains:

φ̃i(R)TMφ̃i(R)− 1 =
(
φ̃i(R)TMφ̃i(R)

) ∣∣∣∣
0

− 1 +

n∑
i=1

(
∂

∂Rj

(
φ̃i(R)TMφ̃i(R)

)) ∣∣∣∣
0

Rj +O(|R|2). (94)

The constant term is verified by the linear eigenvectors φi whereas the linear terms must be equal to zero. The
linear term in Rj becomes the required complement to Eq. (93). By expanding the derivatives in Rj , it reads:

∂φ̃i(R)

∂Rj

∣∣∣∣T
0

Mφi + φTi M
∂φ̃i(R)

∂Rj

∣∣∣∣
0

= 0 (95)
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In the usual case of symmetric mass matrix, the LHS only reduces to one of its terms as they are equal. In light
of this, the system that permits to evaluate the modal derivatives reads:K− ω2

iM −Mφi

−φTi M 0



∂φ̃i(R)
∂Rj

|0

∂ω̃2
i (R)

∂Rj
|0

 =


2Gφjφi

0

 (96)

F Derivation of the two-dofs system from von Kármán beam equations

In this appendix, we give the detailed calculation for obtaining all the coefficients of the two-dof model used
in section 3.1, from the von Kármán beam model. As described in Sect. 3.1.1, we only refer to the coupling
between the first flexural mode and the fourth axial mode of a clamped clamped beam. The eigenfunctions
and eigenvalues of these two modes can be found solving the linear eigenproblem for respectively flexural and
longitudinal vibrations.

Recalling Eqs. (55) and focusing only on their linear part, reads:

Ẅ (X,T ) +
EI

δS
W

′′′′
(X,T ) = 0, (97a)

Ü(X,T )−
E

δ
U ′′(X,T ) = 0. (97b)

Eq. (97a), can be solved assuming:
W (X,T ) = Q(T )Φ(X), (98)

where Φ(X) has to respect the clamped clamped boundary conditions, namely Φ(0) = Φ(L) = Φ
′
(0) = Φ

′
(L) = 0.

The first three conditions are respected by the eigenfunction Φ(X) of arbitrary amplitude A:

Φ(X) = A(cos kX − cosh kX)(sin kL− sinh kL)−A(sin kX − sinh kX)(cos kL− cosh kL), (99)

whereas the last condition gives rise to the wavelength equation:

cos kL cosh kL = 1. (100)

The first value of k > 0 that verifies the transcendental Eq. (100) is the dimensional wavelength k1 of the first
flexural mode. Its eigenfrequency is then obtained by solving Eq. (97a) and reads:

ω2
1f =

EI

δS
k41 . (101)

As for the fourth longitudinal mode, a similar approach is followed. Imposing the separation of variables on
U :

U(X,T ) = P (T )Ψ(X), (102)

and imposing the clamped clamped boundary conditions Ψ(0) = Ψ(L) = 0 one can find the eigenfunction that
has now a simpler form being Eq. (97b) a second order differential equation in X. The first boundary condition
is verified by:

Ψ(X) = B sinκX, (103)

and the second one by the wavelength equation:

sinκL = 0. (104)

The dimensional wavelength of the fourth axial mode is fourth value of κ > 0 that respects Eq. (104) equal to
κ4 = 4π/L. The eigenfrequency of the fourth axial mode is then obtained from Eq. (97b) and reads:

ω2
4a =

E

δ

(4π)2

L2
. (105)

Before operating the reduction that will produce the 2 dofs system of ODEs, it is convenient to make Eq. (97)
non-dimensional with the following identities:

X = xL,

T = tT0,

W = wh,

U = uh,

Q = qh,

P = ph,
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and by introducing the additional quantities:

c =
√
E/δ,

β = k1L,

σ = h/L,

T0 = 1/ω1f =
√

12L2/(chβ2),

where the rectangular section assumption has been used in the last equation to simplify I/S = h2/12. It is now
possible to rewrite Eqs. (55) with respect to the new variables x, t, w, u as:

h

T 2
0

(
w,tt +

1

β4
w,xxxx −

12

β4σ
(u,xw,x),x −

6

β4

(
w,x

3
)
,x

)
= 0, (106a)

h

T 2
0

(
u,tt −

12

β4σ2
u,xx −

12

β4σ
w,xw,xx

)
= 0. (106b)

which coincides with Eqs. (56) multiplied by the nonzero factor h/T 2
0 .

This system of equations can be reduced to a system of ODEs using the equations for w and u now in their
non-dimensional form:

w(x, t) = q1(t)Φ1f (x), (107)

u(x, t) = p4(t)Ψ4a(x), (108)

with:

Φ1f (x) = α1(cosβx− coshβx)(sinβ − sinhβ)− (sinβx− sinhβx)(cosβ − coshβ)

Ψ4a(x) = α4 sin 4πx,

by projecting Eq. (106a) on the shapefunction Φ1f and Eq. (106b) on the shapefunction Ψ4a.
The Galerkin projection of Eqs. (106) leads to:

q1,tt + q1 −
2

σ
Gq1 p4 +Dq31 = 0, (109a)

p4,tt +
12(4π)2

β4σ2
p4 −

1

σ
Cq21 = 0. (109b)

With the coefficients G, D, C being equal to:

G = −
6

β4

(∫ 1
0 Φ (Ψ,xΦ,x),x dx∫ 1

0 Φ
2dx

)
(110)

C = −
12

β4

(∫ 1
0 Ψ (Φ,xΦ,xx) dx∫ 1

0 Ψ
2dx

)
(111)

D = −
6

β4

∫ 1
0 Φ

(
Φ,x3

)
,x
dx∫ 1

0 Φ
2dx

 (112)

If the arbitrary amplitudes α1 and α4 are chosen to have mass normalised eigenfunctions:

α1 :

∫ 1

0
Φ2dx = 1,

α4 :

∫ 1

0
Ψ2dx = 1,

the quadratic coupling coefficients are symmetric G = C = 1.23, the cubic coefficient is D = 2.67 and Eqs. 57 are
finally retrieved.
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58. Touzé, C., Vidrascu, M., Chapelle, D.: Direct finite element computation of non-linear modal coupling coef-
ficients for reduced-order shell models. Computational Mechanics 54(2), 567–580 (2014)

59. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Philipchuck, V.N., Zevin, A.A.: Normal modes and localization
in non-linear systems. Wiley, New-York (1996)

60. Veraszto, Z., Ponsioen, S., Haller, G.: Explicit third-order model reduction formulas for general nonlinear
mechanical systems. Journal of Sound and Vibration 468, 115039 (2020)

61. Vizzaccaro, A., Givois, A., Longobardi, P., Shen, Y., Deü, J.F., Salles, L., Touzé, C., Thomas, O.: Non-intrusive
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